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Abstract
Introduction  Adverse drug reaction reports are usually manually assessed by pharmacovigilance experts to detect safety 
signals associated with drugs. With the recent extension of reporting to patients and the emergence of mass media-related 
sanitary crises, adverse drug reaction reports currently frequently overwhelm pharmacovigilance networks. Artificial intel-
ligence could help support the work of pharmacovigilance experts during such crises, by automatically coding reports, 
allowing them to prioritise or accelerate their manual assessment. After a previous study showing first results, we developed 
and compared state-of-the-art machine learning models using a larger nationwide dataset, aiming to automatically pre-code 
patients’ adverse drug reaction reports.
Objectives  We aimed to determine the best artificial intelligence model identifying adverse drug reactions and assessing 
seriousness in patients reports from the French national pharmacovigilance web portal.
Methods  Reports coded by 27 Pharmacovigilance Centres between March 2017 and December 2020 were selected (n = 
11,633). For each report, the Portable Document Format form containing free-text information filled by the patient, and the 
corresponding encodings of adverse event symptoms (in Medical Dictionary for Regulatory Activities Preferred Terms) and 
seriousness were obtained. This encoding by experts was used as the reference to train and evaluate models, which contained 
input data processing and machine-learning natural language processing to learn and predict encodings. We developed and 
compared different approaches for data processing and classifiers. Performance was evaluated using receiver operating 
characteristic area under the curve (AUC), F-measure, sensitivity, specificity and positive predictive value. We used data 
from 26 Pharmacovigilance Centres for training and internal validation. External validation was performed using data from 
the remaining Pharmacovigilance Centres during the same period.
Results  Internal validation: for adverse drug reaction identification, Term Frequency-Inverse Document Frequency (TF-IDF) 
+ Light Gradient Boosted Machine (LGBM) achieved an AUC of 0.97 and an F-measure of 0.80. The Cross-lingual Language 
Model (XLM) [transformer] obtained an AUC of 0.97 and an F-measure of 0.78. For seriousness assessment, FastText + 
LGBM achieved an AUC of 0.85 and an F-measure of 0.63. CamemBERT (transformer) + Light Gradient Boosted Machine 
obtained an AUC of 0.84 and an F-measure of 0.63. External validation for both adverse drug reaction identification and 
seriousness assessment tasks yielded consistent and robust results.
Conclusions  Our artificial intelligence models showed promising performance to automatically code patient adverse drug 
reaction reports, with very similar results across approaches. Our system has been deployed by national health authorities in 
France since January 2021 to facilitate pharmacovigilance of COVID-19 vaccines. Further studies will be needed to validate 
the performance of the tool in real-life settings.
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Key Points 

Artificial intelligence models were successfully devel-
oped and showed good performance to automatically 
pre-code patient adverse drug reaction reports.

An artificial intelligence-based pharmacovigilance tool 
was thus nationally approved and deployed in France in 
January 2021, in particular to assist professionals with 
the monitoring of the COVID-19 vaccination campaign.

Further studies will be needed to validate the perfor-
mance of the tool in real-life settings.

1  Introduction

Pharmacovigilance (PV) is a medical field that has rapidly 
evolved over the last decades and most particularly in the 
context of sanitary crises. In the 1960s, the thalidomide 
tragedy, triggered by the publication of several case reports 
[1, 2], highlighted the importance of spontaneous report-
ing of adverse drug reactions (ADRs) by healthcare profes-
sionals. From the creation in 1964 of the “Yellow Card” 
system in the UK to the worldwide development of insti-
tutions managing and analysing ADR declarations [3], the 
thalidomide crisis gave birth to the pillars of the PV system 
of the late 20th century: signal detection through healthcare 
professional reports, followed by pharmacoepidemiological 
studies to properly assess the detected risks when necessary. 
While this approach proved efficient in many cases, limits 
quickly arose [4, 5]: new adverse reactions other than single 
cases are seldom seen by physicians, unlikely to recognise 
potential links, and ADRs are massively under-reported by 
professionals, even for new drugs or in countries where such 
a process is mandatory.

To cope with these limits, broader spontaneous reporting 
schemes were more recently developed, thanks to the rise 
of informatics and the appearance of the “expert patient” 
concept [6]. Noticeably, authorities throughout the world 
expanded to patients the possibility to declare ADRs for 
PV [7]. In France, such a system was first implemented in 
2011, and further developed in 2017 with the creation of a 
national web portal collecting ADR reports from patients 
[8]. Globally, patient-reported ADRs proved to be an impor-
tant and useful, yet heterogeneous, source of information 
[9, 10]. An unexpected downside occurred though: in an 
age of mass media and over communication about sani-
tary crises, patient reports may now frequently overwhelm 
PV systems. In 2008, New Zealand’s Centre for Adverse 

Reactions Monitoring experienced a dramatic surge of ADR 
reports following a change in the formulation of thyroxine 
and widespread web and media coverage on the subject 
[11]. Likewise, in 2017 in France, a similar issue concern-
ing Levothyrox® prompted a 2000-fold increase of reports 
coming from patients [12]. In both cases, the tremendous 
flow of information, manually handled by experts, led to the 
saturation of PV activities for a few months. Specifically, the 
identification of ADRs and the evaluation of their serious-
ness in free text was found to be very time consuming. This 
activity mobilised important resources, possibly detrimental 
to other surveillance activities.

Overall, these sanitary crises, caused by the over-report-
ing of ADRs by patients, shaped the need to develop novel 
methods to help PV systems remain efficient and responsive 
in such situations. Experts could benefit from an automatic 
identification of symptoms and assessment of seriousness 
in reports, allowing them to focus on unexpected or seri-
ous reports by prioritising their manual assessment, and 
thus more rapidly detect safety signals or patients in need 
of special care. Over the last few years, the development 
of such tools has therefore been the object of research and 
efforts [13], helped with the recent advancements in artificial 
intelligence (AI) technologies, especially machine learning 
and natural language processing (NLP), though evidence of 
the application of computational linguistics applied to PV 
remains scarce.

A recent systematic review of the literature [14], focusing 
on machine learning to understand text in PV, found a total 
of 16 publications on the subject and concluded that the 
analysis of text had the potential to complement the tradi-
tional system, but it focused on social media or forum-related 
content. In other publications, Schmider et al. [15] found that 
it was feasible to use NLP to support data extraction from 
text-based ADR reports, but their study was restricted to 
PV documents coming from private industrial entities, and 
did not perform well in detecting ADRs. Other teams [16, 
17] obtained better performance in more recent studies, but 
focused on published case report abstracts retrieved from 
PubMed, which do not share the same structure and style 
of patient-written reports, which are massively the cause of 
over-reporting.

Because of this lack of evidence and tools dedicated 
to the automatic processing of patient ADR reports, the 
French National Agency for the Safety of Medicines and 
Health Products (ANSM) and its associated Regional 
Pharmacovigilance Centres (CRPVs) partnered in 2020 
with Synapse Medicine to develop an AI tool, automating 
the evaluation of patient ADR reports, with the ambition 
to help PV experts cope with the upcoming COVID-19 
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vaccination campaign and future sanitary crises. Follow-
ing a recently published first study showing the feasibility 
of such a system [18], this partnership was strengthened 
by allowing Synapse Medicine to use a larger nationwide 
dataset from the French national PV web portal.

The aim of this study was thus to train and evaluate 
AI models and compare their predictive performance to 
identify ADRs and assess seriousness in patient reports, 
using a large nationwide PV dataset managed by French 
public institutions. The results will serve as supporting 
evidence for implementing AI to automatically pre-code 
text-based patient ADR reports.

2 � Methods

2.1 � Data Sources

We retrospectively collected all available cases of ADR 
reports filled by patients through the national ADR 
reporting web portal between March 2017 and December 
2020 and transmitted by ANSM to Synapse Medicine. 
Each report form contained structured and unstructured 
free-text information filled by patients, together with 
the annotation and coding realised by PV experts from 
CRPVs. Cases were considered unusable when linkage 
between reports and coding by experts was impossible.

2.2 � Coding of ADRs and Seriousness

The coding of ADRs by PV experts relied on the MedDRA 
standardised terminology [19]. The fourth level, “Preferred 
Terms (PTs)”, was used, as it is the internationally recom-
mended standard for the coding of adverse events [20]. 
The PTs coded by experts according to the free-text ADR 
descriptions in reports were used as the reference standard 
to learn and evaluate the performance of our AI models for 
ADR identification.

The coding of seriousness by PV experts relied on the 
standards specified by the World Health Organization [21], 
considering ADRs as serious when corresponding to at 
least one of the following situations: death, life threaten-
ing, requiring or prolonging hospitalisation, resulting in 
persistent or significant disability or incapacity, provoking 
congenital anomalies or birth defects, or resulting in other 
significant medical events. We used this coding as the refer-
ence standard to learn and evaluate the performance of our 
AI models assessing reports’ seriousness.

Experts could code multiple PTs for each ADR report, 
but assessed seriousness in a binary manner on each report 
as a whole. Identifying ADRs was therefore a multi-label 
classification task, where models can identify one or several 
distinct PTs. Assessing seriousness was a binary classifica-
tion task, resulting from the integration of heterogeneous 
information regarding events, patient characteristics and 
outcomes. We therefore used different methods to identify 

Fig. 1   Summary of the methodological differences between tasks. ADRs adverse drug reactions, ER emergency room, LGBM Light Gradient 
Boosted Machine, PT Preferred Term, XLM Cross-lingual Language Model
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ADRs and assess seriousness from reports, further discussed 
below and summarised in Fig. 1.

2.3 � Selection of Training, Internal Validation 
and External Validation Sets

Datasets from 27 CRPVs (total of 31) were available. We 
used data from 26 of them for the development set (train 
and internal validation set), aiming to represent approxi-
mately 90% of the data to maximise our learning abilities. 
The development set included the cases used in our previous 
study [18]. Data from the remaining CRPV were used as 
an external validation set to evaluate the robustness of our 
models on an unlearned sample and estimate the general-
isability of their performance. We used a different CRPV 
for external validation to obtain a conservative estimate of 
our models’ performance, as practices or types of reports 
might be heterogeneous across teams, even if the coding of 
ADRs and their seriousness is supposedly standardised. The 
remaining CRPV dataset used for external validation was 
chosen so that it represented approximately 10% of all cases.

2.4 � Data Extraction and Pre‑Processing

Methods for data extraction and pre-processing were already 
described in our previous study [18]. Briefly, the datasets 
were provided by ANSM, and composed of tables in Port-
able Document Format containing fields of interest. We 
extracted the text from these Portable Document Formats 
using the Python library Camelot [22]. We performed basic 
text processing on the raw data (accents and punctuation 
removal, case lowering, stemming). We turned the follow-
ing fields into structured features, to better take into account 
patient’s specificities and treatments: age, body mass index 
as a summary feature of weight and size, sex, a one-hot 
representation of outcomes and a one-hot representation 
of drugs. The final feature vectors were built concatenat-
ing these structured features and the free-text patient ADR 
descriptions (vectorised using approaches described below).

2.5 � ADR Identification Task

Two different approaches were tested for the ADR identifica-
tion task evaluated in this study. Considering the results of 
our previous study, we decided to compare a Light Gradi-
ent Boosting Machine (LGBM) [23] with a Cross-lingual 
Language Model (XLM) [24]. The first approach, a LGBM, 
is a gradient boosting framework that uses tree-based learn-
ing algorithms. Boosting is an ensemble learning method 
that aims to train many models sequentially, where each 
model learns from the errors of previous models. Succes-
sive iterations are found by applying a gradient descent in 
the direction of the average gradient of the previous (weaker) 

model leaf nodes, using error residuals of the loss function. 
A LGBM is known to provide generally good performance 
on various classification or regression machine learning 
problems [23]. It was selected as it was the best performing 
in our first study [18], which consisted of a similar study on 
a smaller dataset. The second approach, XLM, is a trans-
former model. Transformers, also called “BERT-like”, are 
deep learning attention-based neural networks [25], which 
process text sequence inputs simultaneously by forming 
direct connections between individual elements through an 
attention mechanism, unlike traditional methods that process 
each sequence element in turn. Unlike LGBMs, transformer 
models are already pre-trained on plain text corpus, and 
allow for a contextual bidirectional representation of words 
in sentences. Multi-class text classification in transformer-
based models is then achieved using a classification layer 
on top of the transformer model, using n output neurons 
corresponding to each class. Transformers have recently 
been considered state of the art for NLP and subsequent 
classification tasks [26], but were not evaluated in our first 
study because the dataset was too small for deep learning 
approaches.

Regarding data formatting, distinct procedures were 
applied for both approaches. For the LGBM approach, we 
vectorised text in numerical vectors, as gradient-boosting 
models need numerical features as inputs. More specifically, 
we vectorised unstructured text data in numerical vectors 
using the Term Frequency-Inverse Document Frequency 
(TF-IDF) method [27]. We then used the TF-IDF vectors 
and the previously mentioned structured data (except the 
one-hot representation of outcomes) as model features. 
For the XLM approach, data formatting was not needed, as 
transformer models directly use unstructured text data as 
inputs. Additional structured features were not included in 
this approach, as valuable information regarding symptoms 
was considered to be in free text, and XLM does not support 
structured data as inputs.

All reports transmitted by the 26 CRPVs were included 
in the development set for both approaches. Likewise, the 
external validation set included all transmitted reports from 
the remaining CRPV. Models were trained and evaluated 
considering PTs with at least ten occurrences in the develop-
ment set, owing to the size of data needed for this NLP task.

2.6 � Seriousness Assessment Task

For the assessment of ADRs seriousness, we decided to 
compare two LGBM models with different data formatting 
procedures. At first, similar to the ADR identification task, 
a full transformer approach was tested. It was deemed unsat-
isfactory though, considering that seriousness is a task that 
sensibly relies on the structured data available in reports 
(such as age, sex and outcomes) and that transformers cannot 
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directly use structured data as inputs. Therefore, we com-
pared two gradient boosting approaches: one with classical 
word embedding for data formatting, vs one with a trans-
former model dedicated to data formatting (both structuring 
unstructured text data into inputs usable by LGBM). For 
the first approach, we used the FastText library [28] and its 
extremeText extension, pre-trained on a dataset composed 
of text dealing with medical topics extracted from French 
reference sources. For the second approach, we used Cam-
emBERT [29], which is a French pre-trained version of 
BERT, the first transformer model developed on text from 
Wikipedia. As previously mentioned, after data formatting, 
both approaches included the additional structured data 
available from reports as model features, and we used the 
LGBM model for the classification part. Both approaches 
were trained using only a sub-part of the reports available: 
we excluded those concerning levothyroxine (which caused 
a sanitary crisis in France between 2017 and 2018), as cod-
ings regarding seriousness for this drug were too heterogene-
ous across experts for machine learning purposes.

2.7 � Statistical Methods

We evaluated the performance of all AI models using mul-
tiples metrics: receiver operating characteristics area under 
the curve (ROC AUC), positive predictive value1, sensitiv-
ity2 (= true positive rate), specificity3 (= true negative rate) 
and F-measure4 (also called F1 score, the harmonic mean of 
precision1 and recall2). We aimed to improve the result of 
our previous study [18]: AUC 0.93/F-Measure 0.72 for ADR 
identification, and AUC 0.75/F-Measure 0.60 for seriousness 
assessment.

For the initial prototyping of approaches, k-fold cross 
validation [30] was used for training and internal validation, 
using k = 10 for the identification of ADRs and k = 5 for 
the assessment of seriousness. Records in the development 

dataset were randomly divided into k parts, where k-1 parts 
were used for training and the kth one left out for testing. 
A similar process was repeated k times across the dataset, 
using a decision threshold that maximised the F-measure, 
distinct for each task or approach.

Metrics reported in this paper were estimated using a 
bootstrap procedure in order to obtain better average esti-
mates and 95% confidence intervals (95% CIs). For training 
and internal validation, we used n = 100 samples, randomly 
split using a 90/10 ratio for ADR identification and an 80/20 
ratio for seriousness assessment. Such ratios were chosen so 
that they could maximise learning abilities for both tasks, yet 
leave enough cases for a precise evaluation of models’ per-
formance through the estimation of confidence intervals. A 
narrower ratio was thus used for the seriousness assessment 
because of the lower prevalence of serious cases compared 
with PTs (multiple PTs can be coded for each report, while 
seriousness is assessed in a binary manner). Models were 
therefore internally trained using random samples containing 
90% or 80% of the data, according to the task, and evaluated 
on the remaining 10% or 20%. As for all metrics reported 
in this paper, we used the decision threshold that maxim-
ised the F-measure. For external validation, fully internally 
trained models were also evaluated using a bootstrap pro-
cedure on 100 random samples, representing 80% of the 
external validation dataset for both tasks. For each task and 
validation sets, medians and 95% CIs of all n bootstrap met-
rics were estimated. Confidence intervals were estimated 
with the percentile bootstrap interval, using the definition 
recommended by Hyndman and Fan for quantiles [31], con-
sidered unbiased regardless of data distribution.

Hyperparameters were tuned using a classical grid search 
strategy on a dedicated train-test tuning split. Overfitting 
was controlled by performing the internal validation of mod-
els using the previously described k-fold cross validation, 
bootstrapping, as well as externally validating the models 
on independent data (external validation set). Concerning 
model implementations, we used Python 3 (Python Software 
Foundation, Beaverton, OR, USA) and the following librar-
ies: scikit-learn, lgbm, pytorch, xlm, transformers. Analysis 
also involved the use of R 4.0.2 (R Foundation for Statisti-
cal Computing, Vienna, Austria) for descriptive statistics, 
predictive metrics and plots (ROCR package).

3 � Results

3.1 � Dataset Selection and General Characteristics

Figure 2 shows the selection process for datasets used for 
both tasks and both validations. A total of 11,633 usable 
ADR report forms were transmitted by ANSM and CRPVs 
to Synapse Medicine. These represented roughly one quarter 

1  Also called precision in machine learning literature. PPV = TP/
(TP+FP). If a prediction is made, it informs on its likelihood to be 
correct. In a multi-class problem, precision is the sum of true posi-
tives across all classes divided by the sum of true positives and false 
positives across all classes.
2  Also called recall in machine learning literature. Sensitivity = TP/
(TP+FN). It informs on the likelihood to correctly capture positively 
predicted entities. In a multi-class problem, recall is calculated as the 
sum of true positives across all classes divided by the sum of true 
positives and false negatives across all classes.
3  Specificity = TN/(TN+FP). It informs on the likelihood to cor-
rectly capture negatively predicted entities. In a multi-class problem, 
specificity is calculated as the sum of true negatives across all classes 
divided by the sum of true negatives and false positives across all 
classes.
4  F-measure = 2×(precision × recall)/(precision + recall). The high-
est possible value of an F-score is 1.0, indicating perfect precision 
and recall, and the lowest possible value is 0.
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of all patient reports filled on the national web portal during 
the study period. Among those, 10,403 reports (89.4% of the 
total), coded by 27 CRPVs, were included in the develop-
ment dataset for ADR identification, and 4786 (41.1% of the 
total) in the development dataset for seriousness prediction. 
The external validation set for ADR identification included 
1230 reports (10.6% of the total available), while the exter-
nal validation set for seriousness assessment included 404 
reports (3.5% of the total available). All reports in the exter-
nal validation datasets came from Nantes’s CRPV.

Table 1 presents detailed characteristics of the included 
datasets. Regarding data used for ADR identification, in the 
development set, patients were mostly women (84.5%), with 
a median age of 51 years (interquartile range [IQR] 37–62). 
Reports mentioned a median 1 drug per report (IQR 1–1), 
and 2.6% mentioned a vaccine. Experts coded a median 
number of four distinct PTs per report (IQR 2–6). Overall, 
50,546 PT terms were coded in this dataset. Among these, 
1465 were distinct PTs, and 311 (21.2%) were present in at 
least ten reports and thus learned by our ADR identification 
models. These 311 distinct PTs represented 94.7% of all PTs 

coded in the dataset (47,845/50,546). In the external valida-
tion dataset, patients were also mostly women (85.9%), with 
a median age of 51 years (IQR 39–63). Reports mentioned a 
median 1 drug per report (IQR 1–1), and 1.1% mentioned a 
vaccine. Experts coded a median number of five distinct PTs 
per report (IQR 3–7). Overall, 6636 PTs were coded in this 
dataset, representing 506 distinct terms. The 311 PTs con-
sidered during training corresponded to 95.0% (6302/6636) 
of all PTs coded in the external validation dataset. Regard-
ing seriousness assessment, both development and external 
validation datasets were also very similar. Median age of 
patients was 41 years (30–58) and 39 years (31–56), respec-
tively. Most patients were women in both datasets (78.0% vs 
77.5%). In the development dataset, 23.6% of reports were 
coded as serious, compared with 20.8% in the external vali-
dation dataset.

Figure 3A shows the most frequently coded drugs (top 
15) and Fig. 3B the most frequently coded PTs (top 40) in 
both datasets used for ADR identification. Levothyroxine 
was by far the most frequently reported drug, accounting 
for around half of the reports in the development dataset 

All patient ADR records filled on the French 
national pharmacovigilance web-portal

between Mar-17 and Dec-20
(n= 41,879)

Available data: records and coding transmitted 
by ANSM and participating CRPVs

(n= 11,633)

Development dataset:
records from 26 CRPVs

(n= 10,403)

Training and internal 
validation

Records unusable or not transmitted: (n= 30,246)

External validation dataset: 
records from 1 CRPV

(n= 1,230)

External validation on fully 
internally trained models

ADRs identification task Seriousness assessment task

Records on levothyroxine: (n= 6,443)

Development dataset: 
records from 26 CRPVs

(n= 4,786)

Training and internal 
validation

External validation dataset: 
records from 1 CRPV

(n= 404)

External validation on fully 
internally trained models

Fig. 2   Flowchart of the selection of datasets. ADR adverse drug reaction, ANSM French National Agency for the Safety of Medicines and Health 
Products, CRPV Regional Pharmacovigilance Centre



541Performance of Artificial Intelligence to Automatically Pre-Code Adverse Drug Reactions Reports

and two thirds in the external validation dataset. Mirena® 
followed, accounting for around 5% of reports. Overall, 
across all datasets, 2836 distinct drug names were coded 
by experts. Regarding ADRs, fatigue was the most fre-
quently coded PT, among 1529 distinct PTs in all datasets.

3.2 � Comparison of Machine Learning Models

Table 2 shows the main median metrics and 95% CIs esti-
mated for both tasks and validation sets, using a decision 
threshold maximising the F-Measure. Figures 4 and 5 show 

Table 1   Patient and report characteristics

ADRs adverse drug reactions, IQR interquartile range, PTs Preferred Terms

ADR identification task Seriousness assessment task

Development dataset
(n = 10,403)

External validation 
dataset
(n = 1230)

Development dataset
(n = 4786)

External 
validation 
dataset
(n = 404)

Patient age, years
 Median (IQR) 51 (37–62) 51 (39–63) 41 (30–58) 39 (31–56)

Patient sex, n (%)
 Female 8792 (84.5) 1056 (85.9) 3732 (78.0) 313 (77.5)

Encoded PTs per report, n
 Median (IQR) 4 (2–6) 5 (3–7) 3 (1–5) 3 (2–6)

Reported drugs per report, n
 Median (IQR) 1 (1–1) 1 (1–1) 1 (1–1) 1 (1–1)

Reports about vaccines, n (%)
 Yes 275 (2.6) 13 (1.1) 275 (5.7) 13 (3.2)

Reports considered serious, n (%)
 Yes 2454 (23.6) 136 (11.1) 1128 (23.6) 84 (20.8)

Fig. 3   Repartition of the most frequently reported drugs and adverse 
drug reactions (ADRs) coded in Medical Dictionary for Regulatory 
Activities Preferred Terms (PTs) across complete datasets. A Mosaic 

plot of the most frequently reported drugs and B mosaic plot of the 
most frequently reported PTs
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the ROC and precision-recall curves for the ADR identifica-
tion and seriousness assessment, respectively. They allow 
for a more detailed view of the possible trade-offs between 
sensitivity, specificity and positive predictive value at vari-
ous threshold settings.

For the identification of ADRs, both approaches pre-
sented similar performances during internal validation, 

with TF-IDF + LGBM obtaining an AUC of 0.97 (95% CI 
0.96–0.97) and an F-measure of 0.80 (95% CI 0.78–0.81), 
while XLM obtained an AUC of 0.97 (95% CI 0.96–0.97) 
and an F-measure of 0.78 (95% CI 0.76–0.79). Precision, 
sensitivity, specificity and true/false positives/negatives 
were also very close between models for internal validation 
(Table 2). Regarding external validation, both approaches 

Fig. 4   Adverse drug reaction identification: receiver operating characteristic (ROC) and precision-recall (PR) curves. A ROC curve of internal 
validation, B PR curve of internal validation, C ROC curve of external validation and D PR curve of external validation
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yielded consistent results with the internal validation, 
with TF-IDF + LGBM obtaining an AUC of 0.97 (95% CI 
0.97–0.97) and an F-measure of 0.82 (95% CI 0.81–0.82), 
while XLM obtained an AUC of 0.97 (95% CI 0.97–0.97) 
and an F-measure of 0.80 (95% CI 0.79– 0.80). External 
validation also yielded consistent and close results for other 
metrics (Table 2).

For the assessment of seriousness, both approaches 
also presented similar performance during internal vali-
dation. FastText + LGBM obtained an AUC of 0.85 (95% 
CI 0.85–0.87) compared with an AUC of 0.84 (95% CI 
0.81–0.87) for CamemBERT + LGBM, and both approaches 
had a similar F-Measure of 0.63 (95% CI 0.59–0.68 and 
0.57–0.67, respectively). Precision, sensitivity, specificity 

Fig. 5   Seriousness assessment: receiver operating characteristic 
(ROC) and precision-recall (PR) curves. A ROC curve of internal 
validation, B PR curve of internal validation, with dataset seriousness 

prevalence at y = 0.24, C ROC curve of external validation and D PR 
curve of external validation, with dataset seriousness prevalence at y 
= 0.21
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and true/false positives/negatives were also very close 
between models for internal validation (Table 2). Regard-
ing external validation, performances were consistent with 
internal validation, with FastText + LGBM obtaining an 
AUC of 0.87 (95% CI 0.85–0.89) and an F-measure of 0.65 
(95% CI 0.60–0.70), while CamemBERT + LGBM obtained 
an AUC of 0.86 (95% CI 0.83–0.89) and an F-measure of 
0.63 (95% CI 0.59–0.68). External validation also yielded 
consistent and close results for other metrics (Table 2).

4 � Discussion

In this validation study, we analysed the predictive per-
formance of different AI models supporting the automatic 
coding of patient ADR reports. For ADR identification, 
both TF-IDF + LGBM and XLM achieved an AUC of 0.97 
during internal validation, with an F-measure of 0.80 and 
0.78, respectively. External validation yielded consistent 
and robust results. For the assessment of seriousness, dur-
ing internal validation, FastText + LGBM achieved an AUC 
of 0.85, CamemBERT + LGBM an AUC of 0.84, and both 
approaches had an F-measure of 0.63. External validation 
also yielded consistent and robust results.

For both tasks, neither approach seemed to outweigh 
the other, with very similar performances. This could be 
explained by the balanced strengths and weaknesses of 
compared approaches. For ADR identification, the use of 
additional structured features on top of TF-IDF might help 
LGBM match XLM performances, which uses a more mod-
ern attention-based architecture based on neural networks 
but does not support additional structured features. For the 
seriousness assessment, the main difference was also related 
to classifiers’ inputs. While FastText word embedding is 
usually considered less efficient than the contextual bidirec-
tional representation achieved by BERT, we used a specific 
version of FastText pre-trained on medical data, compared 
with the more general CamemBERT model, pre-trained on 
French Wikipedia data. Both approaches then used LGBM 
for the classification part, which might explain close results. 
In real-life settings, performances between approaches might 
diverge, as novel drugs, report styles or declarations emerge. 
We will therefore need to continue validating and compar-
ing them using new data. In terms of computing, TF-IDF or 
FastText-based LGBM models are lighter and run faster than 
transformers, such as XLM and CamemBERT, but these 
might emerge as more accurate in the long term, as trans-
former-based deep learning models are currently considered 
state of the art for NLP [26]. They also have the advantage 
of being multilingual, potentially allowing for the transpos-
ability of our models in other languages than French.

Overall, while still perfectible, our AI models showed 
promising performance to support the automatic coding of 

ADR reports, though a more thorough interpretation of our 
results might be needed. In our study, reported precision (= 
positive predictive value), sensitivity ( = recall) and speci-
ficity were estimated using a predictive threshold aimed to 
maximise the F-measure. We decided to use such a threshold 
as the F-measure is the most common mathematical score 
used to compare machine learning classification models. 
As we aim to continue further improvement of our models, 
it allows for a good comparison over time or with novel 
approaches. The F-measure is a difficult statistic to inter-
pret for the end user though, as its meaning varies with the 
prevalence of predicted classes, and it is not fit for tasks 
needing a particular trade-off between sensitivity, specificity 
or precision [32]. In a PV crisis use-case [1], experts might 
value sensitivity over precision for the automatic assessment 
of seriousness in ADR reports, in order to prioritise poten-
tially severe yet rarer cases. In another use-case [2], experts 
might value precision when wishing to automatically pre-fill 
PT codings in reports. In this regard, ROC and PR curves 
are more informative, as they allow a better understanding 
of the possible trade-offs between measures. For a use-case 
[1], our seriousness assessment models allow for an 80% 
recall/50% precision trade-off, as shown in Fig. 4B and D. 
In our dataset, this translates to the manual assessment of 
roughly 32% of all cases to correctly capture four fifths of 
the 20% cases considered serious. For a use-case [2], experts 
may choose the 90% precision/70% recall trade-off of our 
models identifying ADRs, as shown in Fig. 5B and D. This 
could allow for a nearly automatic “fill-free” validation of 
70% of the pre-coded PTs in all reports. As these estimates 
are only based on the reading of our internal and external 
validation ROC and PR curves, these will also need to be 
confirmed in further real-life studies. A study group com-
posed of experts from different CRPVs has been established 
to arbitrate on clinical rules, such as the selected threshold 
for our distinct tasks, aiming to calibrate our models with the 
best parameters for PV professional end users.

These results are a major improvement in comparison 
with our first study [18], where regarding the identification 
of ADRs we reported an AUC of 0.93 and an F-Measure 
of 0.72 for TF-IDF + LGBM. Regarding the assessment 
of seriousness, the results of FastText + LGBM were an 
AUC of 0.75 and an F-measure of 0.60. This shows that 
having more quality data to train machine learning models 
is key to obtaining better performance, and that these novel 
AI approaches clearly outperform classical methods, such 
as regular expression (RegEx), which we tested in our first 
study by matching Medical Dictionary for Regulatory Activ-
ities terms to obtain a baseline for our benchmarks. RegEx 
only achieved an AUC of 0.69 and an F-Measure of 0.50.

Our study has several strengths compared with previous 
work on the subject. Our selection of data sources covered 
nearly a quarter of all ADR reports transmitted by patients 
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to ANSM and CRPV between March 2017 and December 
2020, providing a wide sample of reports over this period 
and across multiple teams, with a variety of suspected drugs 
and coded PTs. We used real-life expert-annotated data, in 
contrast with studies using case report abstracts or simulated 
data. We compared state-of-the art models for our classifi-
cation tasks, and created in-house AI pipelines dedicated 
to processing Portable Document Format reports. In addi-
tion, we externally validated our models on a distinct CRPV 
to assess their generalisability in a different setting, which 
yielded consistent and robust results.

Our study also has some limitations. First, regard-
ing selection, most reports focused on levothyroxine and 
Mirena®, two drugs involved in sanitary crises widely 
reported by the media in 2017–18. Most ADRs described in 
our datasets are therefore those associated with levothyrox-
ine and levonorgestrel. Although these cover a wide variety 
of PTs, susceptible to be associated with other drugs, this 
could bias the predictions of our model identifying ADRs 
in other situations. Second, models identifying ADRs in 
reports were not trained on PTs coded in fewer than ten 
reports in the development dataset. They are therefore not 
appropriate for the identification of all possible PTs. Never-
theless, our ambition was not to be exhaustive of all potential 
PTs but to identify those representing the most frequent PTs, 
which are usually the issue with over-reporting. Our results 
showed that this only misses 5% of coded PTs. Finally, our 
models’ predictive performances, especially regarding seri-
ousness, do not reach levels accurate enough to consistently 
fully replicate coding by PV experts. The goal of our project 
was not to create a tool replacing experts, but assist them 
in the time-consuming process of manually assessing ADR 
reports. Our seriousness assessment AI pipeline can allow 
them to prioritise reports according to the automatic coding, 
and focus their time on cases predicted as serious. Likewise, 
our ADR identification pipeline can allow them to save time 
in the coding of PTs frequently associated with reports, by 
quickly validating automatically predicted PTs.

Our AI pipelines were judged accurate enough by ANSM 
for routine use. Since January 2021, a platform showing our 
models’ predictions for each new report filled by patients on 
the national web portal has been deployed in CRPVs, hop-
ing to help experts cope with the expected surge of reports 
linked with the COVID-19 vaccination campaign [33]. As 
results were similar between approaches, we implemented 
TF-IDF + LGBM for ADRs identification and FastText + 
LGBM for the seriousness assessment, as they are lighter 
and quicker to run than transformers. This is, to our knowl-
edge, the first AI-based platform nationally deployed for the 
automated coding of ADRs. British health authorities also 
launched a similar project in late 2020 with an industrial 
partner, to “ensure that no details from the ADRs’ reac-
tion text are missed” [34], but no results or implementation 

have been communicated so far. The COVID-19 vaccina-
tion campaign is an interesting test for our system. Coding 
rules for ADRs indeed usually vary according to drugs and 
standards. For example, in the case of COVID-19 vaccines, 
CRPV experts received the instruction to prefer the use of 
the PT “flu syndrome”, rather than the multiple distinct PTs 
comprising the syndrome (“headache” + “fever”…), which 
our models may suggest. We already plan to alleviate this 
issue using online machine learning, which dynamically 
learns new patterns in reports, and adapt models to newly 
emerging situations, rules or drugs. We are currently work-
ing with ANSM to implement such a solution. Meanwhile, 
we had to manually tweak our models to better code flu 
syndrome ADRs associated with vaccines. In any case, it is 
important to remember that experts might code ADRs and 
seriousness heterogeneously across teams or individuals, 
even if standards or rules exist [35]. This might complicate 
the “true” validity of our models’ predictions. Because the 
reference standard (PV professional coding) used in this 
study might not be considered gold standard owing to pos-
sibly heterogeneous coding practices, further studies might 
more thoroughly examine and compare our model errors, 
as well as expert coding differences. This will be addressed 
by our CRPV experts committee. Further development and 
validation of our AI models over time will also be required 
to consolidate predictive performance and evaluate whether 
automatic coding was robust during the COVID-19 sanitary 
crisis.

5 � Conclusions

In this study, we successfully trained and validated the per-
formances of AI models identifying ADRs and assessing 
seriousness using unstructured text data from nationwide 
patient reports. Gradient boosting and transformer-based 
approaches yielded close results for both internal and 
external validation, probably in relation to the respective 
strengths and weaknesses of the distinct methods used for 
data formatting and classification.

Our system was considered accurate enough by ANSM 
for national deployment in France in January 2021, aim-
ing to help PV experts cope with the COVID-19 vaccina-
tion campaign, during which authorities expected a mas-
sive reporting of ADRs. Further studies will be needed to 
validate the performance of our system in real-life settings 
and to continue identifying the best possible model, adding 
more evidence to the possible use of AI in the automatic 
pre-coding of PV reports.
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