
antibiotics

Review

More Than a Pore: A Current Perspective on the In
Vivo Mode of Action of the Lipopeptide
Antibiotic Daptomycin

Declan Alan Gray 1 and Michaela Wenzel 2,*
1 Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;

declan.gray@newcastle.ac.uk
2 Division of Chemical Biology, Department of Biology and Biological Engineering,

Chalmers University of Technology, 412 96 Gothenburg, Sweden
* Correspondence: wenzelm@chalmers.se; Tel.: +46-31-772-2074

Received: 17 December 2019; Accepted: 31 December 2019; Published: 3 January 2020
����������
�������

Abstract: Daptomycin is a cyclic lipopeptide antibiotic, which was discovered in 1987 and entered
the market in 2003. To date, it serves as last resort antibiotic to treat complicated skin infections,
bacteremia, and right-sided endocarditis caused by Gram-positive pathogens, most prominently
methicillin-resistant Staphylococcus aureus. Daptomycin was the last representative of a novel antibiotic
class that was introduced to the clinic. It is also one of the few membrane-active compounds that can be
applied systemically. While membrane-active antibiotics have long been limited to topical applications
and were generally excluded from systemic drug development, they promise slower resistance
development than many classical drugs that target single proteins. The success of daptomycin
together with the emergence of more and more multi-resistant superbugs attracted renewed interest
in this compound class. Studying daptomycin as a pioneering systemic membrane-active compound
might help to pave the way for future membrane-targeting antibiotics. However, more than 30 years
after its discovery, the exact mechanism of action of daptomycin is still debated. In particular, there
is a prominent discrepancy between in vivo and in vitro studies. In this review, we discuss the
current knowledge on the mechanism of daptomycin against Gram-positive bacteria and try to offer
explanations for these conflicting observations.

Keywords: daptomycin; lipopeptide antibiotic; mechanism of action; membrane domains;
membrane fluidity

1. Introduction

Daptomycin is a calcium-dependent cyclic lipopeptide, which was originally isolated in the
1980s from the Gram-positive soil actinomycete Streptomyces roseosporus. It was the first in class
of a novel group of calcium-dependent, membrane-binding lipopeptides and was found to have
impressive activity against Gram-positive, but not Gram-negative organisms [1,2]. Clinical studies were
undertaken, however, it was found that high-dose treatment resulted in adverse effects, specifically
myopathy [3], and as a result the antibiotic was shelved. Due to the drastic increase of antibiotic-resistant
bacteria and the lack of sufficient novel antibiotic candidates daptomycin was revisited. Its side effects
could be minimized through altering the dose regimen and it finally went on to receive approval from
the U.S. food and drug administration (FDA) in 2003 [4]. Until the present day, the commercialization
of daptomycin marks the last time that a new antibiotic class was introduced to the market.

Since daptomycin is active against antibiotic-resistant bacteria and to preserve the last effective
antibiotics at disposal in the clinic, it was classified as a last resort antibiotic along with vancomycin and
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linezolid. Daptomycin is one of the few peptide antibiotics that can be administered systemically [5].
Daptomycin is used to treat skin infections, bacteremia, and right-sided endocarditis caused by
Gram-positive bacteria, such as Staphylococcus aureus, both methicillin-susceptible and -resistant (MSSA
and MRSA), as well as several Streptococcus and Enterococcus species [5]. Several more cyclic lipopeptide
antibiotics have been discovered, but apart from the polymyxins and the antifungal echinocandins,
daptomycin is the only one to currently have clinical approval [6].

Membrane-active antibiotics hold great promise for slower resistance development and have recently
attracted renewed interest for drug development [7,8]. Daptomycin is the only systemically applied
membrane-active antibiotic that is available for treatment of Gram-positive bacterial infections. Together
with the anti-Gram-negative polymyxins and antifungal peptides like amphotericin B, daptomycin
pioneered the systemic application of membrane-active anti-infectives. Learning from its successes and
limitations will help to pave the way for the next generation of promising antimicrobial drugs. However,
despite being well-established in the clinic, its exact mechanism is still debated. Intriguingly, there
appears to be a crucial difference between its mechanism of action in model membrane systems and living
bacterial cells. In this review we discuss the current knowledge on the mechanism of daptomycin against
Gram-positive bacteria and try to explain the apparent in vivo–in vitro discrepancy in its behavior.

2. Structure and Oligomerization of Daptomycin

Daptomycin is composed of 13 amino acids, 10 of which are arranged in a cyclic structure.
The exocyclic tryptophan at position 1 carries a decanoyl fatty acid tail (Figure 1) [9,10]. The cyclic
region of daptomycin contains several noncanonical and D-amino acids (kynurenine, ornithine,
3-methylglutamic acid, D-alanine, D-serine) [2]. Kynurenine and 3-methylglutamic acid have been
shown to be crucial for daptomycin activity. Peptides carrying modifications at these positions
exhibit up to five times higher minimal inhibitory concentrations (MICs) compared to unmodified
daptomycin [11]. Another essential structural feature appears to be the ester bond between kynurenine
and threonine [12]. Acidic residues are conserved in other calcium-dependent cyclic lipopeptides, for
example friulimicin B and amphomycin A, emphasizing that complex formation with calcium and the
resulting charge neutralization are essential features of this antibiotic class [13].
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In contrast to other common lipopeptides like surfactin, polymyxins, or echinocandins, daptomycin
has a negative net charge of −3 at pH 7 [14]. Its activity depends on the presence of Ca2+ ions, which
reduce the negative charge of the peptide head groups and stimulate oligomerization of daptomycin [15–
18]. The resulting daptomycin–calcium complex has a neutral net charge (2:3 daptomycin/Ca2+) [19].
Circular dichroism spectroscopy indicated that upon binding of calcium ions, daptomycin undergoes
a structural transition that increases its amphipathicity [18]. NMR studies have suggested that the
presence of calcium ions triggers the formation of daptomycin micelles, which are believed to facilitate
its interaction with membranes [15]. Daptomycin micelles are also formed when other divalent
cations, such as magnesium, are added, but higher ion concentrations are required and antimicrobial
activity is lower [20]. The Ca2+–daptomycin complex has an increased affinity for negatively charged
phospholipids including phosphatidylglycerol (PG). Binding to PG induces a second conformational
change of the daptomycin complex allowing membrane insertion and assembly of its final, active
conformation [21]. However, other studies have challenged these findings and suggested that
daptomycin does not undergo a structural transition upon binding Ca2+ prior to membrane binding.
Instead, there may only be two states of daptomycin, free and membrane-bound [19].

Despite these conflicting observations on the exact structural transitions of daptomycin, its
PG-dependent oligomerization has been observed in model membrane systems, isolated bacterial
membranes, and bacterial cells [21–23], and it was shown that it forms distinct daptomycin–PG domains
in vitro [24]. PG is prevalent in the membranes of bacteria and is thought to promote the selectivity
of daptomycin for bacterial over mammalian membranes [18,25]. PG has been identified to be the
docking molecule of daptomycin and is essential for its activity (see also Section 8) [21,25–44]. Thus,
daptomycin does not bind to PG-free membranes in vitro [22] and the presence of PG is a prerequisite for
its antibacterial activity [25,45]. PG is particularly abundant in Gram-positive cell membranes [46] and
indeed daptomycin binds to the membrane of Gram-positive, but not Gram-negative bacteria, which has
been proven in vitro using model membrane systems and in vivo using Escherichia coli protoplasts [47,48].

Fluorescence resonance energy transfer (FRET) experiments suggested that the calcium–daptomycin
complex in the membrane consists of 6–7 subunits. However, FRET cannot detect the presence of a
second 6–7-mer that could possibly sit in the inner membrane leaflet. Since it was unknown at the time
if daptomycin could flip to the inner leaflet, it was proposed that the active complex could consist of
12–14 daptomycin molecules instead [22]. This is still a controversial question and later studies have
suggested one 8-mer per leaflet [49]. Another study found that flipping is inhibited by the presence of
cardiolipin [50]. However, another study found no evidence for translocation of the lipopeptide over the
membrane [24]. Thus, flipping of daptomycin to the inner membrane leaflet is still debated and whether
it could happen in bacterial cells remains entirely unknown.

3. Mechanism of Action in Model Membranes

A multitude of model membrane studies have been conducted with daptomycin and most of them
agree that it binds to PG-containing membranes in a calcium-dependent manner, and subsequently
causes leakage of solutes through the lipid bilayer. In vitro studies on the mechanism of daptomycin
have been the subject of other extensive reviews [51,52]. Since the focus of this review is on the in vivo
mechanism, we will briefly summarize some key examples that have contributed to the wide-spread
pore formation model of daptomycin action (Figure 2A).

Daptomycin has been shown to bind and insert into model membranes, inserting deeper into
membranes containing PG. This interaction is accompanied by membrane leakage as measured through
calcein release [18]. Studies on liposomes made of 3:1 DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-
phosphocholine/1,2-dimyristoyl-sn-glycero-3-phosphoglycerol) have systematically analyzed the
permeability of daptomycin pores [53]. It was found that permeability was highest for Na+, K+, and other
alkali metal ions, followed by Mg2+, and organic cations, while no increased permeability was observed for
anions. The study concluded that influx of sodium ions leading to membrane depolarization is likely the
mechanism of action of daptomycin against bacteria. This hypothesis was later tested in Bacillus subtilis, but
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no sodium influx was observed [54]. A later study used different lipid mixtures, including 3:1 DMPC/DMPG
and 1:1 POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphoglycerol), and found that daptomycin pores are likely selective for potassium ions [55]. In fact,
some studies have observed potassium leakage from bacterial cells [56–58]. Several studies supported the
model of a more or less organized daptomycin pore. For example, Zhang et al. found that daptomycin
translocates to the inner membrane leaflet and concluded that it forms a membrane-spanning pore. This
was supported by the finding that cardiolipin not only inhibits the translocation of daptomycin to the
inner membrane leaflet, but also diminishes the bilayer permeabilization [50]. However, other studies have
suggested that daptomycin rather induces membrane permeability by deforming the membrane, clustering
membrane lipids, and inducing only transient membrane leakage, or even no leakage at all [24,49,59]. These
vastly conflicting observations are most likely due to differences in model membrane composition and
peptide concentration [49,60–62]. Thus, studies have found that the ability of daptomycin to permeabilize
model membranes does not only depend on the presence of PG, but also on fatty acid chain length and
membrane fluidity [49,57,62].
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4. Pore Formation In Vivo

Several studies have been performed on living bacteria in vivo, some of which seemed to support the
pore formation model of daptomycin action while others seemed not to. However, upon closer inspection
of the individual experimental conditions in these studies, it becomes clear that there are two key factors
that need to be considered in this central question: peptide concentration and treatment time. In fact, there
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is a remarkable consensus in the literature that membrane depolarization and ion leakage only occur at
high concentrations, typically much higher than the MIC and often bacteriolytic, and prolonged treatment
times of at least 30 to 60 min. This is in sharp contrast to typical pore-forming molecules, which cause
near-instantaneous depolarization and intracellular content leakage at their MICs [65–70], or even slower
carrier ionophores, which still achieve 100% ion leakage within a few minutes [66].

These observations have been consistently made in different microorganisms. In S. aureus,
daptomycin has been shown to be bactericidal without causing cell lysis and did not show calcein
release or uptake of the membrane-impermeable DNA-binding dye ToPro3, even at very high
concentrations up to 5–10×MICs and up to 60 min treatment time [71]. Similarly, S. aureus cells were
negative for BacLight membrane permeability staining (based on influx of the membrane-impermeable
DNA-binding fluorescence dye propidium iodide), ATP leakage, and release of beta-galactosidase after
10 min treatment with 4×MIC. Importantly, while leakage of K+, Mg2+, and ATP as well as membrane
depolarization, were observed on a longer time scale (up to 2 h), all of these effects only set in after
≥99% of the cell population were already dead (10–20 min), demonstrating that they are consequences
of cellular decay rather than the basis for bacterial killing [72]. The same behavior was observed by
Jung et al., who showed that depolarization follows the killing of S. aureus. Moreover, maximum
depolarization was only achieved after 90 min treatment with 10×MIC, since lower concentrations had
no effect on the membrane potential [18]. Silverman et al. also showed that membrane depolarization
correlates with cell death, yet it seemed to occur concomitantly. This paper has often been referred
to as proof for pore formation, yet it clearly showed slow, gradual loss of membrane potential with
maximum depolarization only seen after 30–60 min of treatment with 8×MIC [56]. Similarly, potassium
release experiments showed that next to no potassium release was observed at concentrations that
were sufficient to kill 90% of the cell population [56]. Similarly, Mensa et al. reported only partial
depolarization of S. aureus treated with 4×MIC for 30 min [73]. Even when cultures were treated with
an overkill of 25–100×MIC, it still took about 5 min to achieve maximum membrane depolarization
and influx of the membrane-impermeable DNA-binding fluorescence dye Sytox green [74]. Similar
results were found at 80× MIC using BacLight as a reporter [57]. In line with these findings on S.
aureus, depolarization in Staphylococcus epidermidis occurred at 2–4×MIC after 60 min of treatment and
it took 16×MIC to observe depolarization at only 15 min. Depolarization and killing kinetics were
comparable to S. aureus and it took 60 min of treatment with 20–80×MIC to observe about 40% of
BacLight-positive cells [75]. In Bacillus anthracis, no ToPro3 uptake was observed and depolarization
was concentration-dependently achieved within 30 min. However, even 5× MIC did not result in
complete depolarization. At this concentration, relatively rapid (2–5 min) efflux of potassium and
influx of sodium ions were observed. However, potassium efflux was only 60% of the release measured
with the carrier ionophore valinomycin [58]. In B. subtilis, ATP leakage experiments showed that it
takes 5×MIC and treatment times of 60–120 min to achieve about 80% loss of intracellular ATP [76].
Another paper showed concentration and calcium-dependent influx of propidium iodide into B. subtilis
cells at time frames of >120–30 min, yet it is not clear to what MIC multiples these concentrations
correspond [77]. A different study showed that B. subtilis cells are BacLight-negative at 2×MIC [54]. The
same paper showed that neither ion leakage (15 min) nor cell lysis occur at inhibitory concentrations (2×
MIC). Under these conditions, depolarization was slow and incomplete (40 min, about 50% maximum).
Bacteriolytic concentrations did achieve full depolarization, yet this still took 30 min [54].

While some of these results are still repeatedly used as proof for in vivo pore formation by
daptomycin, these studies are surprisingly consistent in supporting the notion that daptomycin does
not primarily act as a pore-forming molecule.

5. Is It Cell Wall Synthesis after All?

If daptomycin does not form pores in vivo, what is its mechanism of action then? Some of the very
first studies on daptomycin suggested that it inhibits the synthesis of lipoteichoic acids (LTAs), a major
constituent of the Gram-positive cell wall. This was concluded from the observation that incorporation
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of radioactive precursors into LTAs of S. aureus and Enterococcus faecium was strongly inhibited (about
80%–90%). These effects were already observed at 1× MIC and 10–20 min incubation time. While
precursor incorporation into lipids and peptidoglycan was also inhibited by about 50%, no major
effects were observed on DNA, RNA, and protein synthesis [78]. LTAs are bound to the cytoplasmic
membrane with a lipid anchor and it was further observed that radioactively-labeled daptomycin
specifically binds to cytoplasmic membrane fractions [78]. Finally, accumulation of an LTA precursor
molecule and depletion of the following LTA intermediates by daptomycin further corroborated the
LTA inhibition hypothesis [79]. However, this hypothesis was refuted by Laganas et al., who performed
kinetic and dose-response experiments showing no specificity of daptomycin for the inhibition of the
synthesis of LTA over other macromolecules in both S. aureus and Enterococcus faecalis [80].

Daptomycin did not bind to cell wall fractions [78] and was able to kill Enterococcus faecium
protoplasts [81]. Thus, it was concluded that peptidoglycan cannot be its target. However, it could still
inhibit peptidoglycan synthesis by interacting with the membrane-bound precursor molecule lipid
II. This was put forward by a study showing strong inhibition of cell wall precursor incorporation
and accumulation of the lipid II precursors Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc)
and Uridine diphosphate N-acetylmuramic acid (UDP-MurNAc) pentapeptides in S. aureus, Bacillus
megaterium, and cell-free systems [9,82]. This was further supported by scanning electron microscopy
images of S. aureus and E. faecalis showing massive cell wall distortions [83]. However, the lipid
II hypothesis was also rejected when it turned out that the addition of lipid II precursors did not
antagonize daptomycin activity [84] and that it did neither bind to lipid II nor inhibited lipid II synthesis
in vitro [85]. Further evidence against the lipid II hypothesis was provided by the observation that
daptomycin is active against cell wall-less Mycoplasma orale and Mycoplasma arginini [86], cell wall-less
B. subtilis L-forms [87], and non-growing S. aureus persister cells [88]. In contrast, daptomycin was
inactive against E. coli protoplasts, suggesting that it is not the outer membrane barrier that renders it
ineffective, but that the target of daptomycin is actually absent from Gram-negative bacteria. This was
confirmed for Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumonaie, Moracella catarrhalis,
and Salmonella typhimurium [45] and further supported the notion that the target of daptomycin cannot
be lipid II.

Despite this clear evidence that daptomycin does not directly inhibit peptidoglycan synthesis,
studies continued to find cell wall-related phenotypes and stress response profiling showed induction
of cell wall stress stimulons. Thus, daptomycin acts synergistically with beta-lactam antibiotics [89–91]
and proteomic studies found induction of cell wall stress response proteins in both B. subtilis and
S. aureus [54,66,92,93]. Likewise, cell wall stress stimulons were also found to be upregulated in
transcriptomic datasets [43,92,94] and promotor activation studies [87,95].

6. A New In Vivo Mode of Action Model

For a long time the question of whether daptomycin inhibits cell wall synthesis or not has remained
a conundrum, but a handful of recent in vivo and in vitro studies cleared up much of the mist around
this long-standing mystery. Pogliano et al. discovered that daptomycin causes patches in the cell
membrane of B. subtilis that coincide with cell shape deformations and co-localize with reporters
for cell wall synthesis, namely fluorescently-labeled vancomycin, binding lipid II, and bocillin, a
fluorescently-labeled version of penicillin. The authors concluded that daptomycin causes a change
in membrane organization that leads to misdirection of cell wall biogenesis and proposed a revised
model of its mechanism on bacterial membranes (Figure 2B) [64]. This model was well in line with the
induction of cell wall stress stimulons in normally growing B. subtilis cells, but not in cell wall-less
L-forms [87]. Müller et al. then proceeded to study the effects of daptomycin on B. subtilis cells and
found that the lipopeptide preferentially inserts into fluid membrane microdomains, so-called RIFs
(regions of increased fluidity) [54]. These RIFs are organized by the MreB protein and harbor the
lateral cell wall synthesis machinery [54,96]. Daptomycin causes an immediate rigidification of the cell
membrane, including RIFs, causing peripheral membrane proteins to lose contact to these domains,
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most importantly the essential lipid II synthase MurG (Figure 3A,B). These observations could finally
explain why daptomycin causes a similar phenotype and stress response to lipid II-binding antibiotics
but does not bind to lipid II or inhibit its synthesis in vitro [85].
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Figure 3. New in vivo model of daptomycin action. (A) Molecular model of membrane interaction and
protein delocalization. Adapted from [54]. (B) Corresponding microscopy pictures showing phase
contrast and DiIC12 fluorescence. DiIC12 is a fluid lipid domain dye that visualizes regions of increased
fluidity (RIFs) in both Gram-positive and Gram-negative bacteria [96,97]. Images were previously
published in [54]. (C) Fluid membrane domains (indicated by arrows) stained with DiIC12 in different
Gram-positive bacteria: B. subtilis, S. aureus, and Streptococcus pneumoniae. Images were previously
published in [98]. (D) Accumulation of fluid membrane domains (arrows) by daptomycin in S. aureus.
Scale bars: 2 µm.

Müller et al. observed the same membrane patches previously described by Pogliano et al.
and showed that they correspond to RIFs that were rigidified and fused together by daptomycin
(Figure 3B). RIFs were originally defined as fluid membrane microdomains that coordinate lateral
cell wall synthesis and are organized by MreB and have been observed in both Gram-positive and
Gram-negative bacteria [54,96,97]. However, the main targets of daptomycin therapy are Gram-positive
cocci, which neither possess lateral cell wall synthesis, nor MreB. They do, however, possess fluid
membrane microdomains that can be visualized with the same fluid lipid domain dye (Figure 3C).
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In fact, daptomycin also fuses these domains to similar membrane patches in S. aureus cells (Figure 3D).
It was later shown that these sites, which are often accompanied by cell shape deformations in B.
subtilis [64], indeed showed aberrant peptidoglycan structures [99], supporting the models put forward
by Pogliano et al. and Müller et al.

These rearrangements in the cell membrane also affected membrane proteins other than MurG.
Thus, the phospholipid synthase PlsX also co-localized with RIFs and was displaced by daptomycin as
fast as MurG [54]. This might explain why both membrane and cell wall synthesis were originally
observed to be impaired by daptomycin [78]. Pogliano et al. found the cell division-regulating protein
DivIVA to be mislocalized to these sites, providing an explanation for previously observed septal
defects and elongated cells [71,78]. This mislocalization was later shown to be an artifact caused by
dimerization of green-fluorescent protein (GFP), but DivIVA nonetheless turned out to be affected
by daptomycin. Using a monomeric version of GFP, it was shown that the protein is sensitive to
dissipation of the membrane potential and loses its membrane binding upon prolonged (≥30 min)
treatment with daptomycin [54]. This membrane potential dependency has been observed as well
for other proteins involved in cell division, including FtsA and MinD, and for the MreB protein [100].
Indeed, these proteins also lost their membrane binding upon prolonged daptomycin treatment,
explaining the cell division defects observed in earlier studies [71,78]. Other proteins, including
integral membrane proteins interacting with MreB or MurG, were not affected by daptomycin-induced
changes in membrane fluidity and architecture [54].

Importantly, while effects on membrane permeability were typically observed at supra-MICs
and longer treatment times (see Section 4), membrane rigidification and displacement of MurG were
observed immediately at 1×MIC [54]. Figure 4 sums up the sequence of events observed in B. subtilis
cells at inhibitory concentrations (1–2×MIC) [54,64,99].
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(30–60 min) at bactericidal concentrations. (D) Long-term effects of daptomycin (30–60 min) at
bacteriolytic concentrations.
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Immediately after daptomycin addition, membrane rigidification and disruption of RIFs sets in,
which is accompanied by displacement of RIF-bound proteins, MurG and PlsX (≤2 min). Depolarization
sets in but progresses very slowly. Cell growth and division come to a halt. These events are followed by
impairment of cell wall synthesis (10–15 min, Figure 5A). Depolarization reaches a plateau at 50% after
40 min. This is accompanied by displacement of membrane potential-sensitive peripheral membrane
proteins. Between 30 and 60 min RIFs have fused to rigidified membrane patches and pronounced
cell wall, shape, and division effects become visible. At supra MICs, cells lyse, probably caused by
deregulation of cell wall-autolytic enzymes [101,102]. Under these conditions, cells fully depolarize
after 30 min and cellular disintegration leads to intracellular content leakage [54,77]. However, cell
lysis is not a requirement for the bactericidal activity of daptomycin [71], suggesting that its effects on
cell envelope homoeostasis are sufficient to kill bacteria.

Following these studies, Lee et al. set out to test these observations in model membranes [59]. Using
giant unilamellar vesicle (GUV) studies, the authors confirmed that daptomycin has a preference for the
liquid crystalline over gel phase and that daptomycin binding is reduced by the membrane-stiffening
cholesterol. They further found that ion leakage by daptomycin is transient and only occurs upon
initial binding to the lipid bilayer. Additionally, a certain threshold concentration is required to cause
ion leakage, which is well in line with the in vivo data. Moreover, GUV studies by Kreutzberger et al.
demonstrated that daptomycin forms microscopically visible membrane domains with PG [24].

7. More to Discover

Does daptomycin form domains with fluid lipid domains (RIFs) or rather with PG domains?
The answer is probably both, because it is very likely that RIFs are also enriched in PG [103]. Since
daptomycin has an affinity to both negatively charged PG and higher fluidity [24,59], this explains
why it localizes to these domains [54].

It has been shown that B. subtilis possesses so-called lipid spirals that are enriched in anionic
phospholipids [103]. This phospholipid is very likely PG and not cardiolipin [103], which would fit well
with the observation that PG is needed for, and cardiolipin counteracts, daptomycin action [22,25,50].
Lipid spirals depend on active lipid II synthesis by MurG [104]. MurG is coupled to MreB, which
drives the lipid spirals around the cell to orchestrate lateral peptidoglycan synthesis [105,106]. Newer
studies have found that rather than forming an actual spiral, MreB forms short filaments that align
themselves along the greatest principal membrane curvature to drive cell wall synthesis in a spiraling
movement along the lateral axis of the cell [107]. These observations put forward a model, in which
RIFs are fluid membrane microdomains enriched in PG that contain the lateral cell wall synthesis
machinery and are organized by MreB (Figure 5).

While it was first assumed that MreB establishes RIFs, it is now known that it is needed for RIF
distribution at the long axis of the cell, but not for their generation [67]. Rather, MreB filament formation
and dynamics depend on the presence of lipid II [108], explaining why MurG depletion diminishes
these domains [104]. It now emerges that lipid II itself is intimately linked to the higher fluidity of RIFs,
which have been shown to harbor the cell wall precursor [64,104]. Lipid II possesses an undecaprenyl
membrane anchor, which is bound to the cell wall sugar building block with a pyrophosphate group.
This undecaprenyl lipid tail with the large sugar ‘head group’ is prone to increase membrane disorder. It
is therefore likely that lipid II (i) thermodynamically favors the fluid phase and (ii) generates additional
membrane disorder aggravating local membrane fluidity. Indeed, the disorder-increasing effect of lipid
II has been experimentally observed [109,110]. Binding of daptomycin to these complex and highly
organized domains, mediated by (i) their higher fluidity and (ii) higher PG content, likely disturbs
multiple protein–protein and protein–lipid II interactions that are essential for peptidoglycan synthesis.
Thus, it comes as no surprise that this lipopeptide exerts cell wall stress responses and causes cell wall
inhibition phenotypes in various assays.
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Figure 5. Coordination of cell wall synthesis in RIFs. (A) Inhibition of cell wall synthesis by daptomycin.
Fixation of B. subtilis cells in a 1:3 mixture of acetic acid and methanol leads to extraction of the protoplast
through breaches in the peptidoglycan layer. This is visible as blebs on the cell surface [66,111]. (B) MreB
filaments orchestrate RIFs and drive them forward in a spiraling motion to regulate lateral cell wall
synthesis. (C) The cell wall synthesis machinery localizes in RIFs.

A similar behavior was observed for human beta-defensin 1, which was shown to display a low
affinity to lipid II, probably mainly due to electrostatic interactions of the positively charged peptide with
the negatively charged pyrophosphate group. This leads to preferential localization of the defensin to sites
of active peptidoglycan synthesis, which was believed to cause disruption of the highly coordinated cell
wall-synthetic machinery [112]. This ‘sand in the gearbox’ principle is probably also applicable to daptomycin.
Moreover, since the calcium–daptomycin complex behaves similarly to cationic antimicrobial peptides in that
it binds to negatively charged PG and is repelled by positively charged lysyl-PG (see Section 8) [113], it is
possible that a similar low-affinity binding of daptomycin to lipid II and/or undecaprenyl phosphate, which so
far defied detection, could contribute to its attraction to RIFs and inhibition of cell wall synthesis.

Undecaprenyl phosphate is not only the carrier molecule for lipid II but also is used to translocate
wall teichoic acids (WTAs) over the membrane [114]. It is therefore likely that WTA synthesis is also
localized in RIFs. This is consistent with WTA-synthesizing enzymes localizing in a similar helical
pattern [115]. While it is not exactly known where LTA synthesis is organized in B. subtilis, it would
make sense that it likewise localizes where new peptidoglycan material is incorporated into the cell.
Thus, it could be speculated that daptomycin does not only disrupt peptidoglycan and lipid synthesis,
but also teichoic acid synthesis through its interaction with RIFs, which could explain the very early
observations on inhibition of these pathways [78].

It has been shown that daptomycin triggers autolysis in B. subtilis [101] and reduced autolytic
enzyme activity is a key feature in the transition from vancomycin-susceptible (VSSA) to intermediate
(VISA) S. aureus phenotypes, which show cross-resistance with daptomycin [102]. The same reduction of
autolysin activity was observed in daptomycin-resistant laboratory strains of S. aureus [116]. An interesting
observation pertaining to autolysis was made for another antibiotic class, the theta-defensins. These
peptides trigger autolysis by binding LTAs in S. aureus [117]. In this organism, the major autolysin Atl
is controlled by an interplay of WTAs and LTAs. WTAs in the old cell wall repel Atl and force it to the
division site, where it binds to LTAs and exerts its autolytic activity to selectively lyse the peptidoglycan
crosswall between daughter cells [118,119]. Upon binding to LTA, theta-defensins release Atl causing
uncontrolled digestion of cell wall peptidoglycan and thus cell lysis [117]. Considering the findings
for daptomycin concerning autolysis [101,102] and LTA inhibition [78,79,81,120], it will be interesting to
examine whether daptomycin induces autolysis through a similar mechanism.
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8. Lessons from Daptomycin Resistance

Reduced autolysis is not the only resistance mechanism that can give insight into the mechanism
of action of daptomycin. In fact, a long list of genetic factors that reduce its activity have been identified
(Table 1). Most of these affect membrane and cell wall homoeostasis and support the newest in vivo
model of daptomycin action (Figure 3).

Probably the most well-known daptomycin resistance mechanisms are related to phospholipid
composition. Gram-positive bacteria like S. aureus possess three major phospholipids: PG, lysyl-PG,
and cardiolipin [121]. One common daptomycin resistance mechanism is reduction of the overall
PG content by reducing the activity of the PG synthase PgsA. This mechanism reduces the possible
binding sites for daptomycin and was found in both B. subtilis and S. aureus [25,43,44]. Streptomycetes
like S. roseosporus generally have a low PG content, which might explain how the producer strain
copes with daptomycin [51,122]. A similar strategy is lysinylation of PG, resulting in reduction of
negatively charged PG in favor of positively charged lysyl-PG. This does not only reduce the overall
content of PG in the membrane, it also alters the net charge of the cell surface, possibly repelling the
calcium–daptomycin complex [113]. This mechanism is mediated by MprF and constitutes one of
the best characterized daptomycin resistance mechanisms in S. aureus [26–42]. Increased cardiolipin
content is another common resistance mechanism and has been described in S. aureus, E. faecalis,
and E. faecium [44–133]. Cardiolipin synthesis consumes two PG molecules per cardiolipin and thus
also contributes to reduction of the PG content [134]. However, cardiolipin seems to additionally
counteract daptomycin activity, possibly by increasing membrane stiffness [50,135]. These three
resistance mechanisms are related to the balance of the major phospholipid species and confirm the
importance of PG as a docking molecule for daptomycin, as well as the importance of the net charge of
the membrane and membrane fluidity.

A recent paper described another PG-related mechanism of how S. aureus populations can cope
with daptomycin, namely by phospholipid shedding [136]. Pader et al. showed that S. aureus reacts
to daptomycin by shedding lipids into the surrounding medium and that free PG outside the cells can
sequester and inactivate daptomycin. However, wild type cells also secrete small peptide cytolysins
that act as surfactants and impair this mechanism. Mutants defective in the secretion of these molecules
effectively inactivate daptomycin and thus protect themselves and, in mixed populations, also wild type
cells from its activity [136]. This discovery not only underlines the importance of PG as a docking molecule
for daptomycin but also shows how bacteria can turn their weak spot into an effective resistance strategy.

Table 1. Mutations that confer daptomycin resistance.

Species Mutated Gene Gene Function References

B. subtilis pgsA PG synthase [25,43]
mprF lysinylation of PG to lysyl-PG [43]
liaSR cell envelope stress response [25,43,92,137]

S. aureus pgsA PG synthase [44]
mprF lysinylation of PG to lysyl-PG [26,42]

cls cardiolipin synthase [44,123–126]
walKR cell wall and membrane homeostasis [37,138–140]

dtlABCD D-analylation of cell wall teichoic acids [141–146]
graRS upregulation of dtl operon [116,147]
vraSR cell envelope stress response [52,148]

SAOUHSC_00362 hypothetical lipoprotein [149]
SAOUHSC_02441 alkaline shock protein [149]

E. faecalis cls cardiolipin synthase [127–129]
gdpD glycerophosphoryl diester phosphodiesterase [127,128]
liaSR cell envelope stress response [127,128,150]

E. faecium cls cardiolipin synthase [127,130–133]
walKR cell wall and membrane homeostasis [133]
liaSR cell envelope stress response [127,130,151–153]
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Two more resistance mechanisms are involved in membrane remodeling, yet how exactly
they confer daptomycin resistance is less well characterized. Mutations in gdpG encoding a
glycerophosphoryl diester phosphodiesterase, confer high levels of daptomycin resistance in E. faecalis
when they occur together with mutations in liaSR. GdpG is involved in glycerol turnover for
phospholipid synthesis and thus also appears to be related to membrane adaptation [134]. The WalKR
two-component system has many different functions in cell wall and membrane homoeostasis as well
as cell division [154,155]. Interestingly, WalKR is involved in regulation of autolysis in B. subtilis [156]
and in the regulation of membrane fluidity in S. pneumoniae [157]. Moreover, the lipid desaturase,
Des, which reduces membrane fluidity in B. subtilis [158], was found to play a role for daptomycin
susceptibility in this organism [43]. Thus, adaptation of membrane fluidity seems to play a key role in
daptomycin resistance along with reducing PG content.

Another well-characterized daptomycin resistance mechanism is mediated by mutations in the
dlt operon or in graRS encoding a two-component system that is involved in its regulation. These
mutations enhance D-alanylation of WTAs, a well-known strategy to decrease the negative net charge
of the cell wall to repel positively charged molecules such as antimicrobial peptides [159]. It has been
argued that daptomycin, when in complex with Ca2+, might behave similarly to cationic antimicrobial
peptides, which might explain why this resistance mechanism is successful [142].

The last common group of genes that confer daptomycin resistance are stress response regulators.
LiaSR is a two-component system that is involved in adaptation to cell envelope stress. It has
been well-studied in B. subtilis [137,160–162] and was shown to react specifically to inhibition of
membrane-bound steps of peptidoglycan synthesis [66]. Yet, its exact function is still not known.
Homologues exist in a wide range of pathogens, including S. aureus (VraSR), E. faecalis, and E. faecium.
It is involved in daptomycin resistance in all four organisms [134]. This underlines its critical role in
daptomycin resistance and supports the RIF-centered in vivo model of daptomycin action.

9. Closing the Gap between In Vitro and In Vivo

Does that mean that all studies proposing membrane pores are wrong? This is certainly not
the case. Pore formation, one way or another, undoubtedly happens in in vitro model membrane
systems and, if the concentration is high enough, daptomycin is able to destroy bacterial cells causing
leakage of intracellular content. However, we have to distinguish what daptomycin is able to do under
certain conditions and what its antibacterial mechanism of action is at around its minimal bactericidal
concentration. We also have to take into account what its direct mechanism is, what its downstream
effects are, and whether these contributes to bacterial killing later on. In this review we have tried
to clarify these points by digging deep into the available literature on the effects of daptomycin on
bacterial cells and can confidently say that simple pore formation is not the primary antibacterial
mechanism of this lipopeptide.

It became clear that RIFs play a central role in the mechanism of daptomycin [54,64]. A structure
as complex as this cannot be mimicked in in vitro model systems. Already the choice of simple
two-lipid mixtures is a difficult one, since it can influence the behavior of the antibiotic [49,60–62].
It is therefore not surprising that in vitro results differ from observations in bacterial cells. Another
factor is simply that prior to the extensive in vivo studies by Pogliano et al. and Müller et al. there was
no reason to look for things like membrane fluidity or domain formation. After these publications
however, in vitro studies were performed that confirmed these results: daptomycin’s preference for the
fluid phase, its ability to form lipid domains, the transient nature of membrane permeability, and the
threshold concentration needed for this all contribute to closing the gap between in vivo and in vitro
observations [19,24].

10. Conclusions

Daptomycin is an important last resort antibiotic and one of the very few systemically-applied
antibacterial drugs with a membrane-targeting mechanism of action. Although several resistant mutants
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were isolated, resistance development is still slower compared to drugs with single protein targets [163].
In contrast to well-characterized compounds like vancomycin, derivatives of daptomycin have not
succeeded in making the transition into the clinic yet [12,164–167]. This may at least partly be attributed
to our limited understanding of its mechanism of action. From the recent advances made in this
field, we can learn important lessons for future drug development, not only for developing improved
derivatives of daptomycin, but also for the design of novel lipopeptides and other membrane-targeting
antibacterial drugs.
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