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Carlos Aliste Santos1,4, Beatriz Antelo Rodrı́guez1,4, Laura Bao Pérez2, Natalia Alonso
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Abstract

B-cell lymphoproliferative disorders exhibit a diverse spectrum of diagnostic entities with

heterogeneous behaviour. Multiple efforts have focused on the determination of the geno-

mic drivers of B-cell lymphoma subtypes. In the meantime, the aggregation of diverse

tumors in pan-cancer genomic studies has become a useful tool to detect new driver genes,

while enabling the comparison of mutational patterns across tumors. Here we present an

integrated analysis of 354 B-cell lymphoid disorders. 112 recurrently mutated genes were

discovered, of which KMT2D, CREBBP, IGLL5 and BCL2 were the most frequent, and 31

genes were putative new drivers. Mutations in CREBBP, TNFRSF14 and KMT2D predomi-

nated in follicular lymphoma, whereas those in BTG2, HTA-A and PIM1 were more frequent

in diffuse large B-cell lymphoma. Additionally, we discovered 31 significantly mutated pro-

tein networks, reinforcing the role of genes such as CREBBP, EEF1A1, STAT6, GNA13

and TP53, but also pointing towards a myriad of infrequent players in lymphomagenesis.

Finally, we report aberrant expression of oncogenes and tumor suppressors associated with

novel noncoding mutations (DTX1 and S1PR2), and new recurrent copy number aberrations

affecting immune check-point regulators (CD83, PVR) and B-cell specific genes

(TNFRSF13C). Our analysis expands the number of mutational drivers of B-cell lymphoid

neoplasms, and identifies several differential somatic events between disease subtypes.

Introduction

B-cell lymphoid neoplasms are the most frequent hematological tumors, and they exhibit a

diverse spectrum of entities with heterogeneous clinical behaviour. B-cell lymphoid neoplasms
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are classically classified in either aggressive lymphomas (DLBCL, Burkitt lymphoma, grade III

follicular lymphoma and mantle cell lymphomas), or indolent lymphomas (chronic lympho-

cytic leukemia (CLL), grade I/II follicular lymphoma, marginal zone lymphoma, lymphoplas-

macytic lymphoma. . .). By frequency, diffuse large B-cell lymphoma (DLBCL) is the most

frequent lymphoid neoplasm, accounting for 25% of all cases of non-Hodgkin lymphoma

(NHL), closely followed by CLL (19% of NHLs) and follicular lymphoma (12% of NHLs) [1].

Next-generation sequencing (NGS) technologies have tried to deconvolute the genomic

complexity of lymphoid tumors. This information has led to an improved classification of lym-

phoid neoplasms, mainly thanks to the characterization of the biological heterogeneity within

lymphoma subtypes. A good example is that of the gene expression-based classification of

DLBCL in two different clinico-biological groups by its cell-of-origin status: either germinal

center B cell-like or activated B cell-like [2]. Various groups have also identified new DLBCL

subtypes based on their mutational profiles, also observing a correlation between some of these

mutational patterns with cell-of-origin status [3, 4]. In the same line, cumulative evidence indi-

cates that co-occurring mutations are drivers of treatment refractoriness and clonal evolution in

follicular lymphoma [5, 6]. In the same line, significant advances in the deconvolution of the

genomic landscapes of both CLL and Burkitt lymphoma have been made in the past years [7–

11], providing new disease-specific drivers, hypermutation events and predictors of adverse out-

come. Some key findings include the predominance of ID3mutations in Burkitt lymphoma,

but not in other IGH-MYC rearranged lymphomas [12], as well as the role of aberrant somatic

hypermutation (aSHM) in Epstein-Barr positive Burkitt Lymphomas [11]. Such somatic hyper-

mutation in the IGHV locus of CLL tumors is also important, as it defines two important types

of leukemia which exhibit broadly different clinical and mutational backgrounds [8]. Addition-

ally, some of the mutational drivers of CLL are also important mediators of drug resistance,

such as in the case of rituximab-resistance observed in NOTCH1-mutated CLLs [13].

An additional line of complexity is conformed by the limited comprehension of the contri-

bution of regulatory mutations to the pathogenesis of cancer. Existing research points towards

the deregulation of important driver genes by noncoding mutations in lymphomas. For exam-

ple, Batmanov et al. (2017) discovered regulatory mutations that control BCL2 and BCL6
expression in follicular lymphoma [14]; Arthur et al. (2018) identified aberrant expression of

NFKBIZ in DLBCL caused by functional noncoding mutations in the 3’ untranslated region of

the gene [15], and Puente et al. (2015) characterized enhancer mutations that deregulate PAX5
expression in CLL [8]. Considering the extensive heterogeneity of these disorders, we antici-

pate that the analysis of larger and diverse patient cohorts will enable the identification of new

regulatory driver regions of B-cell tumors.

Although increasing NGS data in cancer is available, the detection of driver mutations con-

tinues to be a bottleneck in the development of this technology. Differences in clonality, sam-

ple purity, sequencing coverage and quality are challenging for most variant callers. These are

addressed using different methods, leading to remarkable disparities in results between algo-

rithms [16].Hoffman et al. [17] compared 10 variant callers on simulated data, reporting con-

siderable differences in sensitivity and precision depending on coverage and variant allele

frequency. Concordantly, Cai et al. [18] analyzed a set of cancer samples with four different

algorithms and observed that only 20.7% of variants were detected by�2 callers. Therefore,

numerous pathogenic variants in large sequencing projects could have passed unnoticed. Fur-

thermore, cancer genomes suffer from the “long tail” phenomenon, whereby a few driver

genes are recurrently mutated and most mutations are distributed across a vast number of

genes [19]. Both the enhanced statistical power and the capacity to analyze divergent molecular

mechanisms across tumor types are the main reasons that motivate the increasingly common

aggregation of tumors in pan-cancer genomic studies [20–22].
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In this report we present an integrated genomic analysis of diverse mature B-cell lymphoid

neoplasms using whole genome sequencing (WGS) data produced by the International Cancer
Genome Consortium (ICGC) [23]. Our results expand the catalog of B-cell lymphoma driver

genes, identify novel putative drivers based on functionally connected subnetworks and char-

acterize new structural aberrations and regulatory mutations that modify the expression of sev-

eral oncogenes and tumor suppressors.

Methods

1. Data source and analysis

WGS data from the CLLE-ES andMALY-DE projects produced by the ICGC were analyzed.

This cohort included 132 CLL, 36 Burkitt lymphoma, 85 DLBCL, 97 follicular lymphoma and

4 unspecified B-cell lymphoma cases. RNAseq expression data for a subgroup of the samples

was also available.

Tumor-normal matched whole genomes were processed using the bcbio-nextgen pipeline,

which provides best practices for NGS data analysis [24]. GRCh37 was used as the reference

genome. Low complexity regions, areas with abnormally high coverage, sequences with single

nucleotide stretches >50bp and loci with alternative or unplaced contigs in the reference

genome were not analyzed. Some polymorphic regions in noncoding regions are prone to be

classified as mutation hotspots due to artifacts or biases in the sequencing process (mainly in

low coverage regions), and suspicious elements were manually discarded from downstream

analysis. Single nucleotide and indel mutation detection was performed with vardict-java ver-

sion 1.5.8 [25], varscan version 2.4.3 [26],mutect2 implemented in GATK version 3.8 [27] and

freebayes version 1.1.0.46 [28] using default bcbio-nextgen parameters. Events with a mini-

mum sequencing depth (DP) of 10 and a genotype quality (GQ) of 20 Phred in both tumor

and normal samples were selected. A mutation was called when detected by�2 callers. Muta-

tions were annotated to the 1000G [29], gnomAD [30] and ExAc [31] databases. Tumor muta-

tions reported as polymorphisms with a minimum allele frequency > 0.001 in any population

were discarded. For copy number aberration (CNA) detections, the CNVkit version 0.9.6a0

[32] algorithm was used (ploidy-adjusted and with default parameters). We initially used the

circular binary segmentation algorithm, observing important hypersegmentation that could

lead to an increase in false positives. Therefore, we finally used theHaarSeg segmentation

method, retrieving a vast majority of cases with segment counts in the range of 100–200.

Events detected in centromeric and telomeric regions were discarded. Similarly, we also

removed events within low 100bp-read mappability regions according to UCSC tracks.

2. Detection of mutation drivers in coding regions

Three methods were used to detect driver genes using nonsynonymous coding mutation data:

MutSigCV [33], dNdScv [34] and OncodriveFML [35]. MutSigCV version 1.3.5 and dNdSCV

were run with default parameters. OncodriveFML was run using CADD 1.3 scores. Signifi-

cance threshold was set at FDR of 10% for all methods.

Hierarchical HotNet [36] was used to infer networks of functionally connected mutated

genes. The following protein-protein interaction networks were used:Hint+Hi2012, Irefindex9
andMultinet. Mutation frequency and log-transformed MutSigCV p-values were used as input

scores. Heat scores were permuted 100 times for each network. Hierarchies were constructed

and processed with default parameters. The deviation of observed dendrogram distribution

from the random expectation at different similarity thresholds was calculated, and significance

threshold was set to p-value<0.05. Finally, a consensus network (G2) was created from the

resulting significant subnetworks.
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3. Noncoding region annotation and mutation enrichment analysis

Annotations corresponding to promoter regions, 5’UTR, 3’UTR and lincRNAs were retrieved

from Genecode version 18 [37]. Enhancer regions were obtained from the GeneHancer data-

base [38], and those supported by two or more sources of evidence (“elite” enhancers) were

selected. Transcription start sites (TSS) were defined as the 100bp-region upstream of the

point of transcription. Regulatory regions within telomeric and centromeric positions were

discarded.

LARVA [39] was used to identify areas with evidence of positive selection of mutations.

LARVAmodels the mutation counts of each target region as a β-binomial distribution in

order to handle overdispersion. LARVA also includes replication timing information in order

to estimate local mutation rate, and provides a β-binomial distribution adjusted for replication

timing which is used to compute p-values. Significance threshold was set to FDR<10%. As we

used LARVA including tumor classification data, the mutation background estimation was cal-

culated for each tumor subtype.

Regions targeted by aSHM were retrieved from literature analysis [40–42], and were used

to annotate the list of significantly mutated noncoding regions identified by LARVA. In the

case of genes without annotation, we used Signal [43] to test for local enrichments in the muta-

tional signature of aSHM.

4. Recurrent focal CNA detection

Gistic2.0 [44] was used to identify recurrent CNA. Focal CNA were defined as those spanning

a maximum of 25% of an arm’s length. Deletions were called in regions with tumor/normal

log ratios < -0.3, and amplifications in regions with ratios>0.3. Evenly spaced pseudomarkers

were automatically created by the algorithm, and regions were considered only if they spanned

10 or more pseudomarkers. Sex chromosomes were not analyzed. Arm-level peel off was

enabled, and residual q-values were calculated after removing segments shared with higher

peaks. Significance threshold was set to FDR of 10%.

5. Gene expression analysis and association with CNA and regulatory

mutations

RNA-seq data from tumor samples were transformed to FPKM counts and then rank normal-

ized. The Wilcoxon-Rank sum test was used to detect changes in gene expression between

mutated and wild-type cases. Changes in expression of the nearest gene were analyzed. When

multiple regulatory regions mapped the same gene, p-values were adjusted for multiple testing

using the FDR method (significance threshold of 5%). In the case of significant associations,

we used non-linear Kernel regression adjusted for disease subtype in order to rule out inde-

pendence from diagnostic subtype [45]. In the case of CNA, association with expression of the

affected genes was analyzed using Pearson’s correlation. P-values were adjusted for multiple

testing using the FDR method (significance threshold of 5%).

6. Differential distribution of somatic events and pathways analysis

Differential mutation analysis between the different disease subtypes was performed using

Fisher’s exact test (significance FDR threshold of 5%).

WebGestalt [46] was used to analyze enrichment of gene networks in biological pathways.

The KEGG database was used as reference, and a significance threshold of FDR 5% was

chosen.
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Results

1. Mutation landscape of B-cell lymphoid malignancies

5,743,241 mutations were detected in 354 B-cell malignancy samples. A minor proportion of

these affected protein-coding regions (1.34%), of which 71.64% were non-synonymous.

Among these, missense mutations predominated (87.64%), followed by nonsense mutations

(6.79%) and splice-site mutations (2.76%). The vast majority of mutations were either inter-

genic (40.28%) or intronic (45.25%). Mutation rate in the cohort was 2.51 mutations/Mb. This

mutation rate was different for the different B-cell neoplasms. Mutation rate was 0.48 muta-

tions/Mb in CLL, 0.75 in Burkitt Lymphoma, 3.14 mutations/Mb in follicular lymphoma and

5.69 mutations/Mb in DLBCL.

2. Identification of significantly mutated genes

dNdSCV, OncodriveFML andMutSigCV detected 88, 52 and 46 recurrently mutated genes,

respectively (FDR <10%) (S1–S3 Tables). Overall, 112 genes were detected as significantly

mutated by any of the methods (S4 Table). The most frequently mutated were KMT2D (27%),

CREBBP (26%), IGLL5 (22%), BCL2 (17%), TP53 (13%), ARID1A (12%) and TNFRSF14 (12%)

(Fig 1). 31 genes were not previously described as recurrently mutated in any of the lymphoid

malignancies analyzed (Fig 2), and these affected 43.22% of patients. The most frequent were

FAM230A (6%), LTB (6%), FAM186A (6%), ZFP36L1 (6%), PABPC3 (5%) and ZC3H12A
(5%). Among these, only LTB and ZFP36L1 have been previously described as targets of

aSHM.

Missense mutations were the most frequent at the exome level, but some of these novel

drivers were predominantly affected by other types of mutations. Nonsense mutations were

more frequent inMAGI3, RFX7, TRAF6, VMA21 andWDR93. The genes HIST2H3D and

HLA-C were prone to suffer multiple types of mutations in the same patient, whereas frame-

shift deletions predominated in LAPTM5. Finally, the following genes were targeted by multi-

ple mutation types: ANGPT1, ID2, IRF1,MAGI3, SYNCRIP and ZFP36L1.

3. Detection of low-frequency drivers by functionally altered subnetwork

analysis

31 significantly mutated protein subnetworks were detected, involving 313 different genes (Fig 3

and S5 Table). 8 networks were mutated in>10% patients. The widest network (Network 1) was

composed of 153 genes, among which CREBBP, EEF1A1,GNA13, STAT6 and TP53were the

main hubs. This network was enriched in pathways such as “B cell receptor signalling pathway”,
“Hepatitis B” and “NFKB signalling pathway” (S6 Table and S1 Fig). The second widest network

(Network 2) was composed of 22 genes centered around BCL2. As expected, this network was

notoriously enriched in “Apoptosis” pathway genes (S6 Table and S2 Fig). The third and fourth

biggest networks (Networks 3 and 4) were composed of 20 genes each. A significant enrichment

in “Cell Adhesion Molecules” pathway genes characterized Network 4 (FDR 2.65 x 10−9).

Multiple of the remaining subnetworks include genes involved in oncogenesis. For exam-

ple, Network 8 is composed of 5 genes of the “Notch signalling” pathway. Network 12 contains

B-cell markers (CD19 and CD22) as well as complement proteins (CR1/CD35 and CR2/CD21).

Network 20 contains genes of the toll-like receptor pathway (MYD88 and TLR3), and Net-

works 25 and 26 are integrated by interleukins and their respective receptors (IL10 and

IL10RA; IL13 and ILR13RA2). Furthermore, other less explored routes in lymphomagenesis

emerged as significantly mutated. These included cell signalling proteins (MAML3, PRKCB,

PTPRN2 and RASGRP3), gene expression and cell-cycle regulators (GLI1,MAD1L1,MNT,
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PDZD2, XBP1), surface receptors and signal transduction proteins (CD81, DRD3, GRIN1,

GRIA2, GRIK3, LPHN2, PTCH1, PTPRE, PTPRN, SMO . . .), angiogenesis regulators (BAI2),

ion transport genes (KCNB1, KCNC1, KCNC2, KCNG2, PKD1, PKD2 . . .), cytoskeleton and

cell adhesion molecules (ANK3, COL5A1, COL7A1, DSC3, ITGB7, ITGA5, FLNA, FN1, PKP4,

SHANK1, SPTBN4), growth factors (IGF2 and IGF2R), immunity genes (B2M, CD1D,HLA-G,

KIR2DL4, TAP2,), vesicle trafficking proteins (GGA1, GGA3,M6PR, PLIN3 and SORT1) and

extracellular enzymes (CFD, CTRC, KLK2, SERPINA3, SERPINB6, SERPINF2).

4. Regions enriched in non-coding DNA mutations

Significant enrichments in 180 regulatory elements mapping to 73 different genes were discov-

ered. These involved 54 promoters, 53 UTRs, 33 enhancers, 21 TSS and 19 lincRNAs (S7

Fig 1. Representation of the most frequent drivers (frequency> 3%) across all the samples. Tumor subtypes are color-coded in the

lower bar, mutation distribution is represented in the right-side bars, and per sample mutation number is represented in the top bars.

https://doi.org/10.1371/journal.pone.0248886.g001
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Table). 122 of these regions overlapped genes targeted by aSHM in lymphomas, and signature

analysis indicated that another 4 regions were also likely targets of aSHM. On the contrary, 54

regions affecting 25 different genes were not affected by aSHM by signature analysis. Pathway

analysis revealed significant overlaps between these genes and the following pathways: “Tran-
scriptional misregulation in cancer” (q-value 8.55 x 10−3), “Pathways in cancer” (q-value 8.55 x

10−3), “MicroRNAs in cancer” (q-value 1.37 x 10−2), “JAK-STAT signaling pathway” (q-value

1.41 x 10−2), “Toxoplasmosis” (q-value 1.82 x 10−2) and “Apoptosis” (q-value 3.53 x 10−2).

A fraction of the patients (58%) had matched RNAseq data available. We tested association

between regulatory mutations and expression of the adjacent genes. Strong underexpression of

DTX1was associated with mutations in its promoter, which includes theGH12J113056 enhancer

region (promoter q-value, 2.90 x 10−4; enhancer q-value, 4.80 x 10−3, Fig 4). In the same line,

mutations in S1PR2 enhancer were also significantly associated with S1PR2 underexpression (p-

value 2.46 x 10−4, Fig 4). On the contrary, mutations in the PAX5/ZCCHC7 enhancer were

Fig 2. Representation of the new drivers discovered in this analysis. Image details are identical to those of the previous image.

https://doi.org/10.1371/journal.pone.0248886.g002
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significantly associated with higher expression of ZCCHC7 (q-value 3.31 x 10−2) but not with

PAX5 expression (q-value 0.93). Using non-linear kernel regression adjusted for diagnostic sub-

type, we could confirm independent associations forDTX1 andGH12J11305mutations (p-value

2.51x 10−3) and S1PR2 and its enhancer (p-value 5.01 x 10−3), but not for the association of

ZCCHC7 expression with mutations in the PAX5/ZCCHC7 enhancer (p-value 0.17).

Fig 3. Representation of all significantly mutated protein subnetworks according to Hierarchical HotNet results. Node size is proportional to mutation frequency,

node color is proportional to node degree (red: higher degree values, green: lower degree values) and edge width is proportional to betweenness centrality.

https://doi.org/10.1371/journal.pone.0248886.g003

Fig 4. Violin plots representing the distribution of gene expression between mutated and unmutated DTX1 promoters (left image) and S1PR2
enhancers (right image).

https://doi.org/10.1371/journal.pone.0248886.g004
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5. Genomic regions targeted by recurrent CNA

29 regions were significantly affected by focal CNA (FDR<10%), with a median affected

region width of 1,327,586 bp (S8 Table and S3 and S4 Figs). We detected 2 recurrently ampli-

fied loci and 27 recurrently deleted regions in 17 different chromosomes. Aside from immuno-

globulin gene deletions, the most significant deletions were located in 13q14.2 (DLEU1,

residual q-value 1.55 x 10−14), 3p12.3 (adjacent to ROBO1/ROBO2 locus, q-value 2.90 x x10-7),

16q21 (CDH5 and CDH11 loci, residual q-value 1.06 x 10−5), 1p36.32 (TNFRSF14, residual q-

value 7.56 x 10−5), 6q13 (LINC00472 locus, residual q-value 8.93 x 10−5) and 13q33.3

(TNFSF13B locus, residual q-value 1.02 x 10−4). On the contrary, recurrent amplifications of

the non-coding locus 9q34.11 (residual q-value 6.85 x 10−3) and the gene-rich region 13q31.3

(residual q-value 0.06) were identified. Other focal deletions affected genes involved in

immune pathways (IL5RA) and oncogenic pathways, such as the tumor-suppressor APAF1
(12q23.1), the immune check-point regulator PVR (19q13.31) and the cell cycle regulators

CDKN2A and CDKN2B (9p21.3).

A fraction of the patients (58%) had matched RNAseq data available. Significant positive

Pearson’s correlations between tumor/normal log2 rations and local gene expression were dis-

covered in 16 CNAs (q-value <0.1; S9 Table). This included positive associations between

losses in 1p36.32, 3p26.2, 4q35.2, 7p22.3 and 18q23 with the expression of the cancer-related

genes CDKN11B, CRBN, IRF2, PRKAR1B and NFATC.

6. Differential events between B-cell lymphoma subtypes

We studied the distribution of the significant genomic events across the different B-cell lym-

phoproliferative subtypes (S10 Table). The greatest number of significant disparities

(FDR< 5%) was discovered between CLL versusDLBCL and CLL versus follicular lymphoma.

We detected 77 differential events between CLL and DLBCL, 34 differential events between

CLL and follicular lymphoma, 11 differential events between CLL and Burkitt lymphoma, 17

differential events between DLBCL and Burkitt lymphoma, 11 differential events between fol-

licular lymphoma and DLBCL and 9 differential events between follicular lymphoma and Bur-

kitt lymphoma. Overall, 76.43% of all differential events were between CLL and any of the

other lymphomas.

Although most differential events were less common in CLL, IGH deletions were highly

enriched in CLL compared with the remaining lymphomas, and IGL deletions were more fre-

quent in CLL compared to follicular lymphoma. Additionally, 11p15.5 deletions were more

frequent in CLL than in follicular lymphoma or DLBCL, and 11q22.3 deletions were signifi-

cantly more frequent in CLL than in DLBCL. In the same line, non-coding mutations in the

IGH locus were significantly more frequent in CLL than in DLBCL or follicular lymphoma,

and those in the IGL loci predominated in CLL over DLBCL. Furthermore, non-coding muta-

tions in RP11-789C2.1 (4q28.3) and in the first intron of BACH2 (6q15) were significantly

increased in CLL compared with DLBCL. On the contrary, coding mutations in 97 driver

genes were significantly depleted in CLL compared with the remaining disease subgroups,

likely reflecting the lower mutational burden on CLL. Additionally, 10 structural aberrations

(9 deletions and 1 amplification) were significantly less frequent in CLL than in DLBCL or fol-

licular lymphoma. The most significant were particularly predominant in DLBCL cases, and

these were 6q26 loss (q-value 5.36 x 10−5), 16q21 loss (q-value 4.56 x 10−4) and 13q13.3 gain

(q-value 4.56 x 10−4).

As expected, mutations inMYC, ID3 and CCND3 were more frequent in Burkitt Lym-

phoma than in DLBCL or follicular lymphoma, and additionally we also detected the signifi-

cant enrichments of Burkitt Lymphomas in TP53 and FBXO11mutations. On the contrary,
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mutations in KMT2D and BCL2 were more prevalent among follicular lymphoma and

DLBCL than in Burkitt Lymphoma. 1p36.32 deletion was absent in Burkitt lymphoma, but

noncoding mutations in RP11-44H4.1 (3q27.3) were enriched in Burkitt lymphoma compared

to DLBCL. Finally, the comparison of follicular lymphoma with DLBCL revealed significant

differences in the mutational frequency of 11 genes. Of these, mutations in CREBBP, KMT2D,

TNFRSF14 and RRAGC were enriched in follicular lymphoma, and those of BTG2,HLA-A,

PIM1, IGLL5, SOCS1, CD83 and SGK1 were enriched in DLBCL.

Discussion

Different analyses of B-cell lymphoproliferative disorders have deconvoluted part of the com-

plex genomic landscape of these neoplasms. Despite extensive evidence in other fields [20, 34],

this is the first combined analysis of whole genomes of B-cell lymphoid tumors performed to

our knowledge. In this work, we detected 112 recurrently mutated genes across the genomes

of different B-cell lymphoid malignancies, of which 31 (27.7%) were not previously described

in any of the analyzed tumor subtypes. Among these, some of the most frequently mutated

(FAM230A, FAM186A and PABPC3) are barely characterized genes with testis-biased expres-

sion. On the contrary, many others play roles in pathways linked with lymphomagenesis. For

example, GRB2 and INPP5D participate in the B-cell receptor pathway [47, 48]; LTB and

TRAF6 regulate NFKB pathway activity [49, 50], and ANGPT1 and RPS6KA6 play a role in the

MAPK pathway [51, 52]. Functional evidence supports the implication of the transcription fac-

tor RFX7 [47–53] and the zinc finger protein ZFP36L1 [54] in oncogenesis. Several other genes

are members of the family of known lymphoma drivers, such as CXCR5 [55],HIST2H3D [56],

ID2 [57] and IRF1 [58]. Additionally, 180 regulatory regions were significantly enriched in

mutations, with a significant contribution of aSHM target loci (67.7% of cases). Importantly,

we could detect regulatory mutations accompanied by aberrant underexpression of the tumor

suppressors DTX1 [59, 60] and S1PR2 [61, 62].

31 significantly mutated subnetworks involving 313 genes were discovered. In comparison

with single gene approaches, this perspective provides a more complete landscape of muta-

tional processes in B-cell lymphomas, and points towards the existence of new altered proteo-

mic subnetworks in lymphomas. As a result, the genes CREBBP, BCL2, EEF1A1, GNA13,

STAT6 and TP53, and the pathways “B-cell receptor”, “Apoptosis”, “Notch signalling”, “Poly-
comb Repressive Complex” and “Toll-like receptor” emerge as master players of lymphomagen-

esis. Nevertheless, our results also support the implication of a myriad of novel players in the

pathogenesis of B-cell lymphoid disorders, such as cell signalling proteins, cell-cycle regulators,

ion transporters, cytoskeleton proteins, vesicle trafficking factors, extracellular enzymes and

immunity genes. For some of these, the association with lymphomagenesis is well established,

as in the case of CR2/CD21 [63], CD81 [64], GLI1 [65], SMO [66] and the self-activating auto-

crine loops of IL10 and IL13 with their receptors [67, 68]. For other genes, likely associations

can be inferred from its function, such as the cell-cycle checkpoint proteinMAD1L1 [69] and

the angiogenesis inhibitor BAI2 [70]. Finally, another group of genes belongs to emerging

pathways in cancer whose function in B-cell lymphomas awaits further elucidation, such as

glutamate receptors [71], ion channels [72] and microvesicles [73].

Focal recurrent structural alterations were detected in 29 loci. These events tended to affect

known drivers of lymphomagenesis, and some were previously described, such as 13q14.2

deletions (RB1 gene) [74], CDKN2A/CDKN2B [75], TP58 [76], DLEU1 (13q13.2) [8], and

ILR5RA [77]. On the contrary, other novel deletions were either described in other tumors,

such as CDH11 in retinoblastoma [78] or ROBO1 in breast cancer [79]; or affected genes vin-

culated with cancer pathways such as the tumor suppressor & non-coding RNA LINC00472
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[80], the B-cell specific maturation regulator TNFRSF13C (BAFF receptor) [81], the immune

checkpoint PVR [82], the receptor tyrosine kinase-coupled signaling regulator SIRPB1 [83] or

the proapoptotic gene APAF1 [84]. Furthermore, recurrent amplifications in a noncoding

region within 9q34.11 were also detected, whose function needs to be further clarified.

Finally, some clues are provided about the distribution of these mutational events across B-

cell tumor subtypes. A relative depletion of CLL in mutations affecting common drivers was

found, in line with the lower mutational burden of this tumor. Additionally, several differences

in mutation frequencies were also detected between follicular lymphoma, DLBCL and Burkitt

lymphoma. As expected, mutations in frequent drivers such as CREBBP, KMT2D, TNFRSF14
and RRAGC were more frequent among follicular lymphomas, those ofMYC, CCND3 and ID3
prevailed among Burkitt lymphoma and those of BTG2, PIM1, SGK1 and SOCS1 were more

frequent among DLBCL. Some of these findings are concordant with reported frequencies of

driver genes across distinct lymphoma subtypes [85–87], whereas others provide new clues

about the pathogenesis and possible drug targets in these tumors. For example, the increased

mutational burden of TP53 and the BCL6-regulator gene FBXO11 among Burkitt lymphomas

suggest an increased deregulation of these pathways in this disease [88, 89]. Additionally, the

skewed mutational profile of the immune check-point regulator CD83 [90] towards DLBCL

tumors might have both biological and therapeutic implications.

This work, as many others, has some limitations. For example, although the included B-cell

disorders represent a majority of patients in real practice, other frequent B-cell malignancies

need to be taken into account in the future. Furthermore, protein network analysis is still lim-

ited by incomplete annotation of the protein interactome and by the type of input scores that

can be used as input. Additionally, it should be noted that data produced from different

research groups can be affected by batch effects, which is the reason why we used a uniform

and optimized pipeline for the analysis.

In conclusion, we present an integrated overview of the genomic drivers of some of the

most frequent B-cell lymphoproliferative disorders. Our results shed new light about the path-

ogenic mutations and structural aberrations in coding and noncoding regulatory regions of

the genome of B-cell lymphoproliferative disorders, and pinpoint towards disease-specific

mutational events that might be useful both for therapeutic and diagnostic purposes.
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Project administration: Beatriz Antelo Rodrı́guez.

Software: Adrián Mosquera Orgueira, Aitor Abuin Blanco, Miguel Cid López.
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References
1. Teras LR, DeSantis CE, Cerhan JR et al. 2016 US lymphoid malignancy statistics by World Health

Organization subtypes. CA Cancer J Clin. 2016 Nov 12; 66(6):443–459. https://doi.org/10.3322/caac.

21357 Epub 2016 Sep 12. PMID: 27618563.

2. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large

B-cell lymphoma identified by gene expression profiling. Nature. 2000 Feb 3; 403(6769):503–11.

https://doi.org/10.1038/35000501 PMID: 10676951.

3. Chapuy B, Stewart C, Dunford AJ et al. Molecular subtypes of diffuse large B cell lymphoma are associ-

ated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018 May; 24(5):679–690. https://

doi.org/10.1038/s41591-018-0016-8 Epub 2018 Apr 30. Erratum in: Nat Med. 2018 Aug;24(8):1292.

Nat Med. 2018 Aug;24(8):1290–1291. PubMed Central PMCID: PMC6613387. PMID: 29713087

4. Schmitz R, Wright GW, Huang DW et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lym-

phoma. N Engl J Med. 2018 Apr 12; 378(15):1396–1407. https://doi.org/10.1056/NEJMoa1801445

PMID: 29641966; PubMed Central PMCID: PMC6010183.

5. Loeffler M, Kreuz M, Haake A, et al. Genomic and epigenomic co-evolution in follicular lymphomas.

Leukemia. 2015 Feb; 29(2):456–63. https://doi.org/10.1038/leu.2014.209 Epub 2014 Jul 16. PMID:

25027518.

6. Pastore A, Jurinovic V, Kridel R et al. Integration of gene mutations in risk prognostication for patients

receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospec-

tive clinical trial and validation in a population-based registry. Lancet Oncol. 2015 Sep; 16(9):1111–

1122. https://doi.org/10.1016/S1470-2045(15)00169-2 Epub 2015 Aug 6. PMID: 26256760.

7. Landau DA, Tausch E, Taylor-Weiner AN et al. Mutations driving CLL and their evolution in progression

and relapse. Nature. 2015 Oct 22; 526(7574):525–30. https://doi.org/10.1038/nature15395 Epub 2015

Oct 14. PMID: 26466571; PubMed Central PMCID: PMC4815041.

8. Puente XS, Beà S, Valdés-Mas R et al. Non-coding recurrent mutations in chronic lymphocytic leukae-

mia. Nature. 2015 Oct 22; 526(7574):519–24. https://doi.org/10.1038/nature14666 Epub 2015 Jul 22.

PMID: 26200345.

9. Panea RI, Love CL, Shingleton JR et al. The whole-genome landscape of Burkitt lymphoma subtypes.

Blood. 2019 Nov 7; 134(19):1598–1607. https://doi.org/10.1182/blood.2019001880 PMID: 31558468;

PubMed Central PMCID: PMC6871305.
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