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Magnetic resonance imaging and spectroscopy of
combretastatin A4 prodrug-induced disruption of tumour
perfusion and energetic status
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Summary The effects of combretastatin A4 prodrug on perfusion and the levels of 31p metabolites in an implanted murine tumour were
investigated for 3 h after drug treatment using nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS). The area of regions of
low signal intensity in spin-echo images of tumours increased slightly after treatment with the drug. These regions of low signal intensity
corresponded to necrosis seen in histological sections, whereas the expanding regions surrounding them corresponded to haemorrhage.
Tumour perfusion was assessed before and 160 min after drug treatment using dynamic MRI measurements of gadolinium
diethylenetriaminepentaacetate (GdDTPA) uptake and washout. Perfusion decreased significantly in central regions of the tumour after
treatment. This was attributed to disruption of the vasculature and was consistent with the haemorrhage seen in histological sections. The
mean apparent diffusion coefficient of water within the tumour did not change, indicating that there was no expansion of necrotic regions
during the 3 h after drug treatment. Localized 31P-MRS showed that there was decline in cellular energy status in the tumour after treatment
with the drug. The concentrations of nucleoside triphosphates within the tumour fell, the inorganic phosphate concentration increased and
there was a significant decrease in tumour pH for 80 min after drug treatment. The rapid, selective and extensive damage caused to these
tumours by combretastatin A4 prodrug has highlighted the potential of the agent as a novel cancer chemotherapeutic agent. We have shown
that the response of tumours to treatment with the drug may be monitored non-invasively using MRI and MRS experiments that are
appropriate for use in a clinical setting.
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Combretastatin A4 is a tubulin-binding compound originally
isolated from Combretum caffrum, a Southern African shrub
(Pettit et al, 1989). Solubility in aqueous solutions is poor but is
improved by conversion to disodium combretastatin A4 3-0-phos-
phate (combretastatin A4 prodrug) from which the phosphate
group is cleaved by endogenous non-specific phosphatases under
physiological conditions (Pettit et al, 1995). The two compounds
were shown to have similar activity against model murine, rat and
human tumours (Dark et al, 1997). The drug has been shown to
have a direct and selective effect on tumour vasculature. In an
isolated tumour model, infusion of the drug was shown to result in
vascular shutdown within 20 min. Experiments in vitro have
demonstrated that the drug has antiproliferative/cytotoxic effects
against proliferating endothelial cells. However, it is thought
unlikely that these effects of the drug on vascular endothelial cells
could, on their own, explain the rapid disruption of tumour blood
flow observed in vivo (Dark et al, 1997). In contrast with
colchicine and other tubulin-binding agents that have been investi-
gated as agents for disrupting tumour vasculature, and for which
dosage is limited by morbidity, combretastatin A4 prodrug is active
at one-tenth of the maximum tolerated dose (Dark et al, 1997).
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The aim of this study was to determine whether changes in
tumour perfusion caused by the drug could be monitored using
clinically applicable magnetic resonance imaging (MRI) and
magnetic resonance spectroscopy (MRS) techniques. Perfusion
can be measured quantitatively by dynamic monitoring of changes
in signal intensity in spin-echo images of the tumour after intro-
duction of a paramagnetic contrast-enhancing agent, GdDTPA. A
variety of mathematical models have been used to analyse data of
this type. Two relatively simple models were adopted in this study
to describe the kinetics of uptake and clearance of GdDTPA. Both
methods - analysis of the initial rate of inflow of GdDTPA, and the
model of Kennedy et al (1994) - are sensitive to alterations in
vascular integrity.
The apparent diffusion coefficient of water (ADC) measured by

MRS (Stejskal and Tanner, 1965) and by MRI is affected by the
physiological status of the tissue, in particular the compartmentaliza-
tion of water (Latour et al, 1994). Signal intensity in maps of tumour
ADC have been shown to correlate with oxygen tension (Dunn et al,
1995) and with regions of necrosis (Maier et al, 1997) in model
tumours. The vascular disruption that results from combretastatin A4
prodrug treatment (Dark et al, 1997) was expected to cause changes
in oxygenation, and histological studies have demonstrated that
tumours treated with the drug display haemorrhagic necrosis within
24 h. Tumour ADC maps were acquired in this study in order to
determine whether such changes in tissue oxygenation and/or the
onset of haemorrhagic necrosis could be detected by MRI.
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Tumour perfusion can be monitored indirectly using 31P-MRS
measurements of cellular energy status (Steen, 1989; Negendank,
1992; Tozer and Griffiths, 1992). The technique reports on the
levels of nucleoside triphosphates (NTP), phosphocreatine (PCr),
inorganic phosphate (P) and other phosphorylated compounds,
including phospholipid metabolites. The intracellular pH can also
be determined from the chemical shift of the P, resonance (Hoult et
al, 1974; Taylor et al, 1983; Stubbs et al, 1992). The response of
the tumour and underlying muscle tissue to drug treatment was
investigated here in order to determine whether 31P-MRS might
also provide a useful tool for monitoring the drug responsiveness
of a tumour in the clinic.

MATERIALS AND METHODS

Tumour model

The sarcoma F transplanted murine tumour model was used in this
study. The tumours were initiated by injection of a tumour cell
suspension (0.05 ml) dorsally into 12- to 16-week-old female
CBA mice. Derivation and maintenance of this tumour model
were as described in Denekamp et al (1983). Experiments were
conducted when tumours reached 7-9 mm geometric mean diam-
eter (11-16 days after implantation). The tumours were subcuta-
neous masses that did not infiltrate the skin or underlying muscle
tissue. Studies were conducted in accordance with the Animals
(Scientific Procedures) Act 1986.

Drug and anaesthetic preparation

Anaesthesia was induced by intraperitoneal (i.p.) injection of
Hypnorm/Hypnovel/dextrose saline in the ratio 5:4:31 (10 ml kg-'
body weight). Hypnorm was from Jansen Pharmaceuticals and
Hypnovel was from Roche. The dextrose-saline solution
contained 4% dextrose and 0.18% saline. At the same time,
dextrose saline (0.5 ml i.p.) was given to reduce animal dehydra-
tion. Anaesthesia was maintained with 1.75-hourly i.p. injections
of Hypnorm-dextrose saline solution in the ratio 1:19 (5 ml kg-'
body weight).

Combretastatin A4 prodrug, provided by GR Pettit (Arizona State
University), was dissolved (10 mg ml-') in sterile saline (0.9%
sodium chloride) and injected i.p. into mice at 100 mg kg-' body
weight (Dark et al, 1997). Before administration of combretastatin
A4 prodrug, control images and spectra were obtained over a 2-h
period, and were then acquired continuously for 3 h after drug treat-
ment (n = 6 animals). Further controls (n = 6 animals) were used to
assess the effect of vertical positioning of the animal for 5 h on
blood flow and metabolic status of animal and tumour. The same
experimental protocol was used as for the combretastatin-treated
animals except that only the saline was administered.

Gadolinium diethylenetriaminepentaacetate (GdDTPA)
(Magnevist, Schering, diluted to 40 mm with sterile saline (0.9%
sodium chloride)) was administered intravenously (i.v.) through a
tail vein catheter over a period of 30 s, to give 200 gmol kg-' body
weight (compared with 100 ,umol kg-' used in clinical MRI).

Magnetic resonance imaging and spectroscopy

Experiments were performed in a 9.4-T vertical-bore (8.9 cm
diameter) superconducting magnet (Oxford), interfaced with a
Varian Associates UnityPlus console and Sun workstation running

VNMR 5.3B. An unshielded gradient set (Varian Associates) was
used with a probe incorporating a two-tum surface coil (20-mm-
diameter) tunable to frequencies of 400 MHz ('H-imaging) and
162 MHz (3'P-spectroscopy). Animals were immobilized in a
cradle that held the tumour in the centre of the surface coil. A flow
of warm air was used to maintain the body temperature of the
animals.

31p spectra, PI/NTP ratios and pH measurements

Localized 3p spectra of the tumour and underlying muscle tissue
were obtained using image-selected in vivo spectroscopy [ISIS
(Ordidge et al, 1986)] before and at three time points after combre-
tastatin A4 was administered. Typically, 16 x 8 summed free induc-
tion decays, acquired into 11 968 data points over 0.4 s, were
collected from voxels of dimensions 6 x 15 x 15 mm. A relaxation
delay of 2 s was used in order to minimize the time required for
signal acquisition. A Lorentz-Gauss transformation was applied to
the summed free induction decay before Fourier transformation to
enhance resolution. Spectra were referenced to the resonance of
phosphocreatine at 0.0 p.p.m. The frequencies of the excitation
pulses were set at the phosphocreatine resonance frequency. No
corrections were made for resonance offset effects or the effects of
incomplete relaxation. The absence of a discemible phosphocrea-
tine signal in the localized spectra of the tumours indicated that
there was negligible contamination of the signals from tumour
metabolites with signals from metabolites in the underlying muscle
tissue. Areas under peaks were integrated for calculation of
inorganic phosphate to total NTP ratios (P,/NTP ratios).
Tumour pH was calculated from the chemical shift of the

inorganic phosphate (Pt) resonance according to equation 1 (Taylor
et al, 1983; Gillies et al, 1991):

6 - 0.77
pH= pKa+log 3.16- (1)

where pKa is 6.85 and 6 is the measured chemical shift of P. in
p.p.m relative to that of 85% phosphoric acid. For pH calculations,
the observed frequency of the a-phosphate of NTP was assumed
to be at -10.05 p.p.m. from the orthophosphate resonance (Gillies
et al, 1991).

Tumour perfusion

GdDTPA was introduced as a bolus via a tail vein catheter and
inflow into the tumour was monitored with a series of T,-weighted
spin-echo images (TE = 21.5 ms, TR = 130 ms), which were
collected for 10 min after injection (Kennedy et al, 1994). The
images were acquired from a 2-mm-thick slice and the field of view
was 20 mm over a 512 x 128 (phase encode) matrix, which was zero
filled to 512 x 256. At 10 min after injection, an image was collected
with TR = 3 s and the image pixel intensities in the short TR experi-
ments were converted to RIP values (RIP is the paramagnetic contri-
bution to the longitudinal relaxation rate and is proportional to the
concentration of the contrast agent) using the expression derived by
Kennedy et al (1994). The kinetics of inflow and outflow were then
modelled according to equation 2 (Kennedy et al, 1994):

RIP(t) = CJ(l - e -t)e - -T,l (2)
where Co is a constant and Tu and Tc are the time constant for
uptake and clearance of GdDTPA respectively. Tu and Tc were
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A B C

Figure 1 Spin-echo images and histological section of sarcoma F tumour. The spin-echo images were taken (A) before and (B) 160 min after combretastatin A4
prodrug was administered. Expansion of pre-existing dark (necrotic) regions can be seen in (B), corresponding to regions of haemorrhage. (C) Histological
section showing regions of necrosis (dark areas) and haemorrhage (in and immediately surrounding necrotic regions, and in areas indicated by arrowheads)
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a

b

Figure 2 The initial rates of inflow of GdDTPA in four tumours (A-D) before and after treatment with combretastatin A4 prodrug. Signal intensity is directly
proportional to the rate of signal enhancement due to GdDTPA inflow. (a) Control rate maps taken before treatment. (b) Initial rate maps 160 min after
treatment. Reduction in rate of inflow after treatment is seen across the tumour centre (A), and in regions of the tumour centre (B-D). The extent of GdDTPA
inflow into the peripheral regions of the tumour increased after drug treatment. The highlighted regions in A (m, n, and o) are for Figure 3

calculated for the image series from regions of interest using a non-
linear fitting routine in software written in this laboratory in C.
Maps in which pixel intensity was proportional to the initial rate

of enhancement of signal intensity were calculated by subtraction
of an image obtained immediately before injection of GdDTPA
from an image collected 60 s after injection of GdDTPA.

For the range of tissue concentrations of GdDTPA achieved in
the study, the concentration was linearly proportional to relaxivity
(data from phantom studies, not shown). Measurements of
GdDPTA inflow and washout were carried out before treatment
with combretastatin A4 prodrug and 160 min after treatment. The
animal was anaesthetized throughout this period. The experiment

at 160 min was not compromised by the earlier experiment as the
signal intensity in the spin-echo images returned to baseline levels
within approximately 2 h after the first GdDTPA injection.

Diffusion-weighted imaging

Apparent diffusion coefficient (ADC) maps were calculated from
a series of five images acquired using a spin-echo sequence which
incorporated diffusion-weighting gradients of 30, 61, 91, 122, and
152 mT m-l. For a single component, assuming unrestricted diffu-
sion, the final signal intensity (S) is related to the signal intensity in
the image without diffusion weighting (S0) by equation 3:
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where y is the gyromagnetic ratio (for 'H, y = 26.75 x 107 T-' s-1),
6 is the diffusion gradient duration, A is the time between the diffu-
sion gradients, G is the diffusion gradient strength and D is the
diffusion coefficient for the observed species (Stejskal and Tanner,
1965). The images were acquired with TE = 37 ms, TR = 1.5 s,
A = 14 ms, and 6 = 10 ms, to give b values ranging from 7.1 x 107

° to 1.8 x 109 rad2 s m-2. Apparent diffusion coefficients were
obtained on a pixel-by-pixel basis by fitting the variation in signal
intensity with gradient strength to equation 3.

Histology

Animals were killed and the tumours fixed, embedded in wax, and
sectioned (4 jum) to correspond to the MRI plane. The sections
were then stained with haemotoxylin and eosin. The difference in
thickness of the histological section and MR image plane (2 mm)

. . means that the correspondence between the two cannot be exact.

RESULTS

' , | | Sarcoma F tumours of the size used in this study (approximately
0 100 200 300 400 500 600 700 300 mm3) have central regions that give rise to low signal intensity

t (s) in moderately T2-weighted spin-echo images (Figure lA, TR =
130 ms, TE = 21.5 ms, acquired in 23 s). These regions corre-
sponded to necrosis observed in histological sections (Figure IC).

B After treatment with combretastatin A4 prodrug the area of these
regions of low signal intensity increased slightly (Figure iB).
Haemorrhage (observed in histological sections) appeared to give

0 rise to this expansion of low signal intensity around necrotic
regions (Figure IC).
A significant change in the pattern of tumour perfusion after

drug treatment was seen in the initial-rate analysis of GdDTPA
uptake (Figure 2). The rate of perfusion of the tumour was reduced
in part (Figure 2B-D) or all (Figure 2A) of the tumour centre
(greater than c. 1.5 mm from the tumour edge) in the imaging
plane, 3 h after treatment with the drug. The perfusion of the
tumour periphery (within c. 1.5 mm of the tumour edge) appeared
to increase in extent after drug treatment, as indicated by the
increased area of high signal intensity in the tumour periphery in
the initial-rate maps (Figure 2).

These changes in perfusion pattern were quantified in represen-
tative regions of the tumours using the model of Kennedy et al

Z n (1994) (equation 2). Curves of best fit for the paramagnetic contri-
bution to relaxivity (R ) during the GdDTPA inflow experiment

| / </= _ ........ are shown in Figure 3A and B (the data were taken from the
regions shown in Figure 2A). An increase in the time constant for
GdDTPA uptake (TU) was observed in the tumour centre after drug

0 100 200 300 400 500 600 700 treatment (Figure 3 and Table 1). This was seen in central regions
t (s) where the initial-rate analysis had indicated a reduction in perfu-

sion [(Figure 2A(m)], and also in central regions which did not

'inetic analysis of perfusion of sarcoma F tumour and its response exhibit a marked change in initial rate of signal enhancement
astatin A4 prodrug. Three regions of the tumour image in Figure 2A [(Figure 2A(n)]. An increase in Tu for tumour periphery [Figure
used to illustrate the differences in kinetics before and after 2A(o)] after drug treatment was also seen, but this was not signifi-
ion of the drug. Curves of best fit satisfying equation 2 are (A)
bretastatin A4 prodrug treatment and (B) 160 min after treatment. cantly different from control values (Table 1). In the peripheral
ignificant change is the reduction in inflow kinetics after regions the maximal concentration of GdDTPA increased after
ion of the drug. An increase in Tu was seen for regions which combretastatin A4 prodrug treatment (Figure 3B). The calculated
arge decrease in initial rate of signal enhancement after
atin A treatment (for example (m) in Figure 2A) and for regions in values of Tc are not quoted in Table 1 as they were of the order of
iitial-rate analysis did not show a marked change [regions (n) and 2000 s and therefore were not well determined by the inflow
e 2A] (see Table 1) measurements, which were made over a period of 600 s.
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The apparent diffusion coefficient of tumour water (ADC) was
determined at up to 1.8 h after treatment with combretastatin A4
prodrug. The ADC maps (not shown) generated from these data
showed no significant changes in the mean ADC of tumour
water during this period. The mean tumour ADC (n = 6) in the
plane observed was 0.7 ± 0.1 x li9 m2 s-1 before treatment,
0.8±0.1 x 10-9m2s- at0.8h,and0.8±0.3x 10-9m2s- at 1.8h
after treatment (errors are 1 s.d.). The mean ADCs in necrotic
regions, 1.3 ± 0.2 x 109 m2 s-1, and in viable tissue, 0.7 ± 0.1 x
1J9 m2 s-1were similar to the values found by Maier et al (1997)
in model breast tumours.
No changes in the levels of NMR-visible phosphorus metabo-

lites in muscle tissue were observed during the 2.5 h after adminis-
tration of the drug (Figure 4B). However, localized spectra from
the tumour indicated a decline in cellular energy status. The
signals due to a-, f- and y-phosphates of NTP in the tumour
decreased in intensity (Figure 4A), whereas the signal due to P1
increased in intensity. The phosphomonoester peak, which in
many tumours is composed mainly of the resonances from phos-
phocholine and phosphoethanolamine (Bhujwalla et al, 1994),
exhibited no significant change in intensity. The ratio of PJ/NTP in
these ISIS-localized spectra rose from 0.4 ± 0.1 to 0.8 ± 0.1 (n = 6,
errors are 1 s.d.) during the 2.5 h after administration of combre-
tastatin A4 prodrug (Figure 4C). The pH in the tumour decreased
from 7.0 ± 0.1 before treatment to a minimum of 6.82 ± 0.03 (n =
6) after 30 min (errors are 1 s.d.) (Figure 4D). After this time the
response of the tumours was variable. This was reflected in an
increase in the standard deviation of mean tumour pH, which had a
value of 6.9 ± 0.2 at 150 min.

Control experiments (n = 6) indicated that vertical positioning
of the animal in the magnet for up to 5 h had no effect on tumour
perfusion, as determined from GdDTPA inflow measurements (see
Table 1), or from the pH or levels of NMR-visible phosphorus-
containing metabolites in the tumours (Figure 4C and D) or under-
lying muscle tissue (data not shown).

DISCUSSION

Combretastatin A4 and its soluble phosphate prodrug have been
shown previously to cause rapid and selective disruption of tumour
vasculature (Chaplin et al, 1996; Dark et al, 1997). The results of

Table 1 Time constants for uptake (Tu) of GdDTPA for tumour centre (pixels
more than c. 1.5 mm from tumour edge) and periphery (pixels less than
c. 1.5 mm from tumour edge) in response to treatment with combretastatin A4
prodrug

Tumour centre Tumour periphery

t(min) Tu(s) Control Tu(s) Tu(s) control Tu(s)

0 39±5 26±9 40±20 30±10
160 100 ± 40 30 ± 10 70 + 20 50 + 30

Data were fitted to equation 2 for experiments at 0 min and 160 min after
treatment with combretastatin A4 prodrug (no treatment in the case of
controls). The data are means ± 1 s.d. for tumours from n = 6 combretastatin-
treated animals and n = 6 control animals. Tu in tumour centre after
combretastatin treatment was significantly different from pretreatment and
control values (P < 0.05, Student's t-test). Tu in tumour periphery after
combretastatin treatment was significantly different from pretreatment value
(P < 0.05, Student's t-test), but was not significantly different from Tu of
control tumours at 160 min.

the vascular disruption induced by the drug are shown here to be
evident in MRI and MRS experiments on an implanted murine
tumour model.
The low signal intensity in moderately T2-weighted spin-echo

images of the tumours (Figure IA) correlated with regions of
necrosis seen in histological sections of tumours, which contained
extravasated erythrocytes (data not shown). After treatment with
the drug the regions of low signal intensity expanded slightly
(Figure iB) and this expansion correlated with haemorrhage
observed in histological sections taken at the end of the MRI
experiment (Figure IC). The low signal intensity, which was also
observed in the images acquired with a longer relaxation delay (TR
= 3 s), is attributed to the presence of paramagnetic deoxygenated
haemoglobin in these regions (Brooks and Di Chiro, 1987). This
enhances the spin-spin (T2) relaxation of water protons and thus
reduces their signal intensity in the spin-echo images.
The perfusion characteristics of the tumour underwent signifi-

cant changes after drug treatment. An initial-rate analysis of
GdDTPA inflow data (Figure 2) demonstrated that the alteration to
the perfusion characteristics was not uniform across the tumour. In
general, the sarcoma F tumour contains both well-perfused (high
signal intensity in Figure 2) and poorly perfused regions (low
signal intensity). After treatment with combretastatin A4 prodrug,
the initial rate of GdDTPA inflow was reduced in some or all of the
central regions with relatively high perfusion (Figure 2), whereas
the extent of GdDTPA perfusion was increased in peripheral
regions of the tumour.
The model of Kennedy et al (1994) was used to analyse regions

that had differing characteristics in the initial rate maps. The
uptake and clearance of the paramagnetic relaxation agent
GdDTPA are described in terms of the time constants for uptake
(TU) and clearance (TC), each of which is assumed to follow first-
order kinetics. The uptake and clearance of the agent are depen-
dent on the perfusion characteristics of the tissue, and were found
to alter after combretastatin A treatment.

Tu and Tc were calculated for specific regions of the tumours
before and 160 min after administration of combretastatin A4.
Before treatment, there was a rapid inflow of the agent into the
tissue via the tumour vasculature, followed by a slow clearance
resulting from removal of the tracer from the blood stream (Figure
3A). After treatment with the drug the time constant for uptake (TU)
was greatly increased (Figure 3B, Table 1). This analysis was more
sensitive to reductions in tracer inflow than the initial rate analysis
and showed that Tu was increased in regions of the tumour that did
not exhibit a significant reduction in the initial rate of contrast agent
uptake, as illustrated in Figure 3B. These data showed that drug-
induced damage to the vasculature resulted in a significant decrease
in the rate of perfusion of the tumour centre (Table 1). The analysis
also confirmed the apparent increase in extent of perfusion of the
tumour periphery, which was observed in the initial rate maps after
drug treatment. Figure 3 shows that the concentration of the contrast
agent was increased in the tumour periphery after treatment with the
drug, implying that disruption of the vasculature at the centre of the
tumour had diverted blood flow to the periphery. This phenomenon
of increased peripheral perfusion may be exploitable in enhancing
the delivery of a co-administered chemotherapeutic agent targeted at
viable tumour cells in peripheral regions of the tumour.
The energy status of the tumour also responded to drug treat-

ment. 31P-MR spectra were obtained from voxels containing
tumour tissue (tumour volume approximately 300 mm3) (Figure
4A) and underlying muscle (1350 mm3) (Figure 4B) for up to 2.7 h
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Figure 4 Changes in levels of 31P metabolites and pH in response to combretastatin A4 prodrug treatment, determined by localized 31P-MRS. (A) Localized
spectra from a representative tumour, (a) before treatment and (b) 30 min, (c) 80 min, and (d) 150 min after treatment with the drug. The signals from the a-,
I-, and y-phosphates of nucleoside triphosphates (NTP) decrease, and the signal from inorganic phosphate (P1) increases. PME, phosphate monoesters. (B)
Spectra from muscle beneath the tumour in (A), acquired at the same time. PCr, phosphocreatinine. The spectra have been scaled by a factor of 0.5 relative to
those in (A). (C) Tumour P/NTP ratio (a) after combretastatin A4 prodrug treatment and (b) control. In both cases, n = 6, and error bars are 1 s.d. (D) Response
of tumour pH to treatment with combretastatin A4 prodrug. Significant differences between pH in (a) treated and (b) control tumours are indicated (Student's
t-test, **P < 0.01; *P < 0.05; nearest time points were used, n = 6 for both treated and control)
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after administration of the drug. No perturbation in the metabolism
of the underlying muscle was observed, but there was a steady
decrease in the energetic status of the tumour, as indicated by an
increasing P. /NTP ratio (Figure 4C). The P. in these tumours is
assumed to be mainly intracellular (Stubbs et al, 1992). An initial
decrease in tumour pH was seen at 30 min after drug treatment in
all tumours. The pH response of the tumours after this period
varied but, on average, remained more acidic than before treatment
(Figure 4D). The decline in cellular energy status is presumably
the result of the decreased perfusion observed in the MRI
experiments (Tozer and Griffiths, 1992). The decrease in pH was
assumed to be due to increased lactate concentrations, resulting
from decreased oxygenation of the tumours (Steen, 1989).

Diffusion-weighted MRI has demonstrated potential for
providing information on tumour oxygenation (Dunn et al, 1995)
and necrosis (Maier et al, 1997). Decreased oxygenation has been
shown to decrease the ADC of tumour water (Dunn et al, 1995)
and necrosis has been shown to increase it (Maier et al, 1997).
However there was no significant change in ADC maps acquired
before and for up to 1.8 h after treatment with combretastatin A4
prodrug. This may reflect the fact that there was no change in the
cellularity of the tumours in these regions (as shown by histology,
Figure IC), whereas in the necrotic regions of two model breast
tumours (Maier et al, 1997), in which the water ADC was
increased, there was a decrease in cellularity. The reason why there
was no decrease in water ADC, despite the fact that the oxygena-
tion of the tumours must almost certainly have been decreased
after drug treatment, is not clear.

In conclusion, combretastatin A4 prodrug caused damage to the
vasculature of a murine tumour model that resulted in haemorrhage,
reduction in tumour perfusion rates, and decreased tumour energy
status that could be detected using MRI and MRS experiments. The
magnetic field strength and therefore sensitivity of the MR spec-
trometer used in this study was greater than those used clinically.
Nevertheless we believe these techniques, in particular the GdDTPA
inflow experiment, could be used in the clinic to determine the
response of human tumours to treatment with this drug.
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