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Abstract

Background: Comparing and classifying functions of gene products are important in today's biomedical research.
The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most
widely used indicators for protein interaction. Among the various approaches proposed, those based on the vector
space model are relatively simple, but their effectiveness is far from satisfying.

Results: We propose a Hierarchical Vector Space Model (HVSM) for computing semantic similarity between different
genes or their products, which enhances the basic vector space model by introducing the relation between GO terms.
Besides the directly annotated terms, HVSM also takes their ancestors and descendants related by “is_a” and “part_of"
relations into account. Moreover, HVSM introduces the concept of a Certainty Factor to calibrate the semantic similarity
based on the number of terms annotated to genes. To assess the performance of our method, we applied HVSM to
Homo sapiens and Saccharomyces cerevisiae protein-protein interaction datasets. Compared with TCSS, Resnik, and
other classic similarity measures, HYSM achieved significant improvement for distinguishing positive from negative

available at https://github.com/kejia1215/HVSM.

protein interactions. We also tested its correlation with sequence, EC, and Pfam similarity using online tool CESSM.
Conclusions: HVSM showed an improvement of up to 4% compared to TCSS, 8% compared to IntelliGO, 12%
compared to basic VSM, 6% compared to Resnik, 8% compared to Lin, 11% compared to Jiang, 8% compared to
Schlicker, and 11% compared to SimGIC using AUC scores. CESSM test showed HVSM was comparable to SimGIC, and
superior to all other similarity measures in CESSM as well as TCSS. Supplementary information and the software are
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Background

The Gene Ontology (GO) [1] is a widely used vocabulary
system in bioinformatics, which systematically describes
the functional relations between different genes or their
products. The GO consists of three independent ontolo-
gies: biological process (BP), cellular component (CC),
and molecular function (MF). Each ontology is structured
as a Directed Acyclic Graph (DAG), in which GO terms
form the nodes, and the relations between the GO terms
form the edges. In the DAG, GO terms are connected
by different hierarchical relations (mostly is_a and part_of
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relations). The is_a relation describes the fact that a child
term is a specialization of a parent term, while the part_of
relation denotes the fact that a child term is a component
of a parent term. The term at the lower level (e.g., leaf
term) has more specific information than the term at the
upper level (e.g., root term). Recently, GO has been widely
used in protein function prediction, validation [2, 3] and
classification of protein-protein interactions [4, 5], gene
expression studies [6] and pathway analysis [7].

Gene products are usually annotated with a set of GO
terms. The functional relations between gene products are
quantified by using the shared GO terms of gene prod-
ucts [8-10] or explicitly using semantic similarity mea-
sures [11]. The semantic similarity measures have been
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widely used, which generate numerical values describing
the likeness between two terms [12].

In this paper we presented a new method to calculate
semantic similarity, the Hierarchical Vector Space Model
(HVSM), which enhanced the basic vector space model
(VSM) by explicitly introducing the relations between GO
terms. When constructing the vector for a gene, in addi-
tion to the terms annotated to the gene, HVSM takes
their ancestors and descendants into consideration as
well. Besides, HVSM considers both “is_a” and “part_of”
relations. The introduction of the Certainty Factor to cal-
ibrate the similarity value based on the number of anno-
tated terms improves the effectiveness of HVSM further.
The simplicity of the algorithm makes it very efficient.
We tested HVSM on Homo sapiens and Saccharomyces
cerevisiae protein-protein interaction datasets and com-
pared the results with two other vector-based measures,
IntelliGO [13] and basic VSM, and the six other popular
measures, including TCSS [14], Resnik [15], Lin [16], Jiang
[17], Schlicker [18], and SimGIC [19]. The results showed
that HVSM outperformed the other eight measures in
most cases. HVSM achieved an improvement of up to 4%
compared to TCSS, 8% compared to IntelliGO, 12% com-
pared to VSM, 6% compared to Resnik, 8% compared to
Lin, 11% compared to Jiang, 8% compared to Schlicker,
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and 11% compared to SimGIC. The correlation coeffi-
cients with protein sequence, EC, and Pfam similarity also
showed that HVSM was comparable to SimGIC, and out-
performed all other similarity measures in the CESSM
test.

Related Work

Different approaches have been proposed to calculate the
semantic similarity, such as the vector-based approach,
the term-based approach, the set-based approach, and
the graph-based approach. The vector-based approach
transforms a gene product into a vector, and functional
similarity is measured by the similarity of correspond-
ing vectors. The term-based approach calculates semantic
similarities from term similarities using various combina-
tion strategies. The set-based approach views the set of
terms as bags of words. Two gene products are similar
if there is a large overlap between the two correspond-
ing sets of terms. The graph-based approach uses graph
matching techniques to compute the similarity.

In vector-based approaches, the dimension of the vec-
tor is equal to the total number of terms in GO. Each
dimension corresponds to a term in GO. Each vector com-
ponent is either 1 or 0, denoting the presence or absence
of a term in the set of annotations of a given gene product.
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Fig. 1 The main process of HVYSM
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certain property of a term (e.g., IC value) [20]. The most
common method of measuring similarity between vectors
is the cosine similarity:
V1-Vy
[vil vl
where v; represents the vector of the gene product G;,
v1 - vy corresponds to the dot product between the two
vectors, and |v;| denotes the magnitude of vector v;.
Suppose G; and Gy are two given genes or gene prod-
ucts annotated by two sets of GO terms {t11, %12, - , L14}
and {fp1,t99, - ,toy). InteliGO [13], a vector-based
method, represented each gene as a vector g = ), we;,
where «; w (g, ti) IFA (t), w (g, ti) representing the
weight assigned to the evidence code between g and ¢,
IFA (¢;) being the inverse annotation frequency of the term
t;, and e; being the i-th basis vector corresponding to the
annotation term ¢;. The dot product between two gene
vectors was defined as:

S, (G1,Gy) = (1)

QxZ@ =) aixPirexe ()
-

J

2Depth(LCA)
ek e =
"7 MinSPL (ty;, ta)) + 2Depth(LCA)

where Depth(LCA) was the depth of the lowest common
ancestor (LCA) for t1; and ty, and MinSPL (tli, tgj) was
the length of the shortest path between #;; and £y;, which
passed through LCA. The similarity measure for the two
genes vectors g1 and go was then defined using the cosine
formula:

3)

V81 *81/82 * &2

The basic vector-based methods ignore the intrinsic rela-
tionship between different terms and treat different terms
as independent components, which may lead to the inac-
curacy of the semantic similarity.

Term-based approaches can be classified into two
groups: path-based and IC-based.

Path-based approaches, also called edge-based
approaches [2, 21-26], use the number of edges or the
distance between two terms to quantify the semantic
similarity. When more than one path exist between two
terms, the shortest path or the average of all paths is
usually used. Similar approaches were adapted to the
biomedical field [27]. Path-based methods are based on
two assumptions: (1) edges and nodes are uniformly
distributed [28], and (2) edges at the same level in the
ontology correspond to the same semantic distance
between terms. However, both of the above assumptions
are rarely true.

IC-based approaches [14—19, 29-32] use the Informa-
tion Content (IC) to measure how specific and infor-
mative a term is. IC can be quantified by negative log
likelihood, — log p(c), where p(c) is the occurrence proba-
bility of the term ¢ in a specific corpus, such as the UniProt
Knowledge base [12]. The TCSS [14] measure defined a
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Fig. 3 An example illustrating the algorithm. Gene1:5000000313 is annotated to 5 terms and Gene2: S000000825 is annotated to 1 term, which are
written in black color. Parent and grandparent terms via “is_a” relations are in red and orange respectively. The terms in green are related via
“part_of" relation. Gene1 and Gene2 happen to have no common descendants. The steps in stage3 are not shown because they are almost the
same as stage2. The vector components in green background are the ones changed in the steps. The similarity by VSM can be simply calculated
from the two vectors in stagel, which is 0. However the gene pair is labeled as positive in the yeast dataset. The similarity obtained by HVSM is 0.23

different way to calculate IC, which depended upon the approaches, so the distinction between the two groups is
specificity of the term in the graph, shown as: not clear. Three combination approaches are commonly
used in term-based approaches to obtain semantic sim-
ilarities of gene pairs from term similarities: maximum
®) (MAX), average (AVG) and best-match average (BMA)
[18]. Let GO(A) and GO(B) denote the term sets anno-
where f was a term in the ontology O, |N(¢)| was the num-  tated to two proteins A and B. The MAX and the AVG
ber of children terms of ¢, and |O| was the total number of ~ approach are given by the maximum and the average of
terms in O. The IC value of a term was dependent on its  the similarity between each term in GO(A) and each term
children, and its parents were not considered [15]. in GO(B). The BMA is given by the average similarity
Many of the term-based methods are hybrid. They between each term in GO(A) and its most similar term in
involve both ideas of the path-based and IC-based GO(B), averaged with its reciprocal [33].
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Fig. 4 The partial GO topology relevant to the example. Solid lines indicate the “is_a" relation, and dotted lines indicate the “part_of" relation. The
term annotated to Gene?2 is in blue background
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Table 2 Negative and positive data distribution before and after the removal

S. cerevisiae

H. sapiens

Positive Negative

Positive Negative

Complete dataset  Partial dataset Complete dataset

Partial dataset

Complete dataset  Partial dataset Complete dataset Partial dataset

CC 4469 4248 4469 1859
BP 4385 4123 4385 1750
MF 3858 3641 3858 1589

1431 1422 1431 1176
1435 1424 1435 1177
1441 1407 1441 1167

Set-based approaches use the Tversky ratio model of
similarity [34] (a general model of distance) to calculate
the similarity between gene products, which is defined as:

f(G1NGy)

6
f(G1ING) +axf(Gl—Ga)+ B *f(Gy— Gr) (©)

where G; and G are sets of terms annotated to two dif-
ferent gene products from the same ontology and f is an
additive function on sets. When o« = g = 1, we get the
Jaccard distance between two sets:

f(G1NGy)

F(GLUG) @)

S]accard =

Wheno = 8 = %, we have the Dice distance between two
sets:

2xf(G1 N Ga)
f(G) +f(Ga)

Set-based approaches assume that the terms are inde-
pendent of each other. The similarity and dissimilarity
of genes are modeled by two sets and their interactions.
From Egs. (7) and (8), we can conclude that the Jaccard
and Dice distance return a similarity of 0 if two sets have
no shared terms. However, these terms may have a certain
relationship in the GO hierarchy.

Graph-based approaches make use of graph matching
and graph similarity to calculate the similarity between
gene products. A gene is modeled by the sets of nodes
and edges associated with a sub-graph. The similarity
is calculated by quantifying the difference between two
sub-graphs.

Graph-based methods have three disadvantages: (1) a
few measures only takes into account the shared terms
in the sub-graphs, ignoring the edge type [35-38]; (2)
graph matching have a weak correlation with similarity
between terms [39]; (3) graph matching is an NP-complete
problem [40].

Mazandu et al. [11] compared fourteen semantic sim-
ilarity tools based on GO, classified in the context of IC
models, term similarity approaches and functional sim-
ilarity measures. The features and challenges of each
approach were analyzed, including the use scope and lim-
itations. Mazandu et al. also described two key reasons
for the difficulty in comparison: the dataset issue, where

(8)

SDice =

different tools use different version of GO or annota-
tion datasets, and the scaling issue, which results from
tools making different assumption regarding normaliza-
tion methods.

The effects of the shared information for the semantic
similarity calculation were discussed in [41]. The shared
information of a term pair is the common inheritance
relations extracted from the structure of the GO graph.
Experiments of three different methods calculating the
term similarity, each with five shared information meth-
ods, were done on three ontologies across six benchmarks.
Among the choice of shared information, term similarity
algorithm, and ontology type, the choice of ontology type
most strongly influenced the performance, and shared
information type had the least influence [41].

More and more hybrid approaches were proposed in
recent years, such as the algorithm described in [42],
which utilized both the topological features of the GO
graph and the information contents of the GO terms.
Based on the topological structure of the GO graph, the
measure [42] identified a number of GO terms as clus-
ter centers according to a specific threshold, and then a
membership was calculated for each cluster center and
term pair. Semantic similarity scores were obtained by
combining the relevant memberships and shared infor-
mation contents. The threshold and the width of the
Gaussian membership function were determined for dif-
ferent ontologies and datasets respectively to achieve the
best AUC scores, while most of the other methods, includ-
ing TCSS, used fixed value of parameters. Besides, the
normalization method used in [42] depended on different
ontologies. Therefore, the method showed relatively good
performance.

The machine learning approaches are emerging to
study semantic similarity, such as support vector machine
(SVM) [43], random forest [44], and AdaBoost strategy
[45]. Among the machine learning techniques, random
forest and support vector machine (SVM) are found to
achieve the best performance [43].

Table 3 Ratio of removed data in the H. sapiens dataset

H. sapiens CcC MF BP
Positive 0.62% 2.30% 0.70%
Negative 10.80% 19% 17.9%
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Table 4 Ratio of removed data in the S. cerevisiae dataset

S. cerevisiae CcC MF BP
Positive 4.90% 5.62% 5.97%
Negative 58.40% 59% 60.1%

Methods involving natural language processing were
reported. w2vGO [46] utilized the Word2vec model to
compare definitions of two GO terms, which did not rely
on the GO graph. The results showed that w2vGO was
comparable to Resnik [15].

The semantic similarity measure was also extended to
gene network analysis. GFD-Net [47] combined the con-
cept of semantic similarity with the use of gene network
topology to analyze the functional dissimilarity of gene
networks based on GO. It was used in gene network
validation to prove its effectiveness.

Methods
We propose the HVSM algorithm, which is based on the
Vector Space Model, to calculate the semantic similarity
between genes. Similar to basic VSM approaches, HVSM
maps each gene into a vector, and the semantic simi-
larity between two genes is obtained by calculating the
similarity between two corresponding vectors. The key
improvement of HVSM over basic VSM lies in the refine-
ment of the vector generation. When transforming the set
of terms annotated to a gene to a vector, HVSM consid-
ers the relations between terms in the hierarchy structure
of the GO graph. HVSM takes into account not only each
directly annotated GO term, but also their ancestors and
descendants, which are related by “is_a” and “part_of”
relations. Thus, vectors in HVSM represent the attributes
of genes more comprehensively and accurately, compared
with basic VSM.

Figure 1 shows the main procedure of HVSM, which
consists of four stages.
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1. Initialize the vectors. Each vector component is
binary valued, with 1 representing the presence of the
GO term in the gene’s annotation and 0 representing
its absence;

2. Find out the parents and children of the directly
annotated terms via “is_a” relations and then modify
the vector accordingly;

3. Find out the parents and children of the directly
annotated terms via “part_of” relations and then
modify the vector accordingly;

4. Calculate similarity between vectors enhanced with
the certainty factor.

In stage 1, each gene has a set of directly annotated terms
and each element in the set denotes a functional aspect
of the gene. The dimension of the vectors generated by
vector-based methods, including the HVSM, equals the
total number of terms in GO, with each dimension cor-
responding to a specific term in GO. Each component
value of the vector represents the relative degree of the
contribution of the corresponding terms. Thus, the vector
generated for a gene represents the function distribu-
tion of the gene. Let # be the dimension of the vector.
The vector g for a given gene G can be denoted as g =
(£9,65,- - %), where t7 has value between 0 and 1,
which reflects the relevance of term i to gene G.

The main steps of stage 2 of HVSM are described in
detail as follows:

i. Deal with parents.
For the directly annotated terms, their parents are
considered individually. For each parent, if the value
of the component corresponding to a parent is 0, we
add the value wygrens * Wis_4 to it, where wpgrens and
Wis 4 are the semantic contribution factors for parent
terms and “is_a” relation, respectively. If the value of
the component corresponding to a parent is equal to
1, the value remains unchanged. If it is between 0 and
1, we add Wincre * Wis_q to it, where Wiy is the

Table 5 Improvement of HVSM compared with VSM, IntelliGO, TCSS, Resnik, Lin, Jiang, Schlicker, and SimGIC on the H. sapiens PPI

datasets

CC BP MF

Complete dataset Partial dataset Complete dataset Partial dataset Complete dataset Partial dataset
VSM 5% 5% 12% 1% 9% 9%
IntelliGO 3% 3% 2% 2% 6% 8%
TCSS 2% 1% 1% 0% 3% 4%
Resnik 4% 5% 2% 2% 4% 6%
Lin 6% 7% 3% 3% 5% 5%
Jiang 6% 7% 5% 4% 4% 5%
Schlicker 6% 7% 3% 2% 7% 8%
SimGIC 5% 5% 1% 10% 8% 8%
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Table 6 Improvement of HYSM compared with VSM, IntelliGO, TCSS, Resnik, Lin, Jiang, Schlicker, and SimGIC on the S. cerevisiae PPI

datasets

CC BP MF

Complete dataset Partial dataset Complete dataset Partial dataset Complete dataset Partial dataset
VSM 3% 3% 6% 6% 4% 2%
IntelliGO -5% 2% -1% 7% -10% 2%
TCSS 0% 0% 1% 2% -1% -2%
Resnik 0% 0% 2% 2% 0% -2%
Lin 3% 2% 4% 4% 8% 7%
Jiang 4% 4% 5% 6% 11% 10%
Schlicker 2% 2% 3% 4% 8% 6%
SimGIC 3% 2% 6% 5% 4% 2%

The unreliable results are in italic

increment factor for shared nodes. The modified Only common descendant terms of two or more

value of the component should not be larger than 1. directly annotated terms are considered, because

Let tl-Gl be the value of ith component corresponding descendants are less relevant than parents. We use a

to a parent. The value after modification, tiG ,is similar strategy as in step i, replacing parameter

expressed as: Wparent With wepiig, which corresponds to the
) semantic contribution factor for child terms. The

/G _ Wparent * Wis_a te =0 ©) value of ith component corresponding to a child after
i = Vonin (1, tiG’ + Winere % Wis_a) tiG’ £ 0; modification, 7, is expressed as:

. . G
ii. Deal with grandparents. /G Wehild * Wis_a

The grandparent terms are considered with a similar i~
strategy to that used in step i for the parent terms.

;=0
e LT
min (1, L7+ Wehild * Wincre * Wis_a 2 #0;

We introduce w; g, which is the ratio of contribution iv. Deal with grandchildren.
factor for grandparents. The value of ith component A similar strategy as in step iii is used to process the
corresponding to a grandparent after modification, grandchildren. The value of ith component
t{, is expressed as: corresponding to a grandchild after modification, £,
) is expressed as:
tG _ Wr_g * Wparent * Wis_a tiG = 0; (10) )
T Y in (1, tiG’ + Wy g * Winere * wisﬁ> tiG/ #0; (G _ | Wrex Wehita * Wis a tiG/ =0; (12)
P min (1’ tiG + Wr_g * Wehild * Wincre * Wis_u) tiG #0;

The more distant from the directly annotated terms,

the less relevant the terms are. Therefore, HVSM

only considers parent and grandparent terms upward.
iii. Deal with children.

Stage 3 is similar to stage 2, while the “part_of” rela-
tion is considered and wis 4 is replaced by wy,,_or, where
Wpart_of corresponds to the semantic contribution factor

Table 7 Area under ROC curves (AUCs) on the H. sapiens PPl dataset

CcC BP MF

Complete dataset Partial dataset Complete dataset Partial dataset Complete dataset Partial dataset
HVSM 0.84 0.83 0.93 0.92 0.88 0.88
TCSS 0.82 0.82 0.92 0.92 0.85 0.84
IntelliGO 0.81 0.80 091 0.90 082 0.80
VSM 0.79 0.78 0.81 0.81 0.79 0.79
Resnik 0.80 0.78 091 0.90 0.84 0.82
Lin 0.78 0.76 0.90 0.89 083 0.83
Jiang 0.78 0.76 0.88 0.88 0.84 0.83
Schlicker 0.78 0.76 0.90 0.90 0.81 0.80
SimGIC 0.79 0.78 0.82 0.82 0.80 0.80

The best results are in bold
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for the “part_of” relation. There are no “part_of” relations
existing in the molecular function ontology.

The semantic contribution of the “part_of” relation is
lower than the “is_a” relation [26]. From an intuitive point
of view, the parent terms of the directly annotated terms

are more relevant than the children terms, parents are
more relevant than grandparents, and children are more
relevant than grandchildren. This is why wis_ ¢ > Wpars of,
Wparent > Wehild» and wy o < 1. It is quite complicated
to find the optimal combination of all coefficients, for all
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Table 8 Area under ROC curves (AUCs) on the S. cerevisiae PPl dataset
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CC BP MF
Complete dataset Partial dataset Complete dataset Partial dataset Complete dataset Partial dataset
HVSM 0.83 0.82 0.90 0.90 0.74 0.72
TCSS 0.83 0.82 0.89 0.88 0.75 0.74
IntelliGO 0.88 0.80 0.89 0.83 0.84 0.70
VSM 0.80 0.79 0.84 0.84 0.70 0.70
Resnik 0.83 0.82 0.88 0.87 0.74 0.74
Lin 0.80 0.80 0.86 0.86 0.66 0.65
Jiang 0.79 0.78 0.85 0.84 0.63 0.62
Schlicker 0.81 0.80 0.87 0.86 0.66 0.66
SimGIC 0.80 0.80 0.84 0.85 0.70 0.70
The unreliable results are in italic. The best results are in bold
ontologies and datasets. Especially, the optimal parame- A =1In(S1 + S) (13)

ters for one ontology may not be optimal for the other
ontology. We performed a series of experiments with dif-
ferent coefficient values on the H. sapiens and S. cerevisiae
PPI dataset. One of the experiments was done with differ-
ent values of Wpgrens. The results are shown in Fig. 2. When
Wparent = 0.5, it was found to have most consistent AUC
scores for three ontologies. The set of parameters used in
HVSM was the result of trade-offs of all PPI experiments,
as shown in Table 1.

The similarity measure calculated by VSM is relatively
small. Thus, we introduce the concept of a Certainty
Factor to calibrate the similarity based on the num-
ber of terms annotated to genes. The certainty factor is
defined as:

where S; represents the total number of terms annotated
to genes. Finally, the similarity between two vectors is
defined as:

5,(G1, Gy) = 212 (14)
il val

Because the number of terms associated with genes is

very limited, the vectors generated by HVSM are usually

quite sparse. When calculating the similarity between two

vectors, we remove all the common zero dimensions of

two vectors to improve the execution performance of the
algorithm.

A simple example is provided to illustrate the compu-

tation process of HVSM as shown in Fig. 3. The part of
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GO topology from CC ontology relevant to the example is
shown in Fig. 4.

Results

It is known that comparing the performance of seman-
tic similarity analysis in GO is difficult, because most of
the measures use different datasets and different version
of ontologies [11, 48]. We used Homo sapiens and Saccha-
romyces cerevisiae positive and negative protein interac-
tion sets to evaluate HVSM as a classifier to distinguish
positive and negative interactions. We also used Collabo-
rative Evaluation of GO-based Semantic Similarity Mea-
sures (CESSM) online tool to compare HVSM to existing
measures based on their correlation with sequence, Pfam,
and Enzyme Classification similarity.

Datasets

We adopted the same Homo sapiens and Saccharomyces
cerevisiae PPI datasets and GO annotation file used in
Jain, et al [14]. Ontology data used in our experiments was
downloaded from the Gene Ontology database (released
in September 2016). The GO contains 29969 BP terms,
4200 CC terms and 11295 MF terms.

Gene annotations for GO terms were downloaded from
the Gene Ontology database for H. Sapiens (dated August
2010) [49] and S. cerevisiae (dated February 2010) [50].

The positive and negative protein-protein interaction
datasets for H. sapiens and S. cerevisiae were created as
follows.

Homo sapiens: 2077 unique pairwise PPIs (with three
or more publications) for Homo sapiens were retrieved
from the core set of Database of Interacting Proteins (DIP)
(dated June 2010) [51]. The DIP core database records
data derived from both small-scale and large-scale exper-
iments that have been validated by the occurrence of
the interaction between paralogous proteins in differ-
ent species [14]. The positive dataset for CC, BP, and
MEF ontologies comprised interactions with both proteins
annotated to terms (other than root) in their respec-
tive ontologies. The negative interaction dataset con-
tained an equal number of randomly selected interactions
from a pool of all possible interactions in human except
for those known to be positive in a set of all known
(43,935) human PPIs from iRefWeb [52]. iRefWeb was
a meta-database containing the ten largest primary PPI
databases [52].

Saccharomyces cerevisiae: 4598 unique pairwise Saccha-
romyces cerevisiae PPIs were retrieved from DIP (dated
December 2009). The positive dataset for CC, BP, and
MEF ontologies comprised interactions with both proteins
annotated to terms (other than root) in their respective
ontologies. The negative dataset with the same number of
PPIs as the positive set was generated by randomly select-
ing proteins from genes in the GO annotation files that
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are not known to be positive in a set of all known (45,448)
yeast PPIs from iRefWeb.

When calculating the similarity on the dataset chosen
above at the IntelliGO website (http://plateforme-mbi.
loria.fr/intelligo/), we encountered two problems: (1) the
corresponding geneid of certain genes from the dataset
can not be found in NCBI; (2) a few errors were reported
for some gene pairs. To compare the methods fairly, we
tested all measures on two sets of data:

1. Use the complete PPI dataset provided in [14]. When
the two problems described above occurred, we
adopted the processing method used in the HRSS
algorithm [53]. When the first problem occurred, the
similarity of the gene pair under consideration was
set to — 1. When the second problem occurred, the
similarity was set to — 2.

2. Use the partial dataset, which means removing the
potentially problematic gene data. The negative and
positive data distributions of the dataset including or
excluding potentially problematic genes are shown in
Table 2. The ratio of potentially problematic genes is
shown in Tables 3 and 4.

Note that more than half of the negative S. cerevisiae
data have problems. When conducting experiments on
the complete dataset, we set the similarity of the gene pairs
with problems to either — 1 or — 2. Therefore, the experi-
ment results on the complete S. cerevisiae dataset may be
unreliable.

Performance measures

We used the ROC (Receiver Operating Characteristic)
curve to evaluate the classification effects of HVSM and
other measures for PPI experiments. The ROC curve
illustrates the diagnostic ability of a classifier system. The
ROC curves are created by plotting TPR (true positive
rate) against FPR (false positive rate). TPR and FPR are
defined as:

TP

TPR= —————— (15)
(TP + FN)
FP
FPR= ————— (16)
(FP + TN)

where TP, TN, FP, and FN are the number of True Pos-
itive, True Negative, False Positive, and False Negative,
respectively. The ideal ROC curve is close to the upper
left corner. The closer the ROC curve is to the upper left
corner the more accurate the classifier is. Ideally, the area
under the ROC curve (AUC) is equal to 1. Therefore, it
can be concluded that the larger the AUC, the better the
classifier is. AUC is defined as:


http://plateforme-mbi.loria.fr/intelligo/
http://plateforme-mbi.loria.fr/intelligo/
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n
AUC = % > (X — Xi—1) (Ye — Y1)
k=1
where X} is FPR, and Y} is TPR.

To test how our method performs in another applica-
tion scenario, we tested its correlation using Collaborative
Evaluation of GO-based Semantic Similarity Measures
(CESSM). CESSM is an online tool [54] that provide a
convenient way to compare a specific measure against 11
previously published measures based on their correlation
with sequence, Pfam, and Enzyme Classification (EC) sim-
ilarity. A dataset of 13,430 protein pairs was used involv-
ing 1039 unique proteins from various species. Protein
pairs (from multiple species), GO (dated August 2010),
and UniProt GO annotations (dated August 2008) were
downloaded from CESSM. The similarities for the 13,430
proteins pairs were calculated with HVSM and returned
to CESSM for evaluation.

(17)

PPl tests

We compared HVSM with the other popular semantic
similarity measures, including TCSS [14], IntelliGO [13],
basic VSM, Resnik [15], Lin [16], Jiang [17], Schlicker [18],
and SimGIC [19], focusing on TCSS. TCSS is widely used
and proven to be effective [14] and Resnik is a classic
measure. IntelliGO and basic VSM are both vector-based,
same as HVSM. The results for H. sapiens and S. cerevisiae
PPI datasets are shown in Tables 5 and 6. The experi-
mental results show that the performance of HVSM is
improved up to 12% compared to VSM, 8% compared to
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IntelliGO, 4% compared to TCSS, 6% compared to Resnik,
8% compared to Lin, 11% compared to Jiang, 8% com-
pared to Schlicker, and 11% compared to SimGIC. Note
that the percentage numbers in the color red in Table 6
were obtained on the unreliable dataset, as mentioned
previously.

Homo sapiens PPl test

We evaluated the ability of HVSM, TCSS, IntelliGO, VSM
and the other five methods to distinguish between the
negative and positive using the H. sapiens positive and
negative protein interaction sets. Both BMA and MAX
approaches were applied to compare with other measures
in [14], and MAX was found to have better performance.
Therefore, we only compared HVSM with the TCSS MAX
approach. TCSS focused on manually annotated GO
annotations (“without” annotations with IEA evidence
codes (IEA-)), but it was also tested with all annotations,
including electronic annotations (“with” annotations with
IEA evidence codes (IEA+)). TCSS worked better with
(IEA+) than (IEA-). Therefore, we only presented compar-
ison results with (IEA+).

Tests were done for CC, BP, and MF ontologies. The
AUC scores for the three ontologies are shown in Table 7.
HVSM outperforms all other measures in all cases. HVSM
performs best for MF ontology on the partial dataset,
with an improvement of 4% compared to TCSS, 8% com-
pared to IntelliGO, 9% compared to VSM, 6% compared
to Resnik, 5% compared to Lin, 5% compared to Jiang,
8% compared to Schlicker, and 8% compared to SimGIC.
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No significant performance difference between the com-
plete dataset and partial dataset is observed for the nine
measures. The ROC curves are shown in Figs. 5 and 6.

Saccharomyces cerevisiae PPI test

We applied all nine methods on the Saccharomyces cere-
visiae PPI datasets. The AUC scores for three ontologies
are shown in Table 8. Note that only IntelliGO is sensitive
to the problematic dataset, where the performance on the
complete dataset is much better than the partial dataset,
as shown in Table 8. If we exclude the unreliable IntelliGO
results (numbers in the color red), HVSM performs best
for CC and BP ontology. For MF ontology, HVSM per-
forms only 1% lower than TCSS, similarly to Resnik, and
better than VSM and the other five measures. The ROC
curves are shown in Figs. 7 and 8.

CESSM test

HVSM measure was used to calculate similarities for the
benchmark set of protein pairs downloaded from the
CESSM website [54]. The benchmark set represents three
different types of similarities, based on sequence simi-
larity, Enzyme Classification (EC), and protein domains
(Pfam). We compared HVSM with our main concern
TCSS and four other measures provided by CESSM:
Resnik, Lin, Jiang, and SimGIC. MAX approach was
selected for Resnik, Lin, and Jiang. The results obtained
(correlation coefficients) are presented in Table 9. HVSM
is superior to all measures except for SimGIC. The HVSM
correlation coefficient for the EC dataset is higher than
all other methods. For the Pfam dataset, HVSM is com-
parable to SimGIC. For the sequence dataset, the value
obtained with HVSM is beaten by SimGIC, but better
than all other measures. One cause for this could be
that SimGIC scores gene products with shared annota-
tion terms. Since gene products annotated to same term
are more likely to be part of the same gene family and
thus SimGIC has high sequence similarity [14]. HVSM

Table 9 Results obtained with CESSM
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performs better for CC and BP ontology than MF ontol-
ogy. For CESSM, we fine-tuned the parameters based on
the values in Table 1 by adjusting w;;; to 0.05.

Discussion

Our experiments showed that the results with the confi-
dence factor were significantly better than those without
it. It can be proved that the relative value of similarities of
pairs of genes are not affected by the base of the logarithm
in equation (13), as long as the base is greater than 1. In
other words, the base of the logarithm does not change the
order of the similarity ranking. Hence, the base of the log-
arithm of the confidence factor does not affect the ROC
analysis results. Since the multiplication of the confidence
factor may cause the similarity values calculated by HVSM
to be greater than 1, a single similarity value could not be
used directly. This problem does not affect the effective-
ness of HVSM as a classifier to distinguish positive and
negative interactions. In any case, a proper normalization
method needs to be investigated in the future.

The coefficients used in HVSM, such as wis_q Wpars_of
Wyarent and wey;jq, were decided by the intuitive spec-
ulation and the experiments on the H. sapiens and S.
cerevisiae PPI datasets. We have tried to look for the opti-
mal combination of the five coefficients for all datasets
and ontologies. Right now they are the results of approx-
imate trade-offs and may not be the best answer. More
experiments and datasets should be tested. The alterna-
tive way is to find different combinations for different
ontologies or datasets.

Conclusions

We presented a new method to calculate semantic similar-
ity, the Hierarchical Vector Space Model, which enhanced
the basic vector space model by introducing the rela-
tions between GO terms. When constructing the gene
vector, we took into account the terms related by two
types of relations: “is_a” and “part_of”. Moreover, HVSM

Methods
HVSM TCSS Resnik Lin Jiang SimGIC
CcC EC 0.36 0.33 0.29 0.26 0.18 0.36
Pfam 047 045 038 035 021 0.50
Sequence 0.67 0.62 048 042 033 0.75
BP EC 0.43 0.16 0.31 0.31 0.25 0.40
Pfam 0.47 0.12 0.26 0.21 0.17 0.46
Sequence 0.75 0.28 0.30 0.25 0.24 0.77
MF EC 0.71 0.61 0.45 0.45 0.36 0.62
Pfam 0.46 0.41 0.18 0.18 0.13 0.64
Sequence 0.38 048 0.13 0.12 0.10 0.72

The best results are in bold
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introduced the concept of the Certainty Factor to calibrate
the similarity based on the number of annotated terms.
To assess the effectiveness of HVSM, we performed
experiments using H. sapiens and S. cerevisiae protein-
protein interaction datasets, and compared the results
with TCSS, IntelliGO, basic VSM, Resnik, Lin, Jiang,
Schlicker, and SimGIC measures. The results showed
that HVSM outperformed the other eight measures in
most cases. HVSM achieved an improvement of up to
4% compared to TCSS, 8% compared to IntelliGO and
12% compared to VSM, 6% compared to Resnik, 8% com-
pared to Lin, 11% compared to Jiang, 8% compared to
Schlicker, and 11% compared to SimGIC. We also tested
the correlation between multiple semantic similarity scor-
ing methods with sequence, EC, and Pfam similarity with
CESSM. The results showed that HVSM was a compa-
rable measure relative to SimGIC, and outperformed all
other similarity measures in CESSM as well as TCSS.
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