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Introduction

A DNA microarray is an orderly arrangement of DNA on
solid support, providing a medium for matching known
and unknown DNA samples [1]. The types of DNA
microarrays and relevant methodologies are reviewed
by Chao et al [2]. In this article, we briefly review the
current advances in microarray analysis of gene expres-
sion (MAGE), focusing on recent reports of the
MicroArray Quality Control (MAQC) project and the

shift of MAGE usage from molecular cancer profiling
to clinical cancer therapeutics.

Applications of MAGE in Studying
Physiologic and Pathologic Mechanisms

Gene expression profiling has generated and continues
to generate extensive information on the molecular
mechanisms of cellular function in particular tissues
during physiologic or pathologic events. Microarray
analysis technology is a high throughput platform for
gene expression profiling. The beauty of MAGE is that
we can usually discover some genes that were previ-
ously not linked to certain physiologic or pathologic
events. For instance, we have gained insight into the
host response to SARS infection [3], tumor biology of
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various cervical cancer types [4], molecular mecha-
nisms in paclitaxel treatment of ovarian cancer [5], and
the intrinsic difference among the mesenchymal stem
cells derived from distinct origins [6].

MAQC

When DNA microarrays are used to analyze similar tis-
sues, gene expression profiles obtained from different
studies used to be notoriously varied [7], sometimes
even conflicting. Possible causes for the discrepancy
include different assay platforms using different
sequences to represent a particular gene, non-uniform
coverage of gene sets, distinct data filtering strategies,
various statistical stringency, as well as data complexity
and variability [8–10]. The identification of differen-
tially expressed genes in a studied condition with DNA
microarray analysis is often determined by the criteria
set by the investigators. Therefore, concerns have been
raised regarding the reliability of microarray results due
to the varied and often conflicting reports [11,12].

To address this concern, a collaborative effort led by
the United States Food and Drug Administration that
included 137 scientists from 51 organizations repre-
senting academia, industry, and the US government has
completed the MAQC project [13–18]. In this project,
identical specimens were aliquoted and assigned to par-
ticipating laboratories to analyze using different microar-
ray platforms, including those manufactured by Applied
Biosystems, Affymetrix, Agilent, and GE Healthcare. To
validate the quantitative capability of microarrays,
microarray results were compared with real-time quan-
titative polymerase chain reaction (PCR). The correla-
tion between Affymetrix gene expression results and
TaqMan real-time quantitative PCR results has shown
good linearity (r2 = 0.95) [15].

A fold-change ranking method with a p-value cut-
off < 0.05 has recently been shown to be reproducible in
selecting the signature gene list from results using differ-
ent microarray platforms [18]. These selection on cri-
teria have been shown to more reproducible than t-test 
p value or significance analysis of microarrays [18]. We
have applied this method in selecting the signature gene
expression profiles with ease; after filtering using p <
0.05, we ranked genes by fold change and chose the top
25 genes that were upregulated in each group of mes-
enchymal stem cells derived from amniotic fluid, amni-
otic membrane, cord blood, and adult bone marrow [6].

Collectively, because of the remarkable improvement
of microarray technology and the aforementioned crit-
ical evaluations, the majority of microarray researchers
recognize the reliability and consistency of well-designed

and carefully conducted microarray results. Even in the
2 years before the publication of the MAQC project,
the clinical and biologic findings derived from microar-
rays were regarded to be “remarkably robust, with a
high level of quantitative precision” [19,20]. The recent
MAQC results further demonstrate that microarray gene
expression analysis itself is suitable as a stand-alone
quantitative comparison [17]. Nevertheless, we should
not ignore potential flaws. All the encouraging results
of the MAQC project only establish that microarray
technology is robust, but they do not imply that the
technology is foolproof. Quoted from a commentary
in the November 17, 2006 issue of Cell, “You can learn
to do PCR well in a month. But with microarrays, it can
take years.” [13].

Advanced Microarray Data Analyses
Beyond Detection of Differential
Expression

To evaluate how MAGE can help to make a diagnosis
or choose a therapy, researchers use one set of patients
to identify a gene-expression pattern called a genetic
signature that can correspond to a clinical issue, such
as a 5-year survival rate, the response to a treatment, 
or the induction of side effects by a drug. The power of
microarray technology is its ability to use changes in
multiple genes as the pattern of gene expression rather
than to choose thresholds of individual markers [19].
This genetic signature is then validated on other groups
of patients [13].

During this trial period, it is critical that investiga-
tors understand how to minimize expression noise and
bias through effective design. Expression noise can be
defined as gene expression variation that does not cor-
relate with the biology or behavior being studied and is
introduced by both the technology itself and/or during
tissue processing [21]. Bias is not inherent to microar-
ray analysis but is easily introduced by faulty experi-
mental design [21]. A series of sophisticated analytical
strategies to address these problems have been dis-
cussed [19,22,23], as summarized in Table 1.

An unsupervised analysis does not use any a priori
class definition, but it simply seeks to determine what
structure is inherent in the data [19]. A commonly
used example of unsupervised analysis is hierarchical
clustering, i.e. letting the data define its own patterns by
clustering genes that are most similar in expression pro-
file [24]. A supervised analysis is more likely to reveal
putative associations between genes and the cytogenetic
class, but it may bias the outcome by forcing a model
onto the data, i.e. the “overfitting” risk [19].
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To extract robust profiles from multiple data sets,
a meta-analysis has been done on 40 independent data
sets derived from more than 3,700 array experiments,
identifying 36 cancer signatures that were activated in
cancer relative to the normal tissue from which the
cancer arised [25]. A meta-analysis of these signatures
further identified 67 genes that were activated in 12 or
more signatures, suggesting a common transcriptional
program pervading most types of cancer [22].

In functional enrichment analysis, a series of external
functional information has been used to interpret and
summarize large cancer signatures milestones [22].
Databases of external functional information include
Gene Ontology (www.geneontology.org) [26], Kyoto
Encyclopedia of Genes and Genomes (www.genome.jp/
kegg/), Biocarta (www.biocarta.com), and GenMAPP
(www.genmapp.org). Commercially maintained inte-
grative databases and softwares include MetaCore 
by GeneGo (www.genego.com/metacore.php) and
Ingenuity Systems (www.ingenuity.com). We have
recently used the MetaCore suite to analyze the signa-
ture profiles of mesenchymal stem cells of various origins
and obtain insights into biologic processes of each
group [6].

The goal of transcriptional network analysis is to
simplify a complex cancer signature to a small number
of activated transcriptional programs that may shed
light on neoplastic mechanisms and further point to
potential targets of therapeutic intervention [27]. In
addition to the aforementioned functional enrichment
analysis, in which many of the downstream effectors
are transcription factors, chromatin immunoprecipi-
tation coupled with promoter microarrays (ChIP-chip
assays) allow for genome-wide identification of tran-
scription factor-binding sites [28,29]. With hundreds
of consensus binding sequences for transcription fac-
tors, which have been defined by sequence-based meth-
ods, it is feasible to perform a large-scale integrative

analysis of binding-site profiles and cancer signature
expression profiles [22].

Analysis of expression modules, in which functional
pathways (i.e. gene modules) are used as gene mod-
ules, was proposed to extend the investigation of can-
cer gene expression from individual genes to biologic
processes [23]. When this concept of higher-level
modules was applied to examine the joint behavior of
differentially expressed genes in diabetic muscle, a sig-
nificant change in the whole set of genes was noted,
even though the expression of individual genes was not
significantly different [30]. Segal et al used this mod-
ule-level analysis to obtain a global view of the shared
and unique molecule modules underlying human can-
cer [31]. They demonstrated that activation or repres-
sion of some modules (e.g. cell cycle) was shared
across multiple tumor types and could be regarded as
a general tumorigenesis, whereas others (e.g. growth-
regulatory modules) were more specific to tissue origin
or progression of particular tumors [23].

MAGE in Clinical Cancer Investigation

Applications of MAGE in clinical cancer investigation
have shifted from molecular profiling in the year 1999
[32,33], identifying previously undiscovered subgroups
of particular type of cancer [34], predicting outcomes
of cancer patients in 2002 [35,36], and revealing a
metastasis signature of solid tumors [37], to guiding
the use of therapeutics in 2006 [38], as summarized in
Table 2. The use of MAGE as the guide of cancer thera-
peutics has also been compared in meta-analyses in
large B-cell lymphoma [39].

In a leukemia data set of 38 bone marrow samples
(27 acute lymphoblastic leukemia and 11 acute
myeloblastic leukemia), Golub et al tested whether gene
expression monitoring by DNA microarray could be

Table 1. Glossary of microarray analysis of gene expression

Analytic methods Description Reference

Unsupervised analysis To simply seek to determine what structure is inherent in the data, Eisen et al [24]
without any a priori class definition

Supervised analysis To reveal associations between genes and the different known disease Golub et al [32]
classes

Meta-analysis To extract robust profiles from independent data sets Rhodes et al [25]
Functional To use external databases for interpreting and summarizing large Rhodes and 

enrichment analysis data sets Chinnaiyan [22]
Transcriptional To reduce a complex cancer signature to a small number of activated Rhodes and 

network analysis transcriptional programs Chinnaiyan [22]
Analysis of expression To transcend the investigation of cancer gene expression from individual Segal et al [23]

modules genes to biologic processes using functional pathways as gene modules 
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used to identify new cancer classes (class discovery) and
to assign tumors to known classes (class prediction)
[32]. Using a supervised learning classification algorithm,
Golub et al first constructed class predictors and then
evaluated them using cross-validation with the same col-
lection of specimens with known outcomes. Their results
suggested a general strategy for discovering and pre-
dicting cancer classes, which proved useful in predict-
ing outcomes in patients with other tumor types [36].

As a proof of principle, Perou et al used cDNA
microarrays to identify genes of differential expression
between in vitro cultured human mammary epithelial
cells and breast tumor specimens [40]. Their results
supported the feasibility and usefulness of this system-
atic approach for studying variations in gene expres-
sion patterns in human cancers as a means to dissect
and classify solid tumors [40]. Then, 64 surgical speci-
mens of human breast tumors from 42 patients were
analyzed for gene expression profiles [33]. They identi-
fied a set of co-expressed genes for which variation 
in mRNA levels could be related to specific features of
physiologic variation. Molecular portraits of cancer
with gene expression profiles were thus proposed [33].

Diffuse large B-cell lymphoma (DLBCL) is one dis-
ease in which further subgrouping by histology is 
difficult because of inter- and intra-pathologist irre-
producibility [41]. Using hierarchical clustering for
MAGE profiling, 40 DLBCL specimens could be divided
into two distinct groups: 19 cases of germinal center
B-like DLBCL, and 21 cases of activated B-like DLBCL
[34]. Statistically, patients with germinal center B-like
DLBCL had a better overall survival than those with
activated B-like DLBCL. The molecular classification
of tumors based on gene expression profiles has thus
proved its ability to identify previously undetected and
clinically significant subtypes of cancer [34].

Even in the same stage of disease, breast cancer is
notorious for its unpredictable response to chemother-
apy and variable overall outcome. Chemotherapy [42]
or hormonal therapy [43] reduces the risk of distant
metastasis by about a third. However, because of the
lack of an accurate patient triage strategy to determine
who should or should not undergo adjuvant therapy,
many patients who might not develop cancer metasta-
sis at all have unnecessarily undergone adjuvant ther-
apy. To develop patient-tailored therapy strategies for
breast cancer, van’t Veer et al used supervised classifi-
cation to analyze DNA microarray data on primary
breast tumors of 117 young patients [35]. van’t Veer et
al identified a poor prognosis signature, by which they
could predict a short time interval to distant metastasis.
Therefore, these results provide a strategy to select
patients who would benefit from adjuvant therapy.

In search of the molecular metastasis signature of
cancer, Ramaswamy et al compared gene expression
patterns between primary tumors and metastases [37].
They identified a gene expression signature that distin-
guished primary from metastatic adenocarcinomas.
However, the authors found that a subset of primary
tumors resembled metastatic tumors, and they further
confirmed this finding by applying the expression sig-
nature to data on 279 primary solid tumors of diverse
types. Notably, Ramaswamy et al analyzed whole tumor
tissues including surrounding stromal cells, instead of
pure cancer population that could be isolated using
laser capture microdissection. In the 17-gene metasta-
sis signature identified in that study, two collagen
genes and one lamin gene were upregulated, suggest-
ing that malignancy is the product of the tumor-host
microenvironment [44].

Two articles about the prognostic usefulness of gene
expression profiles in acute myeloid leukemia (AML)

Table 2. Milestone studies of microarray analysis of gene expression in cancer research

Year Reports on References

1999 Molecular classification of cancer using supervised machine learning Golub et al [32]
2000 Molecular profiling of breast cancer Perou et al [33]
2000 Identification of subgroups of diffuse large B-cell lymphoma with different outcomes Alizadeh et al [34]
2002 Prediction of clinical outcomes of breast cancer van’t Veer et al [35]
2003 Identification of metastasis signature that reflected both contributions of the tumor Ramaswamy et al [37]

and the host environment
2004 Identification of prognostic profiles of adult acute myeloid leukemia Bullinger et al [45]; 

Valk et al [46]
2004 Using independent samples of lymphoma to test a meta-analysis derived signature Lossos et al [39]

profile for predicting overall survival in diffuse large-B-cell lymphoma
2006 Concordance among gene-expression based predictors for breast cancer Fan et al [53]
2006 Development of a series of oncogenic pathway signatures in human cancers Bild et al [54]
2006 Genomic signature to guide the use of cancer chemotherapeutics Potti et al [38]



were published back to back in the April 15, 2004 issue
of New England Journal of Medicine [45,46]. Bullinger et al
of Stanford University used cDNA microarrays to iden-
tify a 133-gene clinical outcome predictor of AML [45],
while Valk et al of Erasmus University at Rotterdam
used Affymetrix oligonucleotide microarrays to identify
a unique cluster of genes in AML patients, which are
thought to be associated with a poor outcome. Cancer
signature gene profiles used to be criticized to be an
highly unstable predictor of prognosis [47]. However,
even using different microarray platforms, the results of
the studies by Bullinger et al and Valk et al were surpris-
ingly robust [19,20]. These studies also demonstrated
the ability of microarray technology to use somewhat
imprecise patterns of gene expression rather than exact
thresholds of individual markers [19].

Currently, many prestigious journals, such as Science
and Nature series, ask authors to deposit their micro-
array data in a Minimal Information About a Microarray
Experiment (MIAME)-compliant form to one of two pub-
lic repositories: Gene Expression Omnibus at National
Center of Biotechnology and Informatics (http://www.
ncbi.nlm.nih.gov/geo/) and Array Express at European
Bioinformatics Institute (http://www.ebi.ac.uk/array-
express) as a prerequisite of publication of microarray-
derived research articles. Therefore, many large-scale
microarray data sets became available for re-analyses
by other researchers worldwide. For instance, multiple
important papers of breast cancer gene expression
profiles [35,48–50] have been derived from the same
comprehensive microarray data set with sufficient clini-
cal information [51].

Using several microarray data sets [34,36,52],
Lossos et al did a meta-analysis of DBCL and selected
36 genes for further analysis with real-time quantitative
PCR on independent samples of lymphoma from 66
patients [39]. Six genes that showed the strongest pre-
dicting power were LMO2, BCL6, FN1, CCND2, SCYA3,
and BCL2. After testing these genes in two additional
independent microarray data sets, Lossos et al con-
cluded that measurement of the expression of these six
genes to be sufficient in predicting overall survival in
DBCL [39].

The use of microarray gene expression profiles in
predicting outcomes of cancer patients has been vali-
dated in the aforementioned studies. However, even if
the same group samples were analyzed, distinct prog-
nostic profiles have been derived for outcome predic-
tion [35,48–51]. To resolve this paradox, Fan et al
compared the prediction powers of the gene sets for
the same group of specimens by applying five gene-
expression-based models: intrinsic subtypes, 70-gene
profile, wound response, recurrence score, and the

two-gene ratio [53]. By performing Kaplan–Meier sur-
vival analyses of 295 patients with breast cancer, Fan
et al found that four of the five models tested showed
significant agreement in the outcome prediction for
individual patients. The only exception was the model
using two-gene ratio, which could not result in a reli-
able prediction [53]. The explanation for the surprising
concordance among the four different models in pre-
dicting breast cancer outcomes is likely to be as fol-
lows: there was a large group of genes, which behaved
differently and were related to biologic phenotypes of
cancer, and ultimately, the patients’ outcomes. In this
large list of genes, each of the four models might have
used only some of them to construct the signature
profiles used for predicting outcomes.

To dissect oncogenic pathway signatures in human
cancer, Bild et al used adenoviral vectors to express
various oncogenic activities, such as Myc, Ras, E2F3,
Src, and β-catenin in otherwise quiescent cells. Applying
this strategy, they were able to specifically isolate the
subsequent events as defined by the activation/dereg-
ulation of that single oncogenic pathway, and analyze
these events with Affymetrix oligonucleotide microar-
rays [54]. In clinical samples of lung, breast and ovarian
cancers, Bild et al combined signature-based predic-
tions across several pathways and identified coordi-
nated patterns of pathway deregulation that distinguish
between specific cancer and tumor subtypes [54].
Using pathway-specific inhibitors such as Ras pathway
inhibitors, either farnesyltransferase inhibitor (L-744832)
or farnesylthiosalicylic acid, and the Src pathway inhibitor
(SU6656), Bild et al could predict drug sensitivity of
tested breast cancer cell lines according to their path-
way deregulation. In summary, predictions of pathway
deregulation in cancer cells can also predict the sensi-
tivity to therapeutic agents that target components of
the pathway. These results pave the path of using these
oncogenic pathway signatures to guide the use of target
therapeutics.

Because of the enormous complexity of cancer and
a frequent inability to properly guide the use of avail-
able therapeutics, chemotherapy for solid tumors often
results in marginal success. Most people with
advanced solid tumors will relapse and die of their dis-
ease [55]. Furthermore, oncologists have always had
to face the challenge of matching the right therapeutic
regimen with the right individual, balancing relative
benefit with risk to achieve the best outcome.

With the goal of using genomic signatures to guide
the use of chemotherapeutics, Potti et al systematically
extracted gene expression profiles from the following
microarray data sets: NCI-60 cancer cell lines [56], addi-
tional 30 cancer cell lines [57], the authors’ previously
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reported breast, ovarian and lung cancer specimens
[54], and their newly analyzed 13 ovarian cancer cell
lines and 119 advanced (FIGO stages III or IV) serous
epithelial ovarian cancers [38]. Potti et al demon-
strated patterns of predicted sensitivity of three human
solid cancers (breast, lung, ovary) to seven common
chemotherapeutic drugs (5-fluorouracil, paclitaxel,
docetaxel, adriamycin, topotecan, cyclophosphamide,
etoposide). To evaluate how individual signatures res-
pond to a combination of drugs, Potti et al also analyzed
51 breast cancer patients who were in a breast neoadju-
vant treatment study that used a combination of pacli-
taxel, 5-fluorouracil, adriamycin and cyclophosphamide
(TFAC). The predicted response that was based on a
combined probability of sensitivity built from the indi-
vidual chemosensitivity predictions yielded a statisti-
cally significant distinction between responders and
nonresponders [38].

Evolving Roles of Genomic Signatures in 
a New Generation of Clinical Trials

As summarized in the Figure, the roles of cancer genomic
signatures have evolved through three phases. In the
first phase, genomic signatures were described in stored
cancer specimens and dubbed as molecular portraits
of cancer [33]. When gene expression profiles were

carefully correlated with sufficient clinical information
of cancer patients, new subgroups of cancers with dis-
tinct outcomes were revealed [34]. In studies of the
second phase, validation of cancer signatures was
emphasized and commonly done with independent
groups of cancer specimens or independent data sets
[22,25,35,39]. In the third phase, cancer genomic signa-
tures have been expanded beyond depicting the molec-
ular portrait of cancer to predicting patient outcomes
[45,46], including metastasis [37]. It has become a rule,
in the third phase, that all of the prognostic genomic sig-
natures be validated in additional data sets. Potti et al
further demonstrated the role of cancer genomic signa-
tures as a guide to the use of cancer therapeutics [38]. A
new generation of cancer clinical trials was proposed, in
which the cancer specimens of each participant should
be tested for currently available predictor genomic sig-
natures so that the most effective treatment and the
least adverse effects for each patient could be identi-
fied. Then, participants can be triaged to an appropri-
ate study group (Figure). In fact, successful examples
in treating patients with early-stage non-small cell lung
cancer were reported by Potti et al [59] and in treating
those with advanced-stage ovarian cancer by
Dressman et al [60].

It is commonly argued against microarray results
by the fact that a transcriptome does not necessarily
reflect the corresponding proteome, the collection of
proteins that execute the majority of cellular functions.
Indeed, mRNA expression is only a coarse surrogate for
protein activation levels. For many genes, however,
mRNA expression is a useful surrogate [23]. As docu-
mented in many studies, when one finds strong signals
of differential expression, these are typically reflected
later at the protein levels. The latter can be validated by
protein assays such as enzyme-linked immunosorbent
assays [5] or immunohistochemistry [4].

Conclusion

At the current developmental pace of genomic technol-
ogy, the clinical trend towards personalized medicine
is almost certain (Figure). Many biomedical researchers
and clinicians predict that microarray technology will
be incorporated into clinical laboratories in hospitals
in the near future. As extrapolated from the results of
the studies discussed in this article, the use of a
“focused array” to measure the expression of 50 to
100 genes in the signature profile for a selected disease
would help clinicians predict the patient’s response to
a drug, triage patients into a chemo-responsive versus
chemo-resistant group, and evaluate a panel of risk
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Phase 1: Genomic signatures derived from 
stored specimens with complete clinical data

Phase 2: Validation of signatures with 
independent group of specimens or data sets

Phase 3: Expansion of genomic signatures of 
optimal single or combination chemotherapy and
to predict patient outcomes (metastasis, drug
sensitivity or resistance, adverse effects, etc) 

Ultimate goal: Personalized therapy

New generation of clinical
trials:
First evaluating the most 
effective treatment for each
participant, then triaging
individual to an appropriate
study group

Figure. Three phases of genomic signatures in cancer therapy
and a new generation of clinical trials. This schema is adapted
from Herbst and Lippman [58] and Potti et al [38].



factors that may result in comorbidity of the patient.
To achieve this practical feasibility, microarray tech-
nology would need to address a range of quality-control
issues. Every aspect of the process should be so robust
that it can be considered to be foolproof. It is predicted
that within the next 10 years, microarray developers
will meet these challenges [13].
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