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ABSTRACT

Biological requirements for tumor cell proliferation include the sustained increase 
of structural, energetic, signal transduction and biosynthetic precursors. Because 
lipids participate in membrane construction, energy storage, and cell signaling. 
We hypothesized that the differences in lipids between malignant carcinoma and 
normal controls could be reflected in the bio-fluids. A total of 100 pre-operative 
plasma samples were collected from 50 oral squamous cell carcinoma (OSCC), 50 
normal patients and characterize by lipid profiling using ultra performance liquid 
chromatography/electro spray ionization mass spectrometry (UPLC-MS). The lipid 
profiles of the OSCC and control samples as well as the different stages were compared. 
Differentially expressed lipids were categorized as glycerophospholipids and 
sphingolipids. All glycerophospholipids were decreased, especially phosphatidylcholine 
and phosphoethanolamine plasmalogens, whereas sphingolipids were increased in 
the OSCC patients compared to the controls. We further identified 12 staging related 
lipids, which could be utilized to discriminate early stage patients from advanced stage 
patients. In the future, the differential lipids may provide biologists with additional 
information regarding lipid metabolism and guide clinicians in making individualized 
therapeutic decisions if these results are confirmed in a larger study.

INTRODUCTION

Although enormous progress has been made in 
cancer research during the past decades, oral squamous 
cell carcinoma (OSCC) remains a malignancy worldwide. 
Due to the lack of public awareness and screening 
method, patients are often diagnosis at an advanced 
stage accompanied by metastasis, which leads to a poor 
prognosis. The five-year survival rate of this disease 

is below 50% [1, 2], which is strongly dependent upon 
the stage at OSCC diagnosis. When OSCC patients 
are diagnosis at early stage of development, it has less 
disfiguring and psychologically-traumatic and with a 
5-year survival rate approaching to 90% [3]. The outcome 
of this disease is significantly better if patients could be 
diagnosed at the early stage and received the individual 
treatment plan based on biological malignancy. However, 
currently histopathology grade, lymph node (LN) 
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metastasis, and serum tumor markers, such as serum 
squamous cell carcinoma antigen (SCCA), are still used 
as prognostic factors for patients with OSCC. Meanwhile, 
although the higher level of serum SCCA may serve as 
a marker for dysplasia and progression to OSCC, the 
predictive performance for abnormal level of SCCA for 
OSCC was not satisfactory (P=0.055) [2]. In recent years, 
considerable progress has been made in understanding 
the genetic and protean basis of OSCC and identified a 
number of potential biomarkers that might improve the 
diagnostic and predictive performance [4–6]. However, no 
ideal biomarkers have been widely used in clinical practice 
because of poor validation performance and expenses. 
Because metabolites are the ultimate downstream product 
of gene expression, changes in metabolites are amplified 
relative to the changes in the transcriptome and proteome 
[7] and might be the most similar to the phenotype of the 
biological system studied. To date, some metabolites have 
been reported as biomarkers in the diagnosis of OSCC 
[8, 9]. However, these studies focused on conducting 
metabolomics on tissues and cell line, not plasma for 
diagnosis. Meanwhile, in such an extremely complex 
pathological process, it requires adaptations across 
multiple metabolic process to satisfy the energy in order 
to increase the proliferation rate. Therefore, developing 
new or supplementary metabolites for early diagnosis is 
urgently needed.

In all living cells, lipids are needed to maintain 
cellular structure, store energy and involved in cell 
signaling. Lipid metabolism connects to signaling 
networks in the regulation of cell growth, proliferation, 
differentiation apoptosis and membrane homeostasis [10–
12]. Additionally, deregulated lipid metabolism can alter 
membrane composition and permeability, which might 
cause the development and progression of many diseases, 
especially malignant carcinoma. Therefore, theoretically, 
lipid profiles in cancer cells could be distinguishable from 
those of normal cells, and such a distinctive lipid profile 
could be reflected in the biofluids of patients with OSCC. 
Lipidomics, a specific component of metabolomics [13], 
describes the identification, quantification and profiling 
of individual lipid molecules extracted from biological 
samples [14]. It has been widely utilized to diagnose 
and investigate the pathogenesis of various cancers, 
such as pancreatic adenocarcinoma [15], thyroid cancer 
[16], colon cancer [17], hepatocellular carcinoma [18], 
glioblastoma [19] and prostate cancer [20]. However, few 
studies have been performed to systematically investigate 
plasma lipid profiling and to comprehensively characterize 
the changes in lipid metabolism between OSCC patients 
and controls.

In the present study, we aimed to expand the 
metabolic process to lipidomics study on plasma samples 
of OSCC and compared the lipid profiles of OSCC patients 

Table 1: Demographics and clinic pathological characteristics between OSCC and control groups

Characteristics OSCC Control

Age 45±4.22 47±4.56

Gender

 Male 43(0.86) 40(0.80)

 Female 7(0.14) 10(0.20)

FIGO

 I 10(0.20)

 II 18(0.36)

 III 13(0.26)

 IV 9(0.18)

Lymphatic metastasis

 Yes 17(0.34)

 No 33(0.66)

Tumor location

 Carcinoma of the tongue 18(0.36)

 The floor of mouth 16(0.32)

 The buccal mucosa 5(0.10)

 The gingiva 3(0.06)

 The lip 8(0.16)
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and controls. Furthermore, differentially expressed lipids 
were identified between OSCC patients and controls. 
Finally, the lipids associated with specific pathological 
stages were presented in order to select the biomarkers for 
OSCC early diagnosis.

RESULTS

Demographics and clinic pathological 
characteristics

We performed case-control matching for patients 
and controls. A total of 100 patients eligible for analysis, 
50% (50) with malignant tumors, 50% (50) control, were 
enrolled in this study from the Department of Oral and 
Maxillofacial Surgery, The affiliated Second Hospital 
of Harbin Medical University, Harbin, Heilongjiang 
Province, China. All patients had pathological 
confirmation for diagnosis, metastasis assessment and 
staging (I–IV). The demographics and clinic pathological 
characteristics of these patients were listed in Table 1. A 
total of 38% (19/50) of the patients were classified as stage 
I, 26.00% (13/50) as stage II, 26.00% (13/50) as stage III 
and 10.00% (5/50) as stage IV.

Plasma lipid profiling of OSCC patients and 
controls

After excluding isotopic peaks, plasma lipid 
profiling consisted of 1937 ions (peaks) in positive 
electrospray ionization (ESI+) mode. According to the 
identification strategy described in previous studies [21, 
22], 459 plasma lipids were used for further analysis. The 

principal component analysis (PCA) performed on all the 
samples revealed that the quality control (QC) samples 
were tightly clustered, which indicated the robustness 
of our lipid profiling platform (Supplementary Figure 
1). Projection to latent structures discriminant analysis 
(PLS-DA) score-plot was used for classification of the 
plasma samples based on these differential plasma lipids 
(Figure 1). This analysis indicated that OSCC patients and 
controls had different lipid profiles. The cumulative R2Y 
and Q2 were 0.443 and 0.221, respectively, when three 
components were calculated. Validation plot obtained 
from 100 permutation tests showed no over-fitting of 
established model and all the permutation cumulative Q2 
values were lower than the original values.

Differential lipid selection in OSCC patients and 
controls

Following successful establishment of PLS-DA 
model, variable importance in the projection (VIP) 
value for each plasma lipid was calculated. Based on 
the two criteria of ßßlocal false discovery rate (lfdr) 
<0.05 and VIP>1, a total of 20 differential lipids were 
selected as potential lipid biomarkers of OSCC for 
further analysis (Supplementary Figure 2). Details 
about these lipids were listed in Table 2. The identified 
20 plasma lipids were grouped into two lipid categories, 
i.e., glycerphospholipids [GPs; glycerophosphocholines 
(PCs), glycerophosphoethanolamines (PEs), 
glycerophosphoglycerols (PGs), lyso-
glycerophosphocholines (Lyso-PCs)], sphingolipids 
[SPs; ceramides (Cers) and sphingomyelins (SMs)]. We 
provided several representative figures of mass spectra for 

Figure 1: (A) PLS-DA score plot for discriminating OSCC and control with R2Y=0. 443, Q2=0.221. (B) Validation plot for discriminating 
OSCC and control, all the permutation cumulative Q2 values were lower than the original values.



Oncotarget92327www.impactjournals.com/oncotarget

each lipid categories in OSCC patients (Supplementary 
Figures 3–7). Interestingly, we found that all the PCs 
contained two acyl chains and all the PEs were with 
plasmalogen (pPEs). All the GPs were decreased in the 
OSCC patients compared with the controls. Whereas, 
sphingolipids were significantly increased in the OSCC 
patients compared with the controls.

Significance of lipids in the pathological staging 
of OSCC

Accurate staging greatly facilitates medical 
management and improves clinical outcomes. To further 
explore whether some of these differential lipids species 
were associated with pathological staging, we investigated 
the 20 differential metabolites that discriminate between 
early stages (I and II) and advanced stages (III and IV) 
and found 12 metabolites were staging-related. All GPs 
including PC, PE and LPC were negatively associated 
with pathological stage, while SMs and Cers were 
positively associated with pathological stages. Changing 
patterns of differential lipids from control across early 
stage and advanced stage (Figure 2).

DISCUSSION

Lipidomics, a specific component of metabolomics, 
participates in constructing cell membranes, storing 
energy, cell differentiation and cell signaling. In the 
current study, a UPLC/MS plasma lipidomics method 
was used to systematically investigate dysregulated 
lipid metabolism between OSCC patients and matched 
normal controls. Our results suggest that the plasma lipid 
profiles analyzed by UPLC-QTOF/MS could be used 
to discriminate OSCC from controls. Twenty potential 
lipids are grouped into PCs, PEs, PG, Lyso-PC, Cer and 
SMs and related with OSCC. In addition, twelve lipids 
associated with pathological staging could be used for the 
early diagnosis of OSCC. These results suggested that 
these differentially expressed lipid species could reflect 
the development and progression of OSCC. However, 
dynamic alterations of differentially expressed lipid 
species and large-scale cohort studies should be needed to 
provide more accurate information for OSCC mechanism 
and early diagnosis in clinical practice.

All identified glycerphospholipids consisting 
of Lyso PCs, PCs, PEs and PGs in current study were 

Table 2: Twenty differential lipids between OSCC and control

Name mz rt FC density P value AUC

PC(32:2) 730.5203 828.82 0.72 down <0.001 0.79

PC(34:4) 754.5129 813.36 0.56 down <0.001 0.79

PC(36:4) 782.5313 848.59 0.69 down <0.001 0.74

PC(36:5) 780.571 801.89 0.61 down <0.001 0.71

PC(36:7) 776.4328 812.12 0.51 down <0.001 0.77

PC(38:6) 806.6107 840.11 0.75 down <0.001 0.74

PC(38:8) 802.4852 798.25 0.57 down <0.001 0.77

PC(38:9) 800.5383 797.62 0.64 down <0.001 0.74

PC(40:8) 830.645 829.96 0.78 down <0.001 0.72

PE(P-34:2) 700.6135 936.65 0.76 down <0.001 0.73

PE(P-36:2) 728.504 991.14 0.81 down <0.001 0.7

PE(P-36:4) 724.5517 929.04 0.75 down <0.001 0.73

PE(P-38:5) 750.4511 934.49 0.81 down <0.001 0.66

Cer(d18:1/16:0) 538.5502 954.4 1.56 up <0.001 0.76

Cer(d18:1/18:0) 566.5151 1007.19 1.61 up <0.001 0.71

GlcCeramide(d18:1/16:0) 700.5802 886.65 1.61 up <0.001 0.77

SM(d18:0/18:1) 731.6491 925.12 1.47 up <0.001 0.79

Trihexosylceramide (d18:1/16:0) 1024.7369 830.21 1.45 up <0.001 0.85

LysoPC(14:0) 468.3542 111.67 0.63 down <0.001 0.77

PG(34:2) 747.5116 928.66 0.78 down <0.001 0.71

Measured mass to charge ratio (m/z); Retention time (s, RT); Fold change (FC).
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decreased in OSCC patients compared to controls. We 
found that LysoPC(14:0) had a step-wise decrease with 
the development and progression of OSCC. As we know, 
LysoPC is an important signaling molecule in regulating 
cellular proliferation, inflammation and cancer cell 
invasion [23] and it is catalyzed by lysophospholipase D 
and generated lysophosphatidic acid (LPA), which is an 
important extracellular signaling molecule that controls 
various cell activities such as cell division and cell 

movement [24]. Lysophospholipase D has been reported 
to increase in several cancers, such as breast, prostate 
and ovarian cancers [25–27]. These results might partly 
explain the possible mechanism for the decreased plasma 
LysoPC levels in OSCC patients.

PC, as the main plasma membrane phospholipids, 
accounts for approximately 50% of total cellular 
phospholipids and is the most abundant phospholipids 
in mammalian membranes [28]. In present study, nine 

Figure 2: The intensity levels of lipids associated with pathological staging.
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polyunsaturated PCs were differentially expressed 
between OSCC patients and controls and four of them 
had a step-wise decrease with the development and 
progression of OSCC, namely PC(32:2), PC(34:4), 
PC(36:7) and PC(36:6). A previous study showed 
that significant differences in serum levels of PC and 
fatty acids between advanced prostate cancer cases 
and controls [29]. Yin et al. utilized PC combined with 
LysoPC to predict the occurrence of cervical cancer and 
got an AUC value of 0.97 [30]. Uchiyama et al. identified 
PC(16:0/16:1) and PC(18:1/20:4) could discriminate the 
border between the cancer and stromal regions of OSCC 
[31]. Studies indicated that the phosphatidylethanolamine 
N-methyltransferase (PEMT) pathway is one way to 
synthesize PC [32], which occurs primarily in the liver via 
the conversion of PE to PC to satisfy the normal cellular 
requirement for membrane synthesis [33]. PEMT activity 
was decreased in cancers [18, 34], which might lead to 
lower levels of polyunsaturated PCs [35]. These findings 
suggest that reduced polyunsaturated PCs might result 
from lower PEMT activity during OSCC progression.

PE is the second most abundant phospholipids in 
mammalian membranes and contributes 20-30% to the 
total phospholipids content and is essential for the growth 
and stability of energy-producing organelles. Recent 
evidence indicates that plasmalogen phospholipids are 
particularly sensitive to oxidation and may possess 
antioxidative properties. It has been reported that 
plasmalogens had protective qualities against oxidative 
stress in cells [36]. The decreased pPE level in OSCC 
patients suggested that cancer cells might exhibit elevated 
oxidative stress. Two of pPEs, PE(P-36:4) and PE(P-
38:5), had step-wise decrease with the development 
and progression, which was consistent with previous 
findings that oxidative stress was associated with cancer 
progression [37].

Five sphingolipids were increased in OSCC patients 
compared to normal controls. Bioactive sphingolipid 
metabolites served as an important lipid second messengers 
in the regulation of tumor cell growth, differentiation and 
angiogenesis [38], which were composed of hydrophilic 
head groups, such as sphingomyelin (SM), ceramide-
1-phosphate and glucosylceramide (GlcCer) [39]. 
Ceramideis thought to be induce death, growth inhibition 
and senescence in cancer cells and can be synthesized 
through multiple different pathways within the cell. It 
could be catalyzed the conversion of sphingosine to 
sphingosine 1-phosphate (S1P) by sphingosine kinases 
(SPHKs). S1P is usually considered to promote the 
survival of cells [40, 41]. In recent years, many efforts have 
been made to elucidate the molecular signaling pathways 
by which ceramide and S1P cause their effect and these 
studies also reveal important roles for ceramide and S1P 
across cancers [42]. Ceramide regulation is increasingly 
implicated in cancer pathogenesis and prognosis. SM has 
been reported to participate in many cellular processes, 

such as promoting cell proliferation and differentiation. 
If SM is produced under physiological and pathological 
conditions, it can activate various signaling cascades. 
Guo et al. identified that SM associated with the lungs 
cancer progressions [43]. Sphingolipid metabolism plays 
a number of key roles in the response of cancer to therapy. 
Translating the scientific principles of sphingolipid 
metabolism in to realistic strategies would improve the 
cancer treatment outcomes.

In summary, we found that that the OSCC patients 
and control groups can be discriminated based on lipid 
profiling and the differential analysis of OSCC patients 
and controls is remarkable. Furthermore, the lipids 
associated with pathological staging were identified. 
The results may provide additional information on lipid 
metabolism in OSCC that allows us to more deeply 
understand oncogenesis. These findings also have potential 
clinical utility in the future if confirmed in larger studies.

MATERIALS AND METHODS

Hypothesis

We hypothesize that OSCC patients have distinct 
lipid profiles that reflect the disease progression and that 
these distinctive lipid profiles influence lipid homeostasis, 
which is reflected in the plasma. Therefore, determining 
the concentrations of specific lipids would reflect the 
existence and progression of OSCC. By comparing the 
plasma concentrations of lipids among populations with 
and without cancer or among those with different stages 
of OSCC, a few lipids that are most representative of 
the disease status would be identified as plasma lipid 
biomarkers in the diagnosis of OSCC.

Sample collection

Patients were consecutively and prospectively 
included in the study when admitted for surgery for a 
clinically suspicious malignant OSCC at the Department 
of Oral and Maxillofacial Surgery, The Affiliated 
Second Hospital of Harbin Medical University, Harbin, 
Heilongjiang Province, China, from March 2013 to July 
2015. The inclusion and exclusion criteria for participants 
and the sample collection procedures were described as 
follows: participants involved in this study were not taking 
any medications, and those suffering from metabolic 
diseases, liver diseases, kidney diseases or any other types 
of cancer were excluded. The blood samples for biomarker 
measurements were obtained by routine venipuncture prior 
to surgery. Samples were maintained at room temperature 
during transportation and then centrifuged within 30 
minutes after collection. The isolated plasma samples 
were stored at -80°C for further analysis. This study was 
approved by the Ethics Committee of the second hospital 
of Harbin Medical University.



Oncotarget92330www.impactjournals.com/oncotarget

Sample preparation

All the plasma samples were thawed at 4°C, and 
30 μl of plasma was then mixed with 90 μl of precooled 
methanol. Next, 300 μl of methyl tert-butyl ether (MTBE) 
was added to the mixture, which was oscillated at 1000 
rpm in 25°C for 1 hour, followed by the addition of 75 
μl of deionized water. The samples were then mixed by 
vortexing for 1 min and oscillated at 1000 rpm for 10 min 
at 4°C, followed by centrifugation at 12000PM. A total of 
240 μl from the upper layer was transferred into a clear 
vial and dried in a vacuum rotary dryer. The residue was 
dissolved in 100 μl of a 50/50 (v/v) solution of isopropanol/
methanol for analysis. To ensure the stability and 
repeatability of the UPLC-MS, a total of 15 QC samples 
were prepared and used in this study. Pooled QC samples 
were prepared by mixing samples from 15 OSCC patients, 
50 normal subjects. The preparation of the QC sample was 
the same as that was for the experimental samples.

Chromatography

A 5 μl aliquot of the pre-treated sample was injected 
into a Kinetex Core-shell Silica C18 2.1 mm×50 mm, 
1.3 μm column (Phenomenex, Torrance, CA, USA) on a 
UPLC system (Waters, Milford, USA). The mobile phase 
consisted of 10/90 (v/v) acetonitrile/isopropanol (solvent 
A) and 60/40 (v/v) acetonitrile/deionized water (solvent 
B). The flow rate was set at 0.26 ml/min with a column 
temperature of 40°C.

A linear mobile phase gradient was used as follows: 
10% A, held for 1 min; 1.0–8.0 min, increased to 30% 
A; 8.0–18.0 min, increased to 75% A; 18.0–20.0 min, 
increased to 97% A; 20.0–24.0 min, maintained at 97% A; 
24.0–25.0 min, decreased to 10% A; and 25.0-26.4 min, 
held at 10% A. After each analytical run, the mobile phase 
was returned to 1% A in 0.1 min and equilibrated at 1% 
A for 1 min. To minimize the analytical variation, all the 
samples were randomly analyzed in succession. In addition, 
QC samples were analyzed at the beginning and the end of 
each batch run to ensure stability during analysis.

Mass spectrometry

Data acquisition was performed with an Agilent 
6520-QTOF instrument (Agilent Technologies) equipped 
with an electrospray ionization source operating in ESI+ 
mode. The capillary voltage was 4.0 kV. Nitrogen was 
used as the dry gas, and the desolvation gas flow was set at 
10 L/min. The desolvation temperature was set at 330°C. 
Centroid data were collected in the full scan mode from 
50 to 1000 m/z.

Data preprocessing and annotation

Raw data were converted into mzdata-format 
files using MassHunter Qualitative Analysis Software 

(Agilent Technologies), and these files were then 
imported into the XCMS package in the R platform 
for preprocessing. The following parameters were 
set as default values in the XCMS function: xcmsSet 
(method=“centWave”, peakwidth5c (5, 20)); group 
(bw5); rector (method5“obiwarp”). The preprocessing 
results generated a data matrix that consisted of the 
retention time (RT), mass-to-charge ratio (m/z) values, 
and peak intensity. The CAMERA package in R was used 
to annotate isotope peaks, adducts and fragments in the 
peak lists. Isotopic peaks were excluded prior to statistical 
analysis.

Statistical analysis

The continuous variables in patients with OSCC 
and the controls were presented as the median and range, 
whereas the categorical variables were presented as a 
frequency for each category. PCA was performed to 
determine the detection of stability and the replication. 
To visualize the discrimination performance of the lipid 
profiling between OSCC and controls, we performed PLS-
DA with mean centering and unit variance scaling of each 
variable. The parameters of the model, such as R2Y and 
Q2, were analyzed to avoid the risk of over-fitting. The 
differences in the concentrations of lipids in patients with 
OSCC and controls were compared using the Wilcoxon 
rank-sum test. To account for the multiple test issue, 
lfdr, which was calculated with the R package “fdrtool”. 
Multivariate VIP values were calculated for each variable. 
The potential biomarkers were selected based on the 
criteria of lfdr<0.05 and VIP>1. To facilitate the clinical 
utility of these potential biomarkers for future clinical 
practice, we utilized Student’s t-test to select the staging 
related lipids used for early diagnosis. The intensity of 
lipids associated with pathological staging is presented 
using a box plot. Statistical analysis was performed in the 
R platform.
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