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ABSTRACT In this study, we compared the prediction accuracy of the main genotypic effect model (MM)
without GXE interactions, the multi-environment single variance GXE deviation model (MDs), and the multi-
environment environment-specific variance GxE deviation model (MDe) where the random genetic effects
of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic
residual of the lines, we incorporated the random intercepts of the lines (I) and generated another three
models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased
Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations
with another two multi-environment GxE interactions models with unstructured variance-covariances (MUC)
using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy
of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations
among environments, and on two wheat data sets with complex GxE that includes some negative and close
to zero phenotypic correlations among environments. The two models (MDs and MDE with the random
intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy
in the two maize data sets. Regarding the more complex GxE wheat data sets, the prediction accuracy of
the model-method combination with GXE, MDs and MDe, including the random intercepts of the lines with
GK method had important savings in computing time as compared with the GXE interaction multi-environment
models with unstructured variance-covariances but with lower genomic prediction accuracy.
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Genomic selection (GS) predicts breeding values of complex traits based
on dense marker information (Meuwissen et al. 2001) and has shown
good prediction accuracy achieved by random cross-validation parti-
tions of plant breeding data (de los Campos et al. 2009, 2013; Crossa
et al. 2010, 2011; 2013; Pérez-Rodriguez et al. 2012). As molecular
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markers become cheaper and more abundant, GS-assisted breeding
has become commonly used in plant and animal improvement. When
performing genomic prediction of breeding values of unobserved indi-
viduals, the relationship between individuals in the training and testing
sets is computed through the genomic relationship matrix, and the
prediction model is referred to as the Genomic Best Linear Unbiased
Predictor (GBLUP) (VanRaden, 2007, 2008).

Multi-environment trials are routinely conducted in plant breeding
to estimate and take advantage of genotype X environment interaction
(GXE) for selecting stable and high performing lines across environ-
ments and within environments. Therefore, implementation of GS
strategies in plant breeding should be useful for estimating the param-
eters of the model and predicting GXE, as is commonly done in
conventional plant breeding. Modern statistical analyses of multi-
environment trials assess GXE by using pedigree information with
linear mixed models (Piepho, 1997, 1998; Smith et al. 2005; Crossa
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et al. 2006; Burguefio et al. 2007); however, these models do not in-
corporate marker information.

A Bayesian GBLUP regression model for assessing genomic-enabled
prediction combining GXE introduces the main effects of environments
and lines and the interaction effects of markers and environmental
co-variables via random variance-covariance structures (Jarquin et al.
2014). The Bayesian regression model of Lépez-Cruz et al. (2015) is
similar to that of Jarquin et al. (2014) with one difference: that genomic
values are partitioned into components that are stable across environ-
ments (main genomic effects) and others that are environment-specific
(genomic GXE) (Crossa et al. 2016). Although both models assume
positive sample correlations among environments and can be fitted
using the BGLR package (de los Campos and Pérez-Rodriguez 2016),
the advantage of the model of Lopez-Cruz et al. (2015) over the model
of Jarquin et al. (2014) is that it can be implemented using both shrink-
age methods and variable selection methods and is efficient when ap-
plied to sets of environments that have positive correlations because the
genetic covariance between any pair of environments is the variance of
the main effect, which makes the covariance between pairs of environ-
ments positive (Lopez-Cruz et al. 2015).

Cuevas et al. (2016) used the Bayesian model of Lépez-Cruz et al.
(2015) to compare methods that apply GS models with GXE using a
linear kernel (GBLUP) (GB) and a non-linear Gaussian kernel (GK) for
single-environment and multi-environment breeding data sets. The
authors found the GK models had higher prediction accuracy than
the GB models and explained that the GK models captured major
and complex marker effects in addition to their interaction effects.
Sousa et al. (2017) compared the prediction accuracy of the multi-
environment, single variance GXE deviation model (MDs) of Jarquin
et al. (2014) with GK (MDs-GK) and the prediction accuracy of the
multi-environment environment-specific variance GXE deviation
model (MDe) of Lépez-Cruz et al. (2015) with the GK method
(MDe-GK). Then, Sousa et al. (2017) compared the models including
the GK method with the prediction accuracy of their counterpart mod-
els using the GB methods (MDs-GB and MDe-GB). In addition, Sousa
et al. (2017) also compared the accuracy of the four previous models
with the accuracy of the multi-environment, main genotypic effect
(MM) of Jarquin et al. (2014) using the GB and GK methods (MM-
GB, and MM-GK). Results show that for grain yield, a notable increase
in prediction accuracy of GK over the GB methods ranged from 9 to
49% in one data set and from 34 to 70% in another data set.

In general, the previous linear mixed multi-environment models
assumed the environments as fixed or random effects, and lines as
random effects incorporating into the model the random slope of the
genetic effect of the lines distributed as a normal random variable with
zero mean and variance-covariance structure constructed from markers
or pedigree; also, the genetic effect (intercept) of the lines can be
considered as having a normal distribution with zero mean and constant
variance (Mota et al. 2016). The random intercept of the lines is often
not included in the model when no exchange of information occurs,
assuming the intercepts are independent (Pérez-Rodriguez et al. 2015).
However, recent studies have incorporated random intercepts (Mota
et al. 2016; Cuevas et al. 2017; Sukumaran et al. 2017; Jarquin et al.
2017) in order to achieve higher genomic-prediction accuracy in cases
where lines were observed in some environments but not in others
(random cross-validation 2, CV2 of Burgueno et al. 2012); this is be-
cause the posterior distribution of the intercept generates a variance-
covariance structure that allows exchanging information between the
lines of the training and testing sets. When newly developed lines have
never been observed (untested) (random cross-validation CV1,
Burguerfio et al. 2012), models do not improve the prediction accuracy
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with or without random intercept when compared with the single-
environment model. One limitation of these multi-environment
genomic GXE models for achieving relatively high genomic-enabled
predictions is that correlations among environments should be positive.
Also, none of the applications of the models of Jarquin et al. (2014),
Sukumaran et al. (2017), and Jarquin et al. (2017) compared genomic-
enabled prediction accuracy with GB kernel vs. GK kernel.

The previous Bayesian regression models of Jarquin et al. (2014) and
Lopez-Cruz et al. (2015) use the Hadamard product for modeling GXE
and show that the exchange of information between environments is
achieved by means of the variance-covariance matrix of the main ef-
fects. Thus, the variance component of the main effects measures the
stability across environments and the variance component of the spe-
cific effects measures the deviations from the main effects due to spe-
cific combinations of lines in environments (GXE). This approach has
the advantage that it can be used when the number of lines in each
environment is the same, but also when there is an unbalanced number
of lines in environments, as shown by Sousa et al. (2017).

On the other hand, GBLUP methodology (together with pedigree)
can incorporate and model GXE effects, by means of the Kronecker
product of the variance-covariance matrices of the genetic relationship
between environments and the genomic or pedigree relationship be-
tween the lines (Burgueno et al. 2012; Oakey et al. 2016) where the
structure of the models allows estimating negative genetic correlations
between environments. Based on this, Cuevas et al. (2017) recently
compared a Bayesian regression model for the genetic effects described
by the Kronecker product of unstructured variance-covariance matri-
ces of genetic correlations between environments and genomic kernels
under the GB and GK methods. An extension includes an extra genetic
residual component with random intercepts. Results of the analyses of
five data sets indicated that including the random intercepts is still
beneficial for increasing genomic prediction accuracy when lines have
been tested in some environments. However, one drawback of the
Bayesian regression models of Cuevas et al. (2017) is the computing
time for the iteration required for the Monte Carlo Markov Chain
(MCMC) method to achieve the convergence of the posterior and pre-
dictive distributions.

Recently Granato et al. (2017) proposed an R package called Bayes-
ian Genomic GXE (BGGE) to obtain a rapid fit of Bayesian mixed linear
models with homogeneous error variances for the models of Jarquin
et al. (2014), Lépez-Cruz et al. (2015) and also for the models used by
Sousa et al. (2017) (MM, MDs, and MDE). The approach of Granato
et al. (2017) uses an R library that saves time by using the structure of
the block diagonal matrices with additional parameterizations to
shorten the iteration time without losing precision.

Based on the above, the main objective of this study was to compute
the prediction accuracy of 16 model-method combinations and compare
their prediction accuracy for four different data sets (two maize and two
wheat multi-environment trials) with an unbalanced number of lines in
environments, and different complexity of the GXE interaction. The
16 model-methods comprise the multi-environment, main genotypic
effect (MM), the multi-environment, single variance GXE deviation
model (MDs) and the multi-environment environment-specific vari-
ance GXE deviation model (MDe) with the GB and GK kernel methods
and with and without including random intercepts (12 model-meth-
ods) plus 4 Bayesian regression models for the genetic effects described
by the Kronecker product of unstructured variance-covariance (MUC)
matrices of genetic correlations between environments and genomic
kernels under the GB and GK methods and their extensions, including
an extra genetic residual component with random intercepts. We dis-
cuss the advantages and disadvantages of the different model-methods
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for sets of environments with different GXE characteristics and differ-
ent degrees of unbalance among lines.

MATERIALS AND METHODS

This study uses four multi-environment plant breeding data sets with
different characteristics. Two maize data sets used by Sousa et al. (2017)
(HEL and USP) had different numbers of maize hybrids in each envi-
ronment and positive correlations between environments, whereas the
two wheat data sets used by Cuevas et al. (2017) (WHE1 and WHES5)
had environments with negative or zero correlations but with the same
number of wheat lines in each location.

We used the same models of Sousa et al. (2017) (MM, MDs, and
MDe) with linear (GB) and non-linear kernels (GK) (MM-GB,
MM-GK, MDs-GB, MDs-GK, MDe-GB, MDe-GK) plus the addition
of one random intercept component (I) that captures the variation of
genetic residuals (MMI-GB, MMI-GK, MDsl-GB, MDsl-GK, MDel-
GB, MDel-GK). These 12 model-methods were fitted with the BGGE
package (Granato et al. 2017).

In this study models 2 and 3 of Cuevas et al. (2017) are renamed as
Multi-environment Unstructured Covariance (MUC) and Multi-envi-
ronment Unstructured Covariance with random intercept vector
f (MUCY), respectively, each fitted with the GB and GK kernel
methods. Therefore, 4 additional models are included, MUC-GB,
MUC-GK, MUCf-GB, and MUCf-GK. These models were fitted with
the MTM package (de los Campos and Griineberg 2016) and their
prediction accuracy was compared with the other 12 model-method
combinations.

In the first step, the phenotypic data were fitted according to the
experimental design employed for each experiment, and the Best Linear
Unbiased Estimates (BLUE) of the lines or hybrids for each location or
environments were computed. In the second step, the various genomic
models were fitted to perform random cross-validation and compute the
prediction accuracy of the 16 model-method combinations.

Experimental data

Maize data set HEL: This maize data set comprises 452 maize hybrids
evaluated in 2015 at five sites in Brazil: Nova Mutum (NM) and Sorriso
(SO) in the state of Mato Grosso; Pato de Minas (PM) and Ipia¢t (IP) in
the state of Minas Gerais; and Sertandpolis (SE) in the state of Parana.
The experimental design was a randomized block with two replicates
per genotype and environment. Different numbers of hybrids were
planted in each environment. The HEL parent lines were genotyped
with an Affymetrix Axiom Maize Genotyping Array of 616 K SNPs
with standard quality controls removing markers with a Call Rate =
0.95.

Maize data set USP: This data set comprises 740 maize hybrids
evaluated at Piracicaba and Anhumas, each with two levels of nitrogen
(N) fertilization: Ideal N (IN) and Low N (LN) for a total of four artificial
environments (P-IN, P-LN, A-IN, and A-IN). The hybrids were eval-
uated using an augmented block design including two replicated
commercial hybrids as checks. There was an imbalance because not
all hybrids were evaluated in all locations. Similar to the maize data set
HEL, the USP parent lines were genotyped with an Affymetrix Axiom
Maize Genotyping Array of 616 K SNPs with standard quality controls
removing markers with a Call Rate = 0.95.

Wheat data set WHEI: A historical set of 599 wheat lines from

CIMMYT’s Global Wheat Program was evaluated in four mega-envi-
ronments (Crossa et al. 2010; Cuevas et al. 2016) and genotyped using
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1447 Diversity Array Technology (DArT) markers generated by Triti-
carte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au).
Markers with a minor allele frequency lower than 0.05 were not
included.

Wheat data set WHES5: This data set is described by Lopez-Cruz et al.
(2015) and includes 807 wheat lines evaluated in five environments
using an alpha-lattice design with three replicates in each environment
at CIMMYT’s wheat breeding station at Cd. Obregon, Mexico. The
environments were three irrigation regimes (0i = zero irrigation, 2i =
two irrigations, and 5i = five irrigations), two planting systems (B = bed
planting and F = flat planting) and two different planting dates (N =
normal and L = late).

Genotypic data consisted of genotyping-by-sequencing (GBS) data,
and markers with a minor allele frequency (MAF) lower than 0.05 were
removed. After editing the missing markers, a total of 14,217 GBS
markers were available for analyzing this data set.

Availability of the phenotypic and genotypic experimental data:
Sousa et al. (2017) describe the two maize data sets and Cuevas et al.
(2017) give details of the two wheat data sets. The two maize data sets,
HEL and USP, can be downloaded from the link http://hdl.handle.net/
11529/10887, whereas the two wheat data sets can be found at the
link http://hdl.handle.net/11529/10710, from where DATASETI.
Wheat_GY.Rdata (Wheat data set WHE1) and DATASETS5.
Wheat_GY.Rdata (Wheat data set WHES5) were obtained.

Statistical models

The components of the 8 basic models are summarized in Table 1 and
their full descriptions are given below and in Appendix 1. They include
an overall mean (w) and the fixed effects of the environments (other
effects can be incorporated) modeled with the incident matrix Zg and
one vector of fixed effects B for each environment. For the first group
of six models (MM, MMI MDs, MDsl, MDe, and MDel), it is assumed
that their genetic random components g have a normal distribution
with mean zero and a variance-covariance structure comprising a
known matrix K generated from markers (and computed using the
GB or GK methods) multiplied by an unknown scaled parameter (var-
iance component). Also 4 models in this group had different forms for
modeling the GXE, MDs and MDe, with a variance-covariance struc-
ture constructed by the Hadamard product of the corresponding ma-
trices and incorporating (or not) the random intercepts (I).

A second group of models (MUC) considers that their random
components have a normal distribution with zero mean and a variance-
covariance structure modeled by the Kronecker product of a matrix with
unknown covariances among environments multiplied by a known K
(computed using the GB or GK methods) and incorporating (or not)
the random intercepts (f).

The multi-environment main genotypic effect model (MM): Model
MM (1) (Appendix 1) is equivalent to the across-environment model of
Jarquin et al. (2014) and when in the distribution of the random genetic
effects g is used in model MM, K = XX js used in the covariance (de los
Campos et al. 2013; VanRaden 2007, 2008); the model is the GBLUP
across environments (MM-GB), where X is the standardized matrix of
molecular markers for the individuals of order #n X p, where p is the
number of markers.

However, markers can have a more complex function than the linear
GBLUP. For example, the Gaussian kernel (GK) function (Cuevas et al.
2016) is computed as K(x;,x;) = exp(—hd%), where d;; is the
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B Table 1 Components of the 8 models included in this study. Each of these models is fitted with the linear kernel (GB) and the Gaussian

kernel (GK)
MM nl ZeBe Zyg ¢ (0?)
MMI wl ZeBe Z.g Zgl (0?) & (0?)
MDs wl ZeBe Zsg ge (02,) e (0?)
MDsl wl ZeBe Zyg ge (crf?e) Zg4l (0',2) £ (0?)
MDe ul ZeBe Z,g g5 (a'gEjfor & (0?)
each envi-
ronment)
MDel wl ZeBe Z.g ge (02, for Zgl (0?) & (0?)
each envi-
ronment)
MUC pl ZePBe u (Ug®K) Q1)
MUCS wl ZeBe u (Us®K) f (Fe®I) 1)
Euclidean distance between the i and i (i =1,..., ;) individuals  the specific genetic effect in each environment. When the random

given by the markers; 4 > 0 is the bandwidth parameter that controls
the rate of decay of K values (de los Campos et al. 2009; Pérez-Rodri-
guez et al. 2012; Pérez-Elizalde et al. 2015; Cuevas et al. 2016). In this
work, GK is K(x;, x;) = exp(—hd?% /median(d%)), where h = 1 and
the median of the distances is used as a scaling factor (Crossa et al.
2010). When in the distribution of the random genetic effects g of the
MM model (1) is used with K(x;,x;) = exp(—hd% /median(d%)), in
the covariance the model is the Gaussian kernel across environments
(MM-GK) (Sousa et al. 2017).

The genetic variation between lines that is not explained by g in (1)
(Appendix 1) can be captured by the random vector [ that is considered
arandom intercept for each line; thus when random effects I are added,
model MM becomes model MMI

y=ul+ZgBp +Z;g +Z,l +¢

where the random intercepts I ~ N(0, o71) with I being the identity
matrix of size nX n, and o7 the variance component that indicates the
influence of I; the incidence matrix Z, connects the genotypes to the
phenotypes. As in MM, the kernel matrix K of the random effect g of
model MMI can be fitted with GBLUP (MMI-GB) or with Gaussian
kernel (MMI-GK).

The multi-environment single variance genotype X environment
interaction deviation model (MDs): Model (2) (Appendix 1)
(MDs) adds to model (1) the random interaction effect of the environ-
ments with the genetic information of the lines (ge;;). When the random
component ! is added to model (2), the MDs model becomes MDsl:

y=ul+ZpBp+Z;g +ge+Zgl+e

Each environment matrix K (Appendix 1) of models MDs and MDsl
can be fitted with a linear kernel (MDs-GB, MDsI-GB) or a Gaussian
kernel (MDs-GK, MDsl-GK).

Multi-environment environment-specific variance genotype X
environment deviation model (MDe): The environment-specific var-
iance genotype X environment deviation model (MDe) (Lépez-Cruz
et al. 2015) differs from MDs on how the interaction component is
considered; g is the main genetic effect across environments and g, is
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component I is added to (3) (Appendix 1), the MDe model becomes
MDel:

y=ul+ZpBr+Z;g+gr+ZJd+e

where matrices K for g and K for g, of models MDe and MDel can be
fitted with a linear kernel (MDe-GB, MDel-GB) or with a Gaussian
kernel (MDe-GK, MDel-GK).

Multi-environment  With  unstructured  variance-covariance
(MUC): This model considers that there is a genetic correlation between
environments that can be modeled with matrices of order m X m (where
m denotes the environment) (Cuevas et al. 2017). The MUC is
expressed as

y=pl+ZgBr+u+s

where y = (y,,... Y- .ym)' is a vector with the observation y;
belonging to the j environment (j = 1,...,m), each of the same
size (n); the random vector u = (uy,... %, ... u,,) is the vector of
genetic values, and & = (&1,...,8,... &) the vector of random er-
rors both assumed normally distributed with # ~ N(0, U ® K) and
&~ N(0,2®1I), where ® is the Kronecker product.

The variance-covariance matrix of u is the Kronecker product of one
unstructured matrix with information between environments (Ug) that
needs to be estimated and another known matrix with information between
the lines based on K markers (computed using the GB or GK methods).
Then the m X m matrix Ug is

2

oy .. Ty Ty u,
Up = oL
E= O yu u; Tuu,
0.2
O, Ty - - i

where the j* diagonal element is the genetic variance Uf,/within the j*
environment, and the off-diagonal elements are the genetic covari-
ances 0, between environments j and j’. For a large number of
environments, a factor analytical model usually performs better than
the unstructured model (Burguenio et al. 2012; Oakey et al. 2016).
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Furthermore, matrix X is an error diagonal matrix of order m x m, i.e.,
_ i 2 2

Z—dzag(ogl, R a'sm).

Multi-environment With un-structured variance-covariance and
random intercepts (MUCf): The MUC model can be extended by
adding an extra variability to account for genetic variance among
individuals across environments, that is, by adding the random vector
f(Cuevas et al. 2017). Therefore, the extension of the previous random
linear model is

y=uml+ZgBptu+f+e
where f = (fy,....f ... ’

.fm) with the random vectors f; being
independent of u; and normally distributed f ~ N (0, Fz ®I). Matrix
Fp, is unstructured and captures genetic variance-covariance effects
between the individuals across environments that were not captured

by the Ug matrix; matrix Fg can be expressed as

0;1 e Off s

Fg = Off e 0')%] of
: . : . 2

Of.fi agrf o

where the j# diagonal element of the m x m matrix Fy is the genetic
environmental variance szj within the jth environment, and the off-
diagonal element is the genetic covariance oy, between environments
jandj. Similar to the previous cases, models MUC and MUCf can be
fitted using GB or GK kernels to generate the four model-method
MUC-GB,MUC-GK, MUCF£.GB, MUCF-GK.

Model implementation and random cross-validation for assessing
prediction accuracy in the four data sets: For the two maize data sets,
models MM-GB, MM-GK, MDs-GB, MDs-GK, MDe-GB, and
MDe-GK were fitted with the new software BGGE (Granato et al.
2017). Models MMI-GB, MMI-GK, MDsl-GB, MDsl-GK, MDel-GB,
and MDel-GK were also fitted with BGGE with the same random
partitions used by Sousa et al. (2017) to make results comparable for
random-cross-validation 1 (CV1) and random cross-validation
2 (CV2) (Burgueiio et al. 2012). Models MUCf and MUC of Cuevas
et al. (2017) were fitted using the software MTM (de los Campos and
Griineberg 2016) with the GB and GK kernel methods and with the
same random partitions used for the 12 model-method combinations
previously defined for random cross-validations CV1 and CV2. A five-
fold random cross-validation was used assigning 80% of the observa-
tions to the training sets and 20% to the testing (validation) set.
However, most of the results and discussion focus on cross-validation
CV2. The two wheat data sets were fitted with the 12 model-method
combinations (models MMI-GB, MMI-GK, MDsl-GB, MDsl-GK,
MDel-GB, MDel-GK, MM-GB, MM-GK, MDs-GB, MDs-GK, MDe-
GB, MDe-GK) using the BGGE software of Granato et al. (2017).
Two random cross-validations (CV1 and CV2) were generated; CV1
attempts to mimic a situation where a set of lines were never evaluated in
a set of environments, whereas CV2 mimics a sparse testing scheme
where somelines were evaluated in some environments but not in others.
Results based on CV2 are shown in the main text, tables and figures.
Results of random cross-validation CV1 are given in Tables S1-S4 of
Appendix 2. To implement the proposed 12 model-method combina-
tions, 50 random partitions were performed with 80% of the lines used
for training and the remaining 20% of the lines used for testing. The
metric for measuring the performance of prediction accuracy was the
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Pearson correlation calculated between the observed and predicted
values of the testing sets.

RESULTS

The results are given in four sections, one for each data set. In each
section, we provide the results of the variance component estimates and
the prediction accuracy for each of the 12 model-method combinations.

Maize data set HEL

This maize data set has a total of 452 maize hybrids with a different
number in each of the five sites (np = 247, nyy = 330, npyr = 452,
nsg = 367, ngo = 330). The sample phenotypic correlations among
locations are positive with intermediate-to-low values, where location
SE has low correlations with all the other locations, and locations NM,
IP, and PM show relatively high correlations with the other locations
(Table Al, Appendix 3).

Models without the random component I always show a lower
residual variance component in the GK models than in the GB models;
for example, for model MDs-GK, o = 0.278 and for MDs-GB,
o2 = 0.591 (Table 2). However, when the models include 1, these
differences become smaller; for example, for MDsl-GK, o =0277
and for MDsl-GB, ¢? = 0.368, indicating that for method GB, the
random component I explains the variation of the observations better,
whereas for GK, including I does not have much influence on the
residual. This is also reflected in the small value of o7 = 0.013
for MDsI-GK as compared with o7 = 0.243 for MDsl-GB.

The size of the genetic component, 0';, is always much higher for
MM-GK, MDs-GK, and MDe-GK than for models with the GB
method. For models MM, MDsl, and MDel, the sum of 0'§ and 0',2
is higher than the component a'§ for models MM, MDs, and MDe. For
example, for model MMI-GB, 0'2 + o7 is 0.429, whereas for model
MM-GB, ¢? is 0.356; MDsI-GB summation ¢ + 0'12 is 0.415 wvs.
MDs-GB with o = 0370, and for model MDel-GB o + o= 0.430
vs. MDs-GB with a'f, = 0.370. The variance explained by the GXE of
MDs, oée, is higher for GK than for GB and slightly higher for models
with the random component I than for models without 1. The variance
components for the specific environments show increases in MDel-GK
compared to MDel-GB, and in MDe-GK compared to MDe-GK
(Table 2).

Models including the random component I with GK did not im-
prove the prediction accuracy of the locations as compared with the
prediction accuracy of models without I with GK (Table 3 and Figure
1); however, models with I had consistently higher prediction accura-
cies than models with GB. In all cases, MMI showed lower prediction
accuracy than models with GXE (MDsl and MDel). Similarly, model
MM had lower prediction accuracies than models that incorporate GXE
(MDs and MDe). These differences are smaller for locations that had
higher sample phenotypic correlations with other locations than for
locations with low phenotypic correlations. For example, location NM
had prediction accuracies of 0.569, 0.589, and 0.588 for models MMI-
GB, MDsl-GB, and MDel-GB, respectively, whereas location SE with
low sample phenotypic correlations among locations had prediction
accuracies of 0.372, 0.544, and 0.548 for models MMI-GB, MDsI-GB,
and MDel-GB, respectively.

All models with kernel GK had higher prediction accuracies (with
and without the random component I) than models with kernel GB
(Table 3 and Figure 1). However, these differences are lower for models
that include the random component I (Table 3). For example, for
location SO, the prediction accuracies for models MDsI-GK and
MDsl-GB were 0.673 and 0.639, respectively, whereas for MDs-GK
and MDs-GB, the mean prediction accuracies were 0.666 and 0.466,
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B Table 2 MAIZE HEL data set. Estimated variance components for the multi-environment models, main genotypic effect model (MM),
single variance GXE deviation model (MDs) and environment-specific variance GxE deviation model (MDe) with two kernels, GBLUP (GB)
and Gaussian (GK), with I and without I, for grain yield (standard deviation in parentheses)

0.591
(0.02)
0.370
(0.08)
0.188
(0.03)

TNm

2
Tpm

2
Tse
i)

2
]

0.581
(0.02)

0.795
©.1)

0.008
(0.01)

0.277
(0.02)
0.871
(0.11)
0.53
(0.06)

0.013
(0.01)

0.368
(0.02)
0.172
(0.06)
0.256
(0.03)

0.243
(0.03)

0.246
(0.02)
0.88
(0.12)

0.376
(0.1
0.778
0.19)
0.374
(0.08)
1.135
(0.2)
0.688
(0.16)
0.014
0.01)

0.368
(0.02)
0.186
(0.06)

0.257
(0.08)
0.197
(0.08)
0.297
(0.08)
0.385
0.11)
0.215
(0.08)
0.244
(0.03)

0.582
(0.02)

0.821
©.1)

0.749
(0.03)
0.356
(0.08)

0.278
(0.02)
0.938
(0.1
0.525
(0.06)

0.247
(0.02)
0.931

©.m)

0.372
©.1)
0.769
©.2)
0.370
(0.09)
1.143
0.21)
0.688
(0.16)

0.592
(0.02)
0.390
(0.09)

0.237
(0.08)
0.076
(0.06)
0.259
(0.08)
0.255
(0.09)
0.158
(0.07)

* Locations are: IP: Ipiagi-MG, NM: Nova Mutum-MT, PM: Pato de Minas-MG, SE: Sertanépolis-PR, and SO: Sorriso-MT.

respectively. Comparing models with kernel GB, with and without /, the
predictions are always higher when the model includes I than when the
model excludes I; for example, for location IP, the mean prediction
accuracies were 0.778 and 0.683 for MDsl-GB and MDs-GB, respectively

(Table 3). Note that the variance component of the random effect I 0,2
was 0.243 for model MDsI-GB (Table 2). Furthermore, model 3 from
Cuevas et al. (2017) with the unstructured variance-covariance compo-
nent for model 2 without fdid not show any clear superiority, in terms of

B Table 3 Maize HEL data set. Mean Pearson’s correlation (50 partitions) of each location for random cross-validation CV2, for the multi-
environment models, main genotypic effect model (MM), single variance GXE deviation model (MDs), environment-specific variance GXE
deviation model (MDe), multi-environment unstructured covariance models (MUC and MUCH) with two kernels, GBLUP (GB) and Gaussian
kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in parentheses)

IP 0.596 0.577 0.802 0.778 0.808 0.776 0.809 0.785
0.1) 0.11) (0.05) (0.05) (0.05) (0.05) (0.04) (0.05)
NM 0.601 0.569 0.614 0.589 0.625 0.588 0.625 0.605
(0.09) (0.09) (0.08) (0.08) (0.08) (0.08) (0.06) (0.07)
PM 0.643 0.589 0.776 0.733 0.774 0.741 0.775 0.743
(0.06) (0.05) (0.04) (0.05) (0.05) (0.04) (0.03) (0.05)
SE 0.42 0.372 0.586 0.544 0.579 0.548 0.558 0.522
(0.09) 0.11) (0.08) (0.08) (0.07) (0.08) (0.08) 0.1)
SO 0.544 0.523 0.673 0.639 0.671 0.627 0.66 0.649
0.11) 0.11) (0.05) (0.06) (0.06) (0.08) (0.06) (0.06)
Proposed models without random effects I and f
MM- MM- MDs- MDs- MDe- MDe- MUC- MUC-
Location GK GB GK GB GK GB GK GB
0.595 0.51 0.807 0.683 0.804 0.678 0.800 0.669
IP (0.08) 0.11) (0.04) (0.08) (0.05) (0.07) (0.05) (0.09)
0.601 0.469 0.627 0.472 0.616 0.473 0.632 0.486
NM (0.08) (0.10) (0.08) (0.08) (0.09) 0.11) (0.07) (0.08)
0.645 0.584 0.776 0.697 0.778 0.693 0.781 0.693
PM (0.06) (0.08) (0.04) (0.05) (0.04) (0.05) (0.04) (0.04)
0.427 0.296 0.591 0.39 0.592 0.395 0.572 0.389
SE 0.1) 0.1 (0.07) (0.08) (0.08) 0.1 (0.07) (0.09)
0.558 0.396 0.666 0.466 0.662 0.468 0.665 0.463
SO (0.07) 0.11) (0.06) (0.08) (0.06) (0.09) (0.07) (0.10)

* Locations are: IP: Ipiagi-MG, NM: Nova Mutum-MT, PM: Pato de Minas-MG, SE: Sertanépolis-PR, and SO: Sorriso-MT.
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Figure 1 Plot of the prediction accuracy using Pearson’s correlation for each of the 5 locations (SO, SE, PM, NM, and IP) of maize data set HEL for
the proposed models MDel-GK, MDel-GB, MUCf-GK, MUCF-GB, MDe-GK, MDe-GB, MUC-GK, and MUC-GB.

mean prediction accuracy, over models MDsl and MDel and MDs and
MDe with GK and GB (Table 3 and Figure 1).

Random cross-validation CV1 decreased the prediction accuracy as
compared with results achieved for CV2 (Table S1, Appendix 2); the
trends and patterns of the prediction accuracy of the locations between
models and methods are similar to those found for CV2, including those
found for models MUC and MUCY.

In summary, results from maize data HEL indicated that models with
the random component I with GK including GXE (MDsl-GK and
MDel-GK) show similar mean prediction accuracy as models excluding
the random component I. However, this did not occur with GB models
where including the random component I increased the prediction
accuracy for all 5 locations. Prediction accuracy using GK was always
higher than using GB with or without the random component I. Also,
the differences between the models with and without / and between GK
and GB were smaller for locations that had higher sample phenotypic
correlations with other locations. Finally, the differences in prediction
accuracy were negligible between the proposed models including GXE
with GK and GB and with and without the random effect I and models
MUCS and MUC for all locations.

Maize data set USP

This maize data set is comprised of 739 maize hybrids with different
numbers of lines in each of the four sites (np—;n = 731, np—iy = 732,
na—in = 731, np—y = 737). Locations P-IN and A-IN had relatively
high correlations with the other locations, whereas A-LN had low ones
(Table A1, Appendix 3). The residual variance components for GK are
smaller than those for GB for models MM, MDs and MDe; for instance,
MM-GK had ¢? = 0.589 while MM-GB had o = 0.854. Similarly, the
residual variance components for MDsl and MDel with GK are lower
than for MDsl and MDel with GB. The variance components of the
random intercept (07) of GK methods are not negligible (as in data set
HEL) and are always lower than for the corresponding GB methods
(Table 4).

-=.G3:Genes| Genomes | Genetics
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The estimated genetic variance components o2 for GB in models MM,
MDs and MDe were 0.214, 0.209, and 0.206, respectively (Table 4), in-
creasing the genetic environmental stability (a'§ + 07) of models MMI-
GB, MDsl-GB, and MDel-GB to 0.511, 0.513, and 0.514, respectively. The
specific components for each environment of models MDe-GB and
MDel-GB were negligible. The variance component (O’Z,e) of the GXE
models MDs and MDsl for GB and GK was also negligible.

In general, models with I-GB had similar prediction accuracy as
models with I-GK, whereas the increase in prediction accuracy of mod-
els without I-GK over models with GB is clear. For example, for P-LN,
models MDsl-GK and MDsl-GB had prediction accuracies of 0.545
and 0.546, respectively, whereas for MDs-GK and MDs-GB, the pre-
diction accuracies were 0.524 and 0.325 (Table 5 and Figure 2). Models
with I-GB showed significant improvement in prediction accuracy
compared to models GB without I; for example, for location P-IN,
the mean prediction accuracies of MDsl-GB and MDs-GB were
0.591 and 0.368, respectively (due to the influence of 0'12 = 0.349 for
model MDsl-GB; see Table 4). All models with GK with the random
intercept I and with high values of 07 gave higher prediction accuracies
than GK models without I. There are no clear differences between
model MUCS and the proposed model with the random component
1 with GK and GB in all the locations. Similar results were found for
model MUC when compared to models without I. For this data set,
results from CV1 (Table S2, Appendix 2) were all similar and lower
than those obtained for CV2.

In summary, results from maize data USP indicate that models with
the random component I (MDsI-GK and MDel-GK) show higher
mean prediction accuracy than models without I and using the linear
kernel GB. The GXE variance component of models MDs and MDsl
with GK and GB had negligible oﬁe, indicating less complex GXE than
that found for maize data set HEL. The differences in the mean pre-
diction accuracy between the proposed models with or without the
random effect I and models MUCf and MUC are small for models
with GK and not clearly superior to the proposed models with GB.
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B Table 4 Maize USP data set. Estimated variance components for the multi-environment models, main genotypic effect model (MM),
single variance GXE deviation model (MDs) and environment-specific variance GxE deviation model (MDe) with two kernels, GBLUP (GB)
and Gaussian kernel (GK), with I and without I for grain yield (standard deviation in parentheses)

o? 0547 0548 049 0503 0487  0.503 0589  0.854 0538 0834 0534 0833
002 (002 (0020 (002 (0.02)  (0.02) (0.02) (002 (0.02) (002 (0.02)  (0.02)
o? 0371 04175 0343 0164 0362 0.165 1899 0214 2012 0209 2026 0.206
(0.09 (005 (009 (005 (0.1  (0.05) (0.18)  (0.06)  (0.18)  (0.06)  (0.19)  (0.06)
o, — — 0091 0045 = — — — — 0077 0029 @ — —
0.02)  (0.01) 0.02)  (0.01)
2y - - - — 0159 0055 — — — — 0162 0031
(0.09)  (0.03) (0.07)  (0.03)
P — — — — 0104 0048 — — — — 0107 0034
(0.06)  (0.03) (0.05)  (0.02)
2N - - - — 0093 0046 — — — — 0073 0038
0.07)  (0.03) (0.05)  (0.03)
2 — — — — 0084 0063 — — — — 005  0.052
(0.06)  (0.03) (0.04)  (0.03)
o? 0279 0336 0296 0349 0294 0349 - - — — - -
(0.03) (0.03) (003 (0.03) (0.03) (0.03)

* Locations are: Anhumas ideal N (A-IN), Anhumas low N (A-LN), Piracicaba ideal N (P-IN) and Piracicaba low N (P-LN)

Wheat data set WHE1

For this data set, environment E1 had negative correlations with the
other environments (E2-E4), whereas environments E2-E4 had high
correlations among themselves (Table A1, Appendix 3). Models with
GK fitted the WHEI data better than models with kernel GB (low
residual variances of GK models as compared to GB models). Also,
models with random component I had lower residual variance com-
ponents than models without 1. As opposed to the previous two
maize data sets, where the magnitude of the variance components

determines the prediction ability, the presence of environments
with negative correlations with other environments makes inter-
preting the variance components in relation to their predictive abil-
ity not as straightforward as in the previous two data sets (Table 6).
For example, models MMI and MM with GK and GB had estimates
of the random error variance that were much higher (~0.8) than
those of the other models; thus the prediction accuracy of these
models is expected to be low for at least the environments with
negative correlations.

B Table 5 Maize USP data set. Mean Pearson’s correlation (50 partitions) of each environment for random cross-validation CV2, for the
multi-environment models, main genotypic effect model (MM), single variance GxXE deviation model (MDs), environment-specific variance
GXE deviation model (MDe), multi-environment unstructured covariance models (MUC and MUC{) with two kernels, GBLUP (GB) and
Gaussian kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in parentheses)

P-LN 0.525 0.521 0.545 0.546 0.549 0.544 0.563 0.564
(0.07) (0.06) (0.07) (0.07) (0.05) (0.08) (0.06) (0.06)
P-IN 0.575 0.566 0.593 0.591 0.594 0.595 0.592 0.597
(0.05) (0.06) (0.05) (0.06) (0.05) (0.04) (0.06) (0.05)
A-LN 0.493 0.493 0.508 0.515 0.509 0.503 0.526 0.515
(0.06) (0.07) (0.06) (0.06) (0.05) (0.05) (0.05) (0.06)
A-IN 0.603 0.599 0.627 0.629 0.631 0.627 0.630 0.618
(0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06)
Proposed models without random effects I and f
MM- MM- MDs- MDs- MDe- MDe-
Environment GK GB GK GB GK GB MUC-GK MUC-GB
0.50 0.315 0.524 0.325 0.52 0.32 0.536 0.318
P-LN (0.06) (0.06) (0.07) (0.06) (0.06) (0.05) (0.07) (0.06)
0.53 0.358 0.554 0.368 0.56 0.365 0.563 0.361
P-IN (0.05) (0.06) (0.05) (0.05) (0.05) (0.06) (0.05) (0.07)
0.463 0.332 0.476 0.334 0.478 0.33 0.496 0.333
A-LN (0.07) (0.07) (0.06) (0.07) (0.06) (0.07) (0.06) (0.06)
0.584 0.438 0.612 0.447 0.607 0.445 0.61 0.439
A-IN (0.06) (0.07) (0.05) (0.05) (0.04) (0.06) (0.05) (0.06)

* Environments are: Anhumas ideal N (A-IN), Anhumas low N (A-LN), Piracicaba ideal N (P-IN) and Piracicaba low N (P-LN).
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Figure 2 Plot of the prediction accuracy using Pearson’s correlation for each of the 4 environments (P-LN, P-IN, A-LN, A-IN) of maize data set USP
for the proposed models MDel-GK, MDel-GB, MUCf-GK, MUCF-GB, MDe-GK, MDe-GB, MUC-GK, and MUC-GB.

The genetic variance component o-f, varied for models MM-GB,
MDs-GB, and MDe-GB (0.192, 0.219, and 0.414, respectively) as well
as for the GK models (0.599, 0.752, and 1.404, respectively). The con-
tribution of I measured in o7 was small for MDsI-GK and MDsl-GB
(0.101 and 0.107) (Table 6) and negligible for the other models with 1.
On the other hand, the GXE interaction variance components UgE for
GK and GB are important (MDsl-GK 0'3275 = 1.637, MDsl-GB aéE =
0.42; MDs-GK U;E = 1.349, MDs-GB 02, = 0.349) and much higher
than in the two maize data sets. Models MDel-GK and MDel-GB
showed high specific variance components for E1 (3.356 and 1.058,
respectively) and for E4 (1.147 and 0.3) causing most of the interaction
in this data set (these are the environments with the lowest sample

M Table 6 Wheat WHE1 data set. Estimated variance components for

correlations with the other environments) and contributed the least
to genetic environmental stability.

Models with GXE (MDs and MDe) had mean prediction accuracies
higher than MM models with lower mean prediction accuracy in E1
and E4 as compared with E2 and E3 (Table 7 and Figure 3). The
exceptions are models MM-GB and MM-GK, which had higher pre-
diction accuracy than models MDs-GB and MDS-GB in E3. Models
MDel-GK and MDe-GK had higher prediction accuracy than models
MM, MDs and MDe with and without I for GB and GK in all locations,
except MDe-GK in E1. However, in all cases and environments, models
MUCfand MUC had better prediction accuracies than all 12 genomic
model-method combinations (Figure 3). Lower prediction accuracies

the multi-environment models, main genotypic effect model (MM),

single variance GXE deviation model (MDs) and environment-specific variance GXE deviation model (MDe) with two kernels, GBLUP (GB)
and Gaussian (GK), with I and without I for grain yield (standard deviation in parentheses)

a? 0.805 0.81 0.388 0.471 0.416 0.479 0.812 0.824 0.462 0.551 0.471 0.533
(0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)
0’5 0.597 0.177 0.262 0.074 1.028 0.326 0.599 0.192 0.752 0.219 1.404 0.414
0.11) (0.04) (0.14) (0.04) (0.2) (0.06) (0.1) (0.03) (0.14) (0.05) 0.17) (0.06)
o'ée — — 1.637 0.42 — — — — 1.349 0.349 — —
(0.16) (0.05) (0.15) (0.04)
a3 — — — — 3.356 1.058 — — — — 3.026 0.868
(0.44) (0.15) (0.39) (0.13)
o3 — — — — 0.271 0.038 — — — — 0.142 0.08
(0.16) (0.03) (0.07) (0.03)
a3 — — — — 0.382 0.031 — — — — 0.135 0.076
(0.24) (0.03) (0.07) (0.03)
a3 — — — — 1.147 0.3 — — — 0.839 0.217
(0.24) (0.08) (0.22) (0.06)
a? 0.014 0.024 0.101 0.107 0.077 0.09 — — — — —

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02

)

* Environments are 1, 2, 3, and 4.
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B Table 7 WHEAT WHE1 data set. Mean Pearson's correlation (50 partitions) of each environment for random cross-validation CV2, for
the multi-environment models, main genotypic effect model (MM), single variance GXE deviation model (MDs), environment-specific
variance GXE deviation model (MDe), multi-environment unstructured covariance models (MUC and MUC{) with two kernels, GBLUP
(GB) and Gaussian kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in

parentheses)

E1 —0.052 —0.048 0.458 0.422 0.455 0.424 0.616 0.574
(0.06) (0.07) (0.05) (0.07) (0.06) (0.05) (0.06) (0.07)

E2 0.572 0.572 0.625 0.626 0.671 0.668 0.721 0.726
(0.04) (0.05) (0.03) (0.05) (0.04) (0.04) (0.04) (0.04)

E3 0.486 0.482 0.50 0.473 0.558 0.545 0.703 0.695
(0.05) (0.05) (0.05) (0.06) (0.04) (0.05) (0.04) (0.04)

E4 0.402 0.399 0.525 0.501 0.537 0.516 0.573 0.543
(0.06) (0.05) (0.05) (0.06) (0.05) (0.05) (0.06) (0.06)

Proposed models without random effecst I and f
MM- MM- MDs- MDs- MDe- MDe-
Environment GK GB GK GB GK GB MUC-GK MUC-GB

—0.026 —0.024 0.478 0.458 0.445 0.442 0.574 0.534

E1 (0.06) (0.07) (0.06) (0.06) (0.07) (0.06) (0.08) (0.07)
0.558 0.541 0.593 0.562 0.652 0.624 0.682 0.635

E2 (0.05) (0.05) (0.05) (0.04) (0.04) (0.04) (0.06) (0.05)
0.486 0.481 0.47 0.457 0.555 0.545 0.676 0.593

E3 (0.06) (0.05) (0.06) (0.06) (0.05) (0.05) (0.04) (0.04)
0.406 0.388 0.52 0.463 0.544 0.503 0.550 0.512

E4 (0.05) (0.06) (0.04) (0.05) (0.05) (0.05) (0.06) (0.07)

* Environments are, E1, E2, E3, and E4.

were found for CV1 (Table S3, Appendix 2) than for CV2; however, the  (given by models MDsl and MDs) compared to those computed for
decrease in prediction accuracy of CV1 was lower than for the two  the maize data sets, as well as the higher values of the variance com-

wheat data sets.

ponents specific to environments (o and o) compared to those com-

In summary, GXE for this data set is more complex than for thetwo ~ puted for other environments in this data set, as well as in the maize
previous maize data sets. This is expressed by higher values of a'éE data sets. For the 12 model-method combinations, the models with the

0 o4
0.573 o g g
0.550 = 1
0.537 LA
- 0.544
0.516 oces
0.703
0.695 e
0.593
0.558| | o545 0.555| | o545
0.721
0.726
0.682 e
0.671 0.668 0.652 0.624
0.616
oo 0424 0.574 aae — 0.574 0.534
Mdel-GK  Mdel-GB MUCf-GK MUCf-GB Mde-GK  Mde-GB MUC-GK MUC-GB

Figure 3 Plot of the prediction accuracy using Pearson’s correlation for each of the 4 environments (E1-E4) of wheat data set WHE1 for the
proposed models, MDel-GK, MDel-GB, MUCf-GK, MUCf-GB, MDe-GK, MDe-GB, MUC-GK, and MUC-GB.
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B Table 8 WHEAT WHES data set. Estimated variance components for the multi-environment models, main genotypic effect model (MM),
single variance GXE deviation model (MDs) and environment-specific variance G xXE deviation model (MDe) with two kernels, GBLUP (GB)
and Gaussian kernel (GK), with I and without I (Sousa et al. 2017), for grain yield (standard deviation in parentheses)

o? 0.879  0.883 0001 0269 0001 0248 0.88 0884 0001 0282 0002 0267
(0.02) (0020 (0.00) (0.03) (0.00)  (0.03) (0.02) (0.02) (0.00) (0.03) (0.00)  (0.03)
o? 0.168 0102 0131 0064 0.105  0.061 017 0105 016 0125 0178  0.119
(0.02)  (0.01)  (0.01)  (0.03) (0.02)  (0.03) (0.02)  (0.01) (002 (0.02) (0.02)  (0.02)

a2, — — 149 0636 — — — — 1482 0618 — —

(0.03)  (0.05) (0.04)  (0.05)

02 — — — — 1385  0.639 — — — — 137 0.607
(0.07)  (0.07) (0.07)  (0.06)
Zion — — — — 1578 0722 — — — — 1568  0.693
(0.08)  (0.08) (0.08)  (0.08)
o2 — — — — 1262 0554 — — — — 1187 0528
(0.07)  (0.06) 0.07)  (0.06)
o2 — — — — 1619 074 — — — — 1.637 0716
(0.08)  (0.08) 0.09  (0.07)
02y — — — — 173 074 — — — — 1709 0717
(0.09)  (0.08) 009  (0.08)

o? 0.003 0004 0014 0043 002 0039 — - - - — —

0.0 (0.0 0.0 (0.02) 0.01) (0.02)

* Environments are described by a sequence of codes: 0i, 2i and 5i denote the number of irrigation cycles; B/F denotes whether the planting system was ‘bed’ (B) or
‘flat’ (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat).

highest prediction accuracy for the environments were MDel and MDe. The variance components of the genetic main effects with GB and
However, models MUf and MUC had the highest prediction accuracy I were low (0.064 and 0.061 for MDsl-GB and MDel-GB, respec-
for each environment and for both methods, GK and GB. tively), indicating low exchange of information between environ-

ments. The most influential variance components were related to
Wheat data set WHES the GXE, 0. For example, for models MDs-GB, the variance com-
This data set has sample phenotypic correlations between environments ~ ponent 0'§E is 0.618 and 0.636 for MDsl-GB, whereas it increases to

that are close to zero or negative (Table A1, Appendix 3). Only onehigh 07 = 1.482 for MDs-GK and to 072 = 1.49 for MDsI-GK (Table 8);
phenotypic correlation was observed between environments 5iBN and ~ this result indicates the importance of GXE interaction. The influ-
5iFN (0.546). Table 8 shows the high residual variance components of  ence of the random component [ in this data set is negligible. The
models MMI-GK, MMI-GB, MM-GK and MM-GB, whereas for mod- variance components related to specific environments are similar
els incorporating GXE (MDs and MDe with GK and GB and with and ~ for the five environments and for MDe models with and without
without 1), the residual variance components were much smaller. random component I.

M Table 9 WHEAT WHES data set. Mean Pearson’s correlation (50 partitions) of each environment for random cross-validation CV2, for
the multi-environment models, main genotypic effect model (MM), single variance GXE deviation model (MDs), environment-specific
variance GXE deviation model (MDe), multi-environment unstructured covariance models (MUC and MUCf) with two kernels, GBLUP
(GB) and Gaussian kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in
parentheses)

OiFN 0.309 (0.05)  0.301(0.05) 0.610(0.04) 0.58(0.03) 0.619(0.04) 0.576(0.04) 0.645(0.05) 0.595 (0.05)
2iBN 0.186 (0.06)  0.191(0.05) 0.495(0.04) 0.453 (0.03) 0.502 (0.04) 0.449 (0.04) 0.498 (0.06) 0.469 (0.06)
5iBH 0.23 (0.06) 0.267 (0.05) 0.678 (0.02) 0.631 (0.04) 0.685(0.03) 0.637 (0.03) 0.684 (0.03) 0.650 (0.04)
5iBN 0.262 (0.05)  0.256 (0.05)  0.456 (0.04) 0.430 (0.04) 0.452(0.04) 0.406 (0.05) 0.637 (0.04) 0.618(0.04)
5iFN 0.266 (0.05)  0.247 (0.05)  0.418 (0.05)  0.401 (0.05)  0.407 (0.05)  0.402 (0.04)  0.603 (0.05)  0.601 (0.05)
Proposed models without random effects I and f
Environment MM-GK MM-GB MDs-GK MDs-GB MDe-GK MDe-GB MUC-GK MUC-GB
OiFN 0.321 (0.05) 0.303 (0.05) 0.621(0.03) 0.572 (0.03) 0.627 (0.04) 0.574 (0.03) 0.646 (0.05)  0.595 (0.05)
2iBN 0.215(0.04)  0.211 (0.05) 0.49 (0.05) 0.451 (0.04) 0.491 (0.05) 0.459 (0.04) 0.497 (0.06)  0.470 (0.06)
5iBH 0.248 (0.06)  0.284 (0.05)  0.675(0.02) 0.646 (0.03)  0.677 (0.03)  0.631(0.03) 0.684 (0.03)  0.649 (0.04)
5iBN 0.255(0.04)  0.245(0.05)  0.452 (0.04) 0.407 (0.04)  0.440(0.05) 0.409 (0.05) 0.635(0.04) 0.598 (0.04)
5iFN 0.251(0.05)  0.245(0.05)  0.405 (0.04) 0.394 (0.04) 0.408 (0.04) 0.384 (0.04) 0.607 (0.05) 0.577 (0.05)

* Environments are described by a sequence of codes: 0i, 2i and 5i denote the number of irrigation cycles; B/F denotes whether the planting system was ‘bed’ (B) or
‘flat’ (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat).
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Figure 4 Plot of the prediction accuracy using Pearson’s correlation for each of the 5 environments (OiFN, 2iBH, 5iBH, 5iBN, 5iFN) of wheat data
set WHES for the proposed models MDel-GK, MDel-GB, MUCF-GK, MUCf-GB, MDe-GK, MDe-GB, MUC-GK, and MUC-GB.

Among the 12 model-method combinations, the best predictive
models were MDel-GK and MDe-GK in all locations (Table 9,
Figure 4). However, models MDsl-GK and MDs-GK also had relatively
high prediction accuracies that were very similar to those of models
MDel-GK and MDe-GK. Similar results were found for models with
linear kernel GB (Table 9). Models with the random intercept I showed
no increase in prediction accuracy (values of o7 close to zero) as com-
pared to models without I.

The comparison of the prediction accuracy of these 12 model-
method combinations with the mean prediction accuracy of models
MUCf and MUC (Figure 4) indicated the higher mean prediction
accuracy of MUCf and MUC over the mean prediction accuracy of
the proposed models with (or without) the random effect 1. For this
data set, the prediction accuracies of CV1 were similar to those found
under CV2 (Table $4, Appendix 2).

In summary, the complex GXE interaction in this data set is expressed
by the large variance component oﬁe. Models with random component I
did not increase the prediction accuracy of the corresponding models
without [ (reflected in their values of 0'12 close to zero). Of the 12 model-
method combinations, models MDel-GK and MDe-GK gave the highest
prediction accuracies. However, the best predictive models overall and for
each environment were MUf and MUC.

DISCUSSION

Effect of random component |

From a statistical perspective, the mixed models can better explain the
variation among lines in environments (GXE) by considering two fac-
tors: environments and lines. The environmental effects () are con-
sidered as fixed effects with the relationship ZgB; however, the effects
of the lines are considered random in Z,g + Z,I for model MMI. The g
is the common random effect of each line derived from the markers and
I is considered the random intercept for each line. If we make the
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transformation g* = Z,g, as in Lopez-Cruz et al. (2015), then
g ~ N(0, UéZgKZé), where matrix ZgKZ;z comprises submatrices
(or blocks) where the submatrices off the block diagonal generated
the exchange of information between environments with positive cor-
relations. As discussed by Lopez-Cruz et al. (2015), this exchange of
information is not effective when there are negative correlations be-
tween sites (or environments) due to the fact that they are based on o'é.
Similarly, if I = Z,1, then I" ~ N(0, O'IZZgIZ‘;) and the exchange of
information occurred in the submatrices off the block diagonal between
the environments with positive correlations and when o7 is not zero.
On the other hand, in models MDsl and MDel, the component I has
influence only when there is exchange of information across environ-
ments and the GxE is simple; otherwise, as in the WHES5 data set, the
contribution of I is negligible when the GXE is complex.

The random effects I are independent and identically distributed
(iid) thus do not have the possibility of exchanging of information
from tested lines to untested lines and therefore do not have any
estimate of these values if no evaluation data on a line exists (CV1).
Then, when trying to predict values of untested lines, only available
information between lines come from the g part of the model. In a
number of cases, substantial variation for the I effects were found
suggesting that the additive part of the model (g) is not capturing the
total genetic value very well. In these cases, since usually the GK
method did as well as the GB with I model, there is a major advan-
tage to the GK method in that it can better predict untested geno-
types since the marker information is being used in a way that
captures more of the genetic variation. On the other hand, if the
breeder is concerned about gain from selection following intermat-
ing and generating a new population, the breeder should only be
selecting based on the additive breeding values and realizing that the
breeding values are not the complete genotypic value (commercial
value), such that response to selection after intermating will be less
than expected based on total genetic variance.

-=.G3:Genes| Genomes | Genetics



Effects of including G XE interaction

In general, results show that when GBLUP is used for prediction under
random cross-validation CV2, models MDsI-GB and MDel-GB that
incorporate GXE had higher prediction accuracy than models MDs-GB
and MDe-GB also with GXE. This improvement depends on o7 and the
magnitude of the correlations between environments. For maize data
sets (HEL and USP) with positive sample correlations between envi-
ronments, models MDsI-GB and MDel-GB had higher prediction ac-
curacy than models MDs-GB and MDe-GB, whereas in wheat data set
WHEI, models MDsl and MDel had better prediction accuracy than
models MDs and MDe only in environments with positive correlations.
Finally, for environments in wheat data set WHES5 with negligible o7,
the accuracy of models MDsI-GB and MDel-GB did not improve much
over that of models MDs-GB and MDe-GB without L

Effects of including the Gaussian kernel

In general, models MDs and MDe with the Gaussian kernel (GK) had
higher prediction accuracy than models with GB, although these dif-
ferences were smaller for models MDsl and MDel. When GK models
were better than GB models, results show that o7 was negligible for GK
models and when the prediction accuracy of MDsl and MDel was only
slightly superior to that of models MDs and MDe (as in maize data set
HEL). On the contrary, when using GK, the prediction accuracy was
not better than when using GB, as in the case of maize data set USP;
then the contribution of o7 was important and the prediction accuracy
of MDsl and MDel was superior to that of their counterparts MDs and
MDe. These results indicate that models with random intercepts are
useful when used with the linear kernel (GB) but not when used with
the Gaussian kernel (GK). This is because the GK method without 1
explains most of the genetic variance (additive and epistasis effects)
between lines with negligible genetic residuals that are not picked up
by the I.

The effect of the sample covariance
among environments
The behavior of the covariance between observations of the ith line in
the jth and j'th environments explains some of the results obtained in
the four data sets. The covariance between y;; and y; of models MM,
MDs and MDe is the same; it is determined by the genetic variance
component 0. It would be expected that the estimate of o7 would be
proportional to the sample covariance of the observations. This only
occurred when the sample covariances were positive because 0'2 can
take only positive values; when the sample covariances between some
environments are negative, this distorts the estimations of the genetic
variance component (02) and therefore affects the prediction accuracy
of the unobserved phenotypes of the lines in the testing set.

On the other hand, when the sample covariance between y;; and y;;
of models MMI, MDsl and MDel is determined by the summation 0'2 +
o7, then the higher o7, the higher the estimated sample covariance
(association) of the lines in environments and, therefore, the higher
the prediction accuracy compared with those achieved by models MM,
MDs and MDe (without the random effect I). Again, the presence of
negative sample covariances distorts the behavior of the estimated ge-
netic variance components and this negatively affects the prediction
accuracy of these models.

Models With GxE With the Kronecker product vs.
models With GxE With the Hadamard product

Less restrictive GXE genomic-enabled prediction models that allow any
covariance value between environments had better prediction accuracy

-=.G3:Genes| Genomes | Genetics
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than models with more restrictive assumptions at the level of associa-
tion between lines in environments affecting the estimation of the
genetic variance components. Less restrictive models consider vari-
ance-covariance matrices represented by the Kronecker product of
the variances and covariances of the environmental and genetic values
(with the linear or non-linear kernels constructed with the markers)
(Burguerio et al. 2012; Cuevas et al. 2017). When a random intercept
(f) is added to these models based on the Kronecker product (Cuevas
et al. 2017), the genomic-enabled prediction accuracy increased for
random cross-validation CV2 and for environments with negative
sample covariance. These advantages of the GXE genomic-enabled pre-
diction models using the Kronecker product for defining variance-co-
variance environmental matrices with negative or zero environmental
relationship over the Hadamard product defined by models MDsl and
MDel are less when sample covariances between environments are all
positive. The disadvantages of models with Kronecker products are that
defining and measuring environmental stability is not clear, plus they
demand higher computing resources compared to GXE genomic-en-
abled prediction models using the Hadamard product.

Required computing time for fitting the models

We performed all the analyses in an Ubuntu Linux server with 256 GB of
RAM and 32 CPUs core. To compare the computing time, we counted
the mean computing time in seconds for fitting one random partition for
random cross-validation CV1 for the maize data set HELIX with the
same number of 50 partitions and the same number of iterations in the
model. For the models with GXE without I or f, the mean computing
time for one random partition was 290, 319, and 3110 for models MDs,
MDe, and MUG, respectively. For models with GXE with random in-
tercept I or f, the mean computing time for one random partition was
489, 541, and 4938 for models MDsl, MDel, and MUCY, respectively.
The differences in computing time between models MDs and MDe are
low, but for model MUGC, the required mean computing time needed to
fit the model increased 10 times for one random partition.

Advantages and disadvantages of the proposed models

In general, GXE genomic-enabled prediction models MDsl and MDel
had similar prediction accuracy and, in both cases, environmental sta-
bility and GXE can be assessed and measured. Furthermore, in models
MDsl and MDel, when the sample correlation among environments is
positive, their prediction accuracy is similar or slightly higher than the
accuracy achieved with the more flexible Kronecker product models
(Burguenio et al. 2012; Cuevas et al. 2017) for the variance-covariance
matrices. The advantage of models MDsl and MDel with the Hada-
mard product for the variance-covariance is that they can perform
highly dimensional matrix operations very fast and, therefore, save time
when fitting these models. The BGGE software developed by Granato
et al. (2017) is indeed an example of this efficiency for fitting models
MDsl and MDel by means of the Hadamard product.

When the main objective is prediction accuracy, we recommend
checking for sample covariance (or correlations) between environments
before using MDsl and MDel GXE genomic-enabled prediction models.
Models MDsl, MDel, MDs and MDe are recommended when the
sample correlations are positive and not close to zero. We also recom-
mend fitting models MDsl, and MDel to the training set and estimating
the variance component of the random intercept o7; if it is negligible,
only models MDs and MDe should be used. When the number of lines
in each environment is not the same, models MDsl, MDel, MDs, and
MDe can be efficiently fitted with the BGGE software, whereas models
MUCfand MUC of Cuevas et al. (2017) with an unbalanced number of
lines in each environments require intensive computational resources.
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CONCLUSIONS

Results indicate that when the sample phenotypic correlations between
environments were intermediate to moderate (HEL, USP), models with
GXE with random intercept I (MDsl, MDel) and Gaussian kernel (GK)
had the advantages of other models without their disadvantages. These
models allow: (i) finding regions of the chromosomes with environ-
mental stability (Jarquin et al. 2014; Lopez-Cruz et al. 2015), (ii) the
fitted computing time is fast (Granato et al. 2017), and (iii) increasing
the prediction accuracy in the CV2 to a level of the Gaussian kernels of
Cuevas et al. (2016) and Sousa et al. (2017) or other more flexible
models such as those used by Burguefio et al (2012) and Cuevas
et al. (2017). For sample low or negative phenotypic correlations like
in data sets WHEIL, WHES5, the prediction accuracy of model MUCf
with GK of Cuevas et al. (2017) is the one that should be used.

Including the random intercept I for each line made it possible to
capture some extra genetic variability. Models MDs and MDe assessed
the complexity of the genomic GXE present in the two maize data sets
(with all environments with positive correlations) by means of the
Hadamard product between markers and environments as in models
from Jarquin et al. (2014) (MM, and MDs) and Loépez-Cruz et al.
(2015) (MDe). For the two maize data sets with positive sample corre-
lations among environments, the Hadamard models MM, MDs and
MDe with I had similar prediction accuracies as models MUCf and
MUC that use a Kronecker product for assessing GXE. The advantage
of models MMI, MDsl, and MDel over models MUCf and MUC is
shorter computing time when the number of lines in different environ-
ments is very unbalanced, as in the case of the two maize data sets.

For the two wheat data sets, the number of lines in each environment
is the same. However, in view of the fact that the sample correlation
among environments is not positive for all pair-wise environment
combinations, using models MM, MDs and MDe with or without I is
less favorable than using models MUCf and MUCwith a Kronecker
product for modeling GXE. The reduced prediction accuracy of the
Hadamard product models vs. the Kronecker product models indicated
the flexibility of models MUCf and MUC for assessing complex GXE
multi-environment data sets. Regardless of: (i) whether I is included or
not, and (ii) the type of data set at hand (with more or less complex
GXE) and the balanced or unbalanced data structure, the prediction
accuracy of the Gaussian kernel was better than the prediction accuracy
of the linear kernel GBLUP for all four data sets.
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APPENDIX 1

The multi-environment main genotypic effect model (MM)
The multi-environment model (MM) considers the fixed effects of environments (8), as well as the random genetic effects across environments (g)

y=ul+ZgBp+7Z,g+¢ )
wherey = (yy,....9}, ... ym)' is a vector with the observations y; of the j* environment (j = 1,...,m), each of size nj, such that one line in
one environment represents the y;; observation of the i line (i = 1,..., n;) in the j environment. The scalar u is a general mean and the

vector 1 is of size 3| njx 1. The fixed effects of the environment for the data used in this study are modeled with the incidence matrix of the
environments Zg, of order Z;’;l n; X m, where the parameters to be estimated are the intercept for each environment (8) with the vector B of
order m x 1. Incorporating other fixed effects into the model is straightforward.

The random vector of genetic effects g follows a multivariate normal distribution with mean zero and a covariance matrix K, that is,
g ~ N(0, U§K ), where the vector g of order nx 1 represents the genetic random effects across all environments for each line, and the kernel matrix
K is a symmetric semidefinite positive matrix constructed with molecular markers of order # x n. If the number of lines is the same in each environment,
thenn=n=...=n == s otherwise, when there are different numbers of lines in each environment, 7 represents the number of unique lines
included in the model in some environments. The incidence matrix Z, connects genotypes with phenotypes for each environment, with order
Zj’il n; X n. Variance component a'é is the genetic variance of the lines across all environments and represents the sensitivity or environmental stability.
Finally, the random errors are assumed to be homoscedastic and independent, & ~ N (0, o*I), where ¢ is the error variance.

The multi-environment single variance genotype x environment interaction deviation model (MDs)
This model adds to the MM model the random interaction effects of the environments with the genetic information of the lines (ge;;) (Sousa et al,
2017; Jarquin et al, 2014):

y=pl+ZgPp+Z,g+ge+e¢ 2)

The vector of random effects GXE interaction, ge, has a multivariate normal distribution, ge ~ N(0, [Z;KZ;|°[ZpZ}] O’;e ), where (°) is the Hadamard

product operator, and Uée is the variance component of the GXE interaction. Matrix [Z,KZ¢]°[ZZ§] is a block diagonal constructed with the

matrices K (K ... Kj...K;,) for each environment; therefore, there is no exchange (borrowing) of information between environments:
K - 0 = 0
(zkz)e[zezi] = | 0 K 0
O aee 0 “es Km

Multi-environment environment-specific variance genotype x environment deviation model (MDe)
The multi-environment, environment-specific variance genotype x environment deviation model (MDe) (Lopez-Cruz et al., 2015) differs from
MDs in how the random interaction component is modeled:

y=pl+ZpBr+Z,g+gp+e (3)

where g is the main genetic effect across all the environments and g represents the specific genetic effects in each environment such that
g ~ N(0,Kg), where K is a matrix block diagonal generated with individuals included in each environment:

2
UgEl.Kl . 0 . 0
Kg=| O 75 K 0
0 0 Ty, K,

with a variance component specific for each environment UiE_(Sousa et al., 2017).
7
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APPENDIX 2

B Table S1. Maize HEL data set. Mean Pearson'’s correlation (50 partitions) of each location for random cross-validation CV1, for the multi-
environment models, main genotypic effect model (MM), single variance GXE deviation model (MDs), environment-specific variance GXE
deviation model (MDe), multi-environment unstructured covariance models (MUC and MUCf) with two kernels, GBLUP (GB) and Gaussian
kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in parentheses)

IP 0.571 (0.1) 0.439 (0.12)  0.745 (0.05) 0.644 (0.1) 0.749 (0.06)  0.634 (0.09) 0.756 (0.06)  0.659 (0.06)
NM 0.503 (0.08) 0.354 (0.09) 0.532 (0.08) 0.385 (0.11) 0.525 (0.09) 0.365 (0.11) 0.537 (0.08) 0.381 (0.11)
PM 0.661 (0.06) 0.574 (0.07)  0.753 (0.05)  0.682 (0.07) 0.753 (0.04)  0.685 (0.05) 0.751 (0.04)  0.685 (0.05)
SE 0.347 (0.09) 0.202 (0.11) 0.505 (0.08) 0.370 (0.1) 0.513 (0.08) 0.366 (0.09) 0.489 (0.09) 0.349 (0.09)
SO 0.442 (0.1) 0.287 (0.09)  0.552 (0.08) 0.402 (0.1) 0.552 (0.08)  0.395(0.12) 0.551 (0.08) 0.39 (0.09)
Proposed models without random effects I and f
Location”  MMI-GK MM-GB MDs-GK MDs-GB MDe-GK MDe-GB MUC-GK MUC-GB
IP 0.575 (0.09) 0.426 (0.11) 0.752 (0.06) 0.607 (0.08) 0.755 (0.05) 0.618 (0.09) 0.758 (0.05) 0.641 (0.08)
NM 0.506 (0.09)  0.361 (0.07) 0.54 (0.09) 0.394 (0.08) 0.538 (0.09)  0.394 (0.08) 0.545 (0.06) 0.391 (0.1)
PM 0.662 (0.06) 0.533 (0.07) 0.758 (0.05) 0.662 (0.07) 0.754 (0.05) 0.671 (0.04) 0.754 (0.04) 0.669 (0.05)
SE 0.346 (0.1) 0.219 (0.1) 0.527 (0.06) 0.321 (0.1) 0.524 (0.08)  0.339 (0.09) 0.505 (0.07)  0.319(0.11)
SO 0.455 (0.1) 0.293 (0.11) 0.576 (0.07) 0.376 (0.1) 0.555 (0.09) 0.383 (0.11) 0.56 (0.07) 0.377 (0.1)

* Locations are: IP: Ipiagi-MG, NM: Nova Mutum-MT, PM: Pato de Minas-MG, SE: Sertanépolis-PR, and SO: Sorriso-MT.

M Table S2. Maize USP data set. Mean Pearson’s correlation (50 partitions) of each location for random cross-validation CV1, for the multi-
environment models, main genotypic effect model (MM), single variance GXE deviation model (MDs), environment-specific variance GXE
deviation model (MDe), multi-environment unstructured covariance models (MUC and MUC) with two kernels, GBLUP (GB) and Gaussian
kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in parentheses)

P-LN 0.28 (0.06) 0.272 (0.07)  0.307 (0.06) 0.293 (0.07) 0.303 (0.06) 0.286 (0.07) 0.294 (0.07)  0.286 (0.06)
P-IN 0.304 (0.06) 0.298 (0.08) 0.335 (0.08) 0.329 (0.06) 0.335 (0.07) 0.332 (0.08) 0.331 (0.08) 0.327 (0.06)
A-LN 0.287 (0.07)  0.283 (0.05)  0.305 (0.08) 0.31 (0.06) 0.303 (0.06) 0.309 (0.06) 0.321(0.08) 0.309 (0.07)
A-IN 0.389 (0.07)  0.386 (0.08) 0.42 (0.07) 0.413(0.07) 0.425(0.07) 0.422 (0.06) 0.418 (0.05) 0.417 (0.07)
Proposed models without random effects I and f
Environment* MMI-GK MM-GB MDs-GK MDs-GB MDe-GK MDe-GB MUC-GK MUC-GB
P-LN 0.286 (0.07) 0.278 (0.05) 0.305 (0.05) 0.289 (0.07) 0.313(0.08) 0.295(0.07) 0.311 (0.06) 0.30 (0.06)
P-IN 0.285(0.08) 0.313(0.06) 0.324 (0.06) 0.332(0.07) 0.324 (0.07) 0.33 (0.05) 0.318 (0.05)  0.341 (0.06)
A-LN 0.262 (0.07) 0.292 (0.07) 0.278 (0.06) 0.313 (0.06) 0.285(0.07) 0.308 (0.06) 0.300 (0.06) 0.318 (0.07)
A-IN 0.365 (0.06) 0.391 (0.07) 0.395(0.06) 0.415(0.07) 0.403 (0.07) 0.417 (0.06) 0.406 (0.05) 0.424 (0.07)

* Environments are: Anhumas ideal N (A-IN), Anhumas low N (A-LN), Piracicaba ideal N (P-IN) and Piracicaba low N (P-LN)
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B Table S3. Wheat data set WHE1. Mean Pearson's correlation (50 partitions) of each location for random cross-validation CV1, for the
multi-environment models, main genotypic effect model (MM), single variance G xE deviation model (MDs), environment-specific variance
GXE deviation model (MDe), multi-environment unstructured covariance models (MUC and MUCf) with two kernels, GBLUP (GB) and
Gaussian kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in parentheses)

E1 0.048 0.054 0.545 0.512 0.558 0.510 0.560 0.515
(0.06) (0.07) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06)
E2 0.397 0.405 0.49 0.476 0.48 0.474 0.472 0.478
(0.06) (0.06) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
E3 0.368 0.373 0.405 0.366 0.416 0.399 0.413 0.386
(0.07) (0.06) (0.05) (0.06) (0.06) (0.05) (0.06) (0.06)
E4 0.341 0.329 0.472 0.439 0.467 0.441 0.464 0.450
(0.06) (0.05) (0.04) (0.05) (0.05) (0.06) (0.06) (0.04)
Proposed models without random effects I and f
MMI- MM- MDs- MDs- MDe- MDe-
Environment GK GB GK GB GK GB MUC-GK MUC-GB
0.066 0.049 0.544 0.472 0.539 0.495 0.571 0.513
E1 (0.06) (0.06) (0.05) (0.06) (0.04) (0.05) (0.04) (0.04)
0.416 0.414 0.476 0.475 0.472 0.464 0.465 0.454
E2 (0.06) (0.06) (0.05) (0.06) (0.05) (0.05) (0.05) (0.05)
0.377 0.384 0.397 0.388 0.423 0.392 0.405 0.381
E3 (0.05) (0.05) (0.05) (0.06) (0.05) (0.05) (0.05) (0.05)
0.339 0.339 0.469 0.437 0.46 0.416 0.456 0.418
E4 (0.05) (0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)

M Table S4. Wheat data set WHE5. Mean Pearson’s correlation (50 partitions) of each location for random cross-validation CV1, for the
multi-environment models, main genotypic effect model (MM), single variance G xE deviation model (MDs), environment-specific variance
GXE deviation model (MDe), multi-environment unstructured covariance models (MUC and MUC{) with two kernels, GBLUP (GB) and
Gaussian kernel (GK) for grain yield with the proposed random effect I and without the random effect I (standard deviation in parentheses)

0iFN 0.348 0.301 0.601 0.553 0.611 0.555 0.614 0.554
(0.05) (0.05) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03)
2iBN 0.217 0.201 0.474 0.431 0.47 0.439 0.475 0.448
(0.05) (0.05) (0.04) (0.04) (0.05) (0.04) (0.04) (0.04)
5iBH 0.321 0.35 0.67 0.635 0.668 0.634 0.679 0.633
(0.05) (0.05) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
5iBN 0.163 0.136 0.399 0.353 0.395 0.345 0.401 0.358
(0.06) (0.06) (0.04) (0.05) (0.05) (0.06) (0.04) (0.05)
5iFN 0.084 0.082 0.334 0.309 0.328 0.306 0.336 0.315
(0.06) (0.06) (0.04) (0.04) (0.05) (0.05) (0.05) (0.04)
Proposed models without random effects I and f
MMI- MM- MDs- MDs- MDe- MDe-
Environment GK GB GK GB GK GB MUC-GK MUC-GB
0.341 0.288 0.61 0.562 0.612 0.557 0.625 0.558
0iFN (0.05) (0.05) (0.04) (0.03) (0.03) (0.03) (0.04) (0.04)
0.205 0.216 0.478 0.439 0.473 0.436 0.476 0.429
2iBN (0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.06)
0.323 0.333 0.67 0.624 0.662 0.627 0.680 0.638
5iBH (0.04) (0.05) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03)
0.171 0.163 0.397 0.357 0.405 0.356 0.407 0.354
5iBN (0.05) (0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.05)
0.107 0.114 0.33 0.311 0.329 0.307 0.337 0.303
5iFN (0.05) (0.06) (0.05) (0.04) (0.05) (0.05) (0.04) (0.04)

* Environments are described by a sequence of codes: 0i, 2i and 5i denote the number of irrigation; B/F denotes whether the planting system was ‘bed’ (B) or ‘flat’ (F);
N/H denotes whether planting date was normal (N) or late (H, simulating heat).
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APPENDIX 3

M Table A1. Table A1. Phenotypic Pearson’s correlations among locations for grain yield for the four data sets HEL (maize), USP (maize),
WHE1 (wheat), WHE2 (wheat). For HEL and USP maize data sets, the number in parentheses below each location’s name indicates the
number of lines sown. For the two data sets in the wheat experiments (WHE1 and WHE2), the number of wheat lines is given in
parentheses

Nova Mutum 0.46 — — — —

(NM)

Pato de Minas 0.51 0.44 — — —

(PM)

Sertanépolis 0.29 0.36 0.30 — —

(SE)

Sorriso (SO) 0.43 0.48 0.39 0.38 —
USP (739 maize lines) (Sousa et al. 2017)
Piracicaba-LN (P-LN) Piracicaba-IN (P-IN) Anhumas-LN (A-LN) Anhumas-IN (L-IN)

Environment (731) (732) (731) (737)
Piracicaba-IN 0.54 — — —

(P-LN)

Anhumas-LN 0.31 0.35 — —

(P-IN)

Anhumas-IN 0.43 0.47 0.47 —

(A-IN)

WHE1 (599 wheat lines)

Location® E1 E2 E3 E4
E2 -0.19 — — —

E3 -0.19 0.661 — —
E4 -0.12 0.411 0.388 —
WHEDS5 (807 wheat lines)

Location® OiFN 2iBN 5iBH 5iBN 5iFN
2iBN 0.166 — — — —
5iBH 0.30 —0.033 — — —
5iBN -0.10 0.122 —0.091 — —
5iFN —0.01 0.035 0.023 0.546 —

* Locations in HEL data set are: IP: Ipiagi-MG, NM: Nova Mutum-MT, PM: Pato de Minas-MG, SE: Sertanépolis-PR, and SO: Sorriso-MT. Locations in USP data set are:
IN = ideal Nitrogen; LN = low nitrogen. In WHES data set, environments are described by a sequence of codes: 0i, 2i and 5i denote the number of irrigations; B/F
denotes whether the planting system was ‘bed’ (B) or ‘flat’ (F); N/H denotes whether planting date was normal (N) or late (H, simulating heat).
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