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A B S T R A C T   

Spatial recharge estimation uncertainty is directly proportional to uncertainty in input precipi-
tation data Thus, the main objective of this study was to investigate the recharge uncertainty by 
using improved spatial rainfall observations. The physically based fully distributed hydrological 
model WetSpa was used to simulate 20,000 possible combinations of parameters for two model 
setup. The M1 model setup was developed based on the rainfall measurements obtained from rain 
gauge stations scattered in and around the Tikur-Wuha watershed in Ethiopia, while M2 model 
setup was developed using bias-corrected satellite rainfall estimates (SREs) based on Climate 
Hazards Group InfraRed Precipitation (CHIRP) merged with relevant ground station records. The 
required parameter combinations were generated using Monte Carlo simulation stratified by 
applying Latin Hypercube Sampling (LHS). One hundred best performing parameter combina-
tions were selected for each model to generate spatial recharge statistics and assess the resulting 
uncertainty in the recharge estimates. The results revealed that enhanced spatial recharge esti-
mates can be produced through improved CHIRP-based SREs. The long-term mean annual 
recharge (218.29 mm) in the Tikur-Wuha watershed was estimated. Model parameter calibration 
performed using discharge measurements obtained from the Wosha rain gauge station located in 
the subcatchment area of the Tikur-Wuha watershed had a Nash-Sutcliffe efficiency of 0.56. 
Seventy percent of the watershed showed a coefficient of variation (Cv) < 0.15 for M2, while 90 % 
of the area exhibited a Cv < 0.15 for M1. Furthermore, the study findings highlighted the 
importance of improving evapotranspiration data accuracy to reduce the uncertainty of recharge 
estimates. However, the uncontrolled irrigation water uses and the total recharge coming from 
the irrigation fields scattered across the Tikur-Wuha watershed were not considered in the study, 
which is a limitation of the study. Future studies should consider the contribution made by 
irrigation water to the total recharge of the watershed.  
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1. Introduction 

Sustainable water resources management requires the modeling of hydrological cycle components with minimum error. One key 
component of the water cycle is the estimation of groundwater recharge. However, in hydrogeological modeling, various sources can 
cause estimation uncertainties. The main sources of estimation uncertainties are the input, structure, and the parameters of the model 
used [1]. Groundwater recharge, variable both spatially and temporally, is highly influenced by climate variables, land use/cover, and 
soil distribution [2]. Among the three influencing factors, climate variables and land use/cover, considered as direct inputs in most 
hydrological modeling approaches, are temporal variables, and thus an in-depth assessment of their contribution to uncertainties in 
groundwater recharge estimation has become necessary. 

Considering the significant contribution made by input data to groundwater recharge estimation uncertainties, Ampe et al. (2012), 
investigated recharge estimation uncertainties using two land-use classification methods [3]. Their study findings revealed that the 
recharge estimates produced for the Woluwe river catchment in Belgium based on pixel-based land-use classifications are more un-
certain compared with those produced using region-based classifications [3]. Abraham et al. (2022) who studied the 
wetland-dominated Tikur-Wuha watershed explored the uncertainty and sensitivity associated with land-use maps [4]. In their study, 
wetland parameter was introduced in the Soil Water Assessment Tool with Calibration and Uncertainty Program (SWAT-CUP), a 
hydrological model, through which the uncertainties because of land-use maps were quantified using the sequential uncertainty fitting 
interval algorithm SUFI-2. The study proved that the quality of groundwater recharge estimation can be improved by considering 
multiple land-use maps to ensure that land use/cover changes are incorporated. Ampe et al. (2012) and Zomlot et al. (2017) also made 
similar conclusions [3,5]. The uncertainty of recharge from irrigation fields and canals along with six other parameters was investi-
gated by Baker et al. (2022) [6]. The findings indicated that 91 % of the aquifer recharge was contributed by irrigation water from rice 
fields and leakage from canals. 

The impact of the evapotranspiration time series on the uncertainty in recharge was studied by Xie et al. (2018) [7]. The study 
revealed that recharge uncertainty can be reduced by up to 50 % for improved evapotranspiration observations and that an insig-
nificant reduction in recharge estimation could be obtained by using distributed soil moisture time-series data. Other hydrological 
simulations can also be performed using satellite-based evapotranspiration estimates [8]. Dile, Yihun T et al. (2020) emphasized that 
data scarce areas could particularly benefit from using satellite estimates because of reduced errors [8]. Duan et al. (2019) showed that 
the performance of satellite-based estimates are low when compared to performance of evenly and adequately collected temperature 
and precipitation ground records [9]. 

Spatial recharge estimation uncertainty is directly proportional to the uncertainty in precipitation data used in the estimation 
process [7,10,11]. The statistical characteristics of rainfall and reference evapotranspiration dataset used in recharge estimation were 
studied by Turkeltaub and Bel (2023) for the semiarid climate regions in China and Israel [12]. The findings indicated that spatial local 
rainfall and the reference evapotranspiration dataset can significantly influence recharge estimation [12]. Thus, improved spatial 
precipitation estimates can minimize the uncertainties in recharge estimations. The availability of improved spatial precipitation data, 
such as those obtained through radar, rain gauge observations, satellite observations, and reanalysis products, is increasing signifi-
cantly [13,14]. The importance of using satellite rainfall products for minimizing hydrological modeling errors has been assessed in 
previous studies [15,16]. Such assessments are particularly important for complimenting the scanty observation made in developing 
countries [17]. 

Rainfall records are scarce in Ethiopia and are mostly available for locations along the main road routes [17,18]. Development 
activities requiring quality rainfall records are hindered in rural areas because of the scarcity or unavailability of accurate rainfall 
records [18,19]. Satellite technology developments in the past few decades have contributed for improving the observation and 
measurement of several meteorological parameters. Nevertheless, eliminating the errors in most meteorological measurements is 
challenging. However, merging multiple sources of records will help capture the merits of each source and thereby reduce the errors in 
groundwater recharge estimations [20]. 

Previous studies [4,21,22] have shown that agricultural land use/cover of the Tikur-Wuha watershed has increased significantly. 
This once wetland-dominated watershed is now losing its coverage to grasslands and agriculture. A recent study by Abraham et al. 
(2022) showed that median annual recharge in Tikur-Wuha has reduced from 506.25 to 483.34 mm [4]. Thus, urgent changes to water 
resources management regulations and practices supported by accurate estimates of groundwater recharge have become necessary. 
Multiple studies [21,23–26] have quantified the recharge to the aquifers of the Hawassa watershed. However, the discrepancies in the 
recharge estimates presented in those studies show a high level of uncertainty in the recharge estimations. Thus, the main objective of 
this study was to assess the uncertainty in the recharge estimation using improved spatial rainfall observations. In the study, a 
bias-corrected satellite rainfall product based on Climate Hazards Group InfraRed Precipitation (CHIRP) was used along with ground 
observations, and the rainfall records available were converted to areal rainfall records using the conventional Thiessen polygon 
method. 

2. Study area description 

2.1. Location and topography 

The Tikur-Wuha watershed covers an area of 670 km2. It is the only perennial river flowing into Lake Hawassa. Steep mountain 
ranges cover the northeastern and southeastern parts of the watershed, while gently sloping land covers the north–west to south–west 

T.D. Beyene et al.                                                                                                                                                                                                      



Heliyon 10 (2024) e24311

3

parts of the watershed. Nine perennial streams feed the wetland located at the center of the watershed and the Tikur-Wuha river drains 
to Lake Hawassa through that wetland (Fig. 1). 

The Tikur-Wuha watershed is located at 60◦48′00″–70◦10′00’’N latitude and 38◦26′30″–38◦43′00’’E longitude. It is at an elevation 
between 1643 and 2976 m above mean sea level. According to Mohammed et al. (2020), 54 % and 21.6 % of the Tikur-Wuha 
watershed have slopes ranging from 8 % to 30 %, and 3 %–8 %, respectively, while 3 % and 19 % of the watershed have slopes 
<3 % and >30 %, respectively [27]. 

2.2. Climate and hydrology 

2.2.1. Climate 
The Tikur-Wuha catchment has a tropical subhumid climate (Moist Weyna Dega). Its mean annual rainfall ranges from 954.5 mm in 

its western and northwestern parts (low lands) to 1152.5 mm in its southeastern part (mountainous section of the catchment). As 
reported by Belete et al. (2017), up to 70 % of the annual rainfall in Ethiopia occurs when the intertropical convergence zone (ITCZ) 
lies over northern and southern Ethiopia from June to September [28]. The seasonal rainfall cycle, characterized as a bimodal cycle 
[29], is mainly controlled by the movement of the ITCZ [28]. 

The seasonal rainfall in the watershed can be quantified as follows: Thirty percent of the annual rainfall occurs between March and 
May with the seasons from June to September and October to February contributing 50 % and 20 % of the rainfall, respectively [28]. 
The average maximum and minimum temperatures of the watershed range from 11 to 20 ◦C, and the hottest dry month of the 
watershed is March [30]. 

2.2.2. Hydrology 
Tikur-Wuha subwatershed is located within the geographically closed watershed of Lake Hawassa, where uncontrolled irrigation 

practices are on the increase. The Tikur-Wuha river feeds Lake Hawassa and the water from the Tikur-Wuha watershed meets the water 
requirements of households, livestock, irrigation, industries, and the environment. Nine streams, namely Bele-Lango, Wesha, Werka, 
Hallo, Shenkora, Gomesho, Wedesa, Abosa, and Gelchacha, flow through the Tikur-Wuha watershed, which drains to the Cheleleka 
wetland [31]. The aggravated land cover changes have resulted in the disappearance of one lake within the Cheleleka wetland [32]. 
The Cheleleka wetland exhibits flow stabilizing properties by serving as an intermediary between the upper catchments of the nine 
rivers, where the water flow is rapid, and the Tikur-Wuha river, where the water flow is slow. The wetland receives the water from the 
nine streams and channels it to one outlet to feed the Tikur-Wuha river, which then drains into Lake Hawassa. The watershed outlet is 
located at the Tikur-Wuha bridge. The watershed covers an area of 645.75 km2, and the estimated average annual flow of the river for 
the period between 1987 and 1996 is 132.6 mm, calculated by dividing the average annual stream flow volume by the total area of the 
watershed [4,29]. 

Fig. 1. Location map of the study area.  
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2.3. Land use and soil 

Studies focusing on land use/cover classifications have shown that since the year 2000 -, a majority of the watersheds have become 
cropland used for small scale plantations, rain-fed crop fields, and perennial cash crops. According to Wondrade et al. (2014), between 
1973 and 2011, the cropland coverage has increased by 12.8 % [32]. Other major types of land use/cover in the watershed includes 
grasslands, wetland, forests, urban areas, and shrub land. Most of the forest cover is in the escarpments, and the rift floor is covered 
with wet land, grasslands, and cropland. A significant change that has occurred in the land use/cover dynamics is the disappearance of 
Lake Cheleleka, which covered 1300 ha [32]. The disappearance of Lake Cheleleka can be attributed to environmental degradation due 
to extensive deforestation, climate change, and other anthropogenic stressors [32]. However, no studies have been conducted to 
particularly investigate the real causes that led to the disappearance of the lake. In general, 73.4 % of the watershed has experienced 
land use/cover changes between the years 1972 and 2017 [33]. 

The soil map of the watershed (Fig. 3) indicates that sand, clay loam, sandy loam, and silt soil cover 17.24 %, 24.78 %, 51.01 %, and 
17.10 % of the watershed, respectively. According to Mohammed et al. (2020), Leptosol, Vertic cambisol, Vertic Luvisol, Vitric 
Andosol, Haplic Luvisol, and Eutric Cambisol are the major types of soil found in the Tikur-Wuha watershed with Vertic Luvisol and 
Haplic Luvisol dominating 39.6 % and 39.2 % of the watershed, respectively [27]. 

The geological map of the study area (Fig. 2) shows the presence of densely populated normal faults in the southeastern part of the 
watershed. The drainage pattern of the study area (Fig. 1) overlaid on its geological map showing fault lines (Fig. 2) indicates that most 
of the fault lines intersect the main drainage lines to form point recharges, which have the potential to increase surface flow inter-
ception. Ayenew and Tilahun (2008) argued that simulations conducted during severe faulting should consider fractured volcanic 
aquifers as porous mediums, enabling the heavily fractured regions to exhibit high hydraulic conductivities [23]. Their study also 
highlighted that the existing fault structures and newly emerging cracks have the potential to create point recharges. 

3. Methodology 

3.1. Datasets 

The chosen WetSpa model (Table 1) has as its inputs such as land-use map, soil map, digital elevation model (DEM) and hydro-
meteorological data. Because the aim of this study was to assess the recharge estimation uncertainties associated with rainfall data, two 
sets of rainfall records were used. The first rainfall record set contained point observations made using rain gauges located in and 

Fig. 2. Structural geology of the study area.  
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around the watershed, whereas the second rainfall record set was obtained by combining the satellite rainfall product CHIRP with 
station data and available ground station records. 

3.1.1. Meteorological data 
The required meteorological parameters were gathered from the stations located near the Lake Hawassa watershed. Daily mete-

orological records of two synoptic meteorological stations, two ordinary meteorological stations, and eight rain gauges were obtained 
from the National Ethiopian Meteorological Agency. Synoptic meteorological stations measure precipitation, wind speed, sunshine 
duration, maximum and minimum air temperatures, and relative humidity, at 15 min intervals. Alternatively, ordinary meteorological 
stations record only the precipitation, and maximum and minimum air temperatures. The remaining stations provide only the pre-
cipitation records. 

The freely available CHIRP was downloaded from https://data.chc.ucsb.edu. It is a satellite rainfall product that provides daily 
rainfall estimates at a grid scale of 0.05◦ [34]. A merged rainfall dataset was prepared based on the records obtained from 11 stations 
[35]. However, records from only five stations were available for the year 2005, while records from only eight stations were available 
for the year 2006. Furthermore, for estimating the areal rainfall in the Tikur-Wuha watershed using the conventional Thiessen polygon 
method, the records from only four stations located in and around the watershed were used. 

Grubbs and Beck test, Mann–Whitney test, Wald-Wolfowitz test, and double mass analysis were used to assess the outliers, ho-
mogeneity and stationarity, independence and stationarity, and consistency, respectively, of the meteorological data records. The 
rainfall data obtained from the Hawassa and Shashemene stations exhibited only slight deviations from the historical record, whereas 
the rainfall data obtained from the Wateraresa station exhibited significant deviations from the historical record requiring corrections 

Fig. 3. Soil texture map of the study area.  

Table 1 
Input data sets and their respective data sources.  

Data Description Source Detail Time scale 

Ground Meteorological time-series data National Ethiopian Meteorological Agency 2005–2014 daily 
CHIRP satellite rainfall estimates (SRE) https://data.chc.ucsb.edu 2005–2014 daily 
Digital elevation model http://gdex.cr.usgs.gov/gdex/ 30 m resolution – 
Soil map Geological Survey of Ethiopia – – 
Daily stream flow data Ministry of water and energy of Ethiopia @Wosha 2005–2014 daily 

@Dato-village 2005–2014 daily  
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for consistency. Other quality tests were also conducted on sample data obtained from each station to ascertain the daily maximum air 
temperatures, and their annual values. The tests conducted for independency, homogeneity, and stationarity indicated that the data 
obtained were homogeneous and independent. The arithmetic mean method was used to fill missing data records. Moreover, based on 
the results of analyzing the quality of rainfall data obtained from different stations, rainfall records obtained from the Shashemene 
station were not considered in the modeling process. 

Evapotranspiration time-series data were also required by the WetSpa model used to simulate stream flow. The assessment results 
of the meteorological records of the stations in and around the watershed indicated that temperature-based evapotranspiration es-
timates would effectively represent the spatial variability of evapotranspiration. Accordingly, a simple temperature method (Eq. (1)) 
developed by Enku and Melesse (2014) was used to estimate evapotranspiration [36]. However, because of the differences in the time 
periods over which the data from different stations were recorded, only temperature data obtained from the Hawassa, Wateraressa, 
and Kofele stations were used in the estimation. 

ETo =
(Tmax)

n

k
(1)  

where ETo is the reference evapotranspiration (mm day− 1), Tmax is the maximum daily temperature (oC), n is a coefficient equal to 2.5, 
and k is a coefficient, equal to 48*T_mm-330, 73*T_mm-1015, and 38*T_mm-63 for dry and wet seasons combined, dry seasons, and 
wet seasons, respectively. Tmm is the long-term daily mean maximum temperature for the seasons under consideration (oC), where Tmm 
is calculated by taking the maximum of long-term daily mean temperature records for a specified season. 

3.1.2. Spatial datasets 
A 30-m resolution DEM was sourced from http://gdex.cr.usgs.gov/gdex/and resampled to a 32-m resolution to be fed to the 

WetSpa model. The other spatial inputs fed to the model included the soil and land use/cover maps of the watershed. The soil map of 
the Tikur-Wuha watershed (Fig. 3) was obtained from the Ethiopian Institute of Geological Surveys. The land use/cover map was 
prepared using LandSat-8 images for 2014 and classified using Google Earth Engine. Although the land-use map of the watershed has 
significantly changed since 2014, it was assumed to be applicable to the simulation period from 2005 to 2014. The pixel resolution of 
the land use/cover raster map and reference systems of all spatial datasets were kept constant. A pixel resolution of 32 m was used in 
the land use/cover raster map and a Universal TransverseMercator (UTM) Zone 37 N was used as the reference system for the land use/ 
cover spatial datasets. 

3.1.3. Stream flow datasets 
As already explained, the Tikur-Wuha watershed has nine streams feeding the Cheleleka wetland. However, only two hydrological 

gauging stations are available at the Tikur-Wuha watershed. Two gauging stations are located at the Tikur-Wuha river, downstream of 
the Cheleleka wetland. The first Tikur-Wuha river gauging station is stationed at the bridge near the inlet of Lake Hawassa and the 
second Tikur-Wuha river gauging station, called Dato-village station, is located upstream of the bridge. The rainfall records of the first 
gauging station are available for the year preceding 2005. During peak flood periods, the back flow from the lake affects the stream 
flow records. Currently, the area where the bridge is located is completely covered with vegetation, making the gauging station 
nonfunctional. However, the back water flowing from the lake during peak flood seasons does not reach the Dato-village station. Thus, 
the back flow will have no effect on the records maintained at the Dato-village station. The physical inspection of the station location 
and analysis of the back water effects, which is not presented here, indicate that the Dato-village station has not been affected by back 

Fig. 4. Discharge time-series data.  
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water during flooding seasons. Thus, the discharge records of the Dato-village station were used in this study for calibration purposes. 
Discharge records were also available at the Worka and Wosha stations situated in the Tikur-Wuha subwatershed. The discharge 

measurements have been made at the Worka station only in the year preceding 2005, and thus had to be disregarded. Thus, the records 
maintained at the Wosha station (Fig. 4) were used for the calibration of parameters along with the records of the Dato-village station. 

Although the Wosha River is a tributary of the Tikur-Wuha river, the flow patterns of the two rivers vary, determined by comparing 
their flow records. The in-depth observation of the discharge time series (Fig. 4) revealed that the peak and low flows are not similar in 
some sections of the records, as indicated by the red circles in Fig. 4. Additionally, the sharp fall of the falling limb and sharp rise of the 
rising limb, of the Tikur-Wuha river hydrograph makes the modeling challenging to capture the flow pattern fully. 

3.2. Methods 

3.2.1. General method 
Uncertainties of the rainfall data were first quantified by creating two separate model setups. This quantification was achieved by 

having similar inputs to the selected hydrological models and by changing the input rainfall time series. The input time series to the 
first model setup (M1), prepared from the available rain gauge records, was subsequently converted into areal rainfall by using the 
Thiessen polygon. The rainfall data fed to the second model setup (M2) were prepared by applying first-order bias correction (using 
empirical parametric quantile mapping) to the CHIRP-based SREs followed by their merging with the available rain gauge data using a 
conditional merging technique. 

In the next step, the global parameters of the two hydrological models were set based on prior watershed knowledge and literature 
review findings. Monte Carlo simulation in conjunction with Latin Hypercube Hampling was conducted to generate 10,000 possible 
parameters (i.e., WetSpa model parameters) using R programming. A second semidistributed model simulation using all possible 
parameter combinations in each model setup was performed to determine model performance in terms of root mean squared error 
(RMSE) and percent error of volume (PVE). In the third step, the long-term mean recharge was quantified for each accepted model 
realization followed by analysis of the statistical long-term mean recharge distribution. 

Only daily time-step simulation could be conducted for 10 consecutive years (2005–2014) because of the scarcity of overlapping 
hydrometeorological data. From the accepted model realizations, 100 best parameter combinations were selected and a distributed 
model simulation was performed using each model setup. The 100 recharge maps obtained from each model setup were then used to 
obtain spatial statistics and related uncertainties of the recharge estimations. A fully distributed simulation model was expected to run 
1,113,264 analyses for a 32-m resolution map. A computer with 128 GB RAM and 9 processors took 24 h to complete a single run. Thus, 
the number of simulations that could be performed was limited owing to computer capacity constraints. Furthermore, Xie et al. (2018) 
shows that 10,000 simulations run with each model setup would ensure acceptable variability in parameter combinations [7]. The 
simulations run with each semidistributed model setup were automated using Python programming, whereas only manual simulations 
were run with the fully distributed model. 

The semidistributed model simulation produced water balance components at a daily time step, whereas the fully distributed model 
simulation produced a gridded recharge map for a 10-year simulation period. Thus, the long-term mean annual recharge had to be 
determined for each semidistributed model simulation by first aggregating the daily recharge for each year and then averaging it, for 
the fully distributed model simulation, each cell was divided by the length of the simulation period to obtain the mean annual recharge 
for each simulation. 

3.2.2. Land use/cover classification 
From the LandSat-8 image of the study area, the land-use map of the area was developed for the year 2014 by employing supervised 

classification using Google Earth Engine, freely available at https://developers.google.com/earth-engine/guides/classification. The 
supervised classification procedure involves screening images for cloud cover, correcting them for surface reflectance, identifying 
training points (ground truth points) for each land-use type, and finally classifying the land use. The selected training points were 
randomly split into two sets as calibration and validation sets, and the SMILE Random Forest classifier [37] provided in the Google 
Earth Engine was used for land-use classification. The adopted code used used to compute the training and validation accuracies. A 
confusion matrix representing substitution accuracy was produced and the Kappa coefficient was calculated to assess the land-use 
classification accuracy [38]. 

3.2.3. WetSpa model 
A hydrological simulation was conducted using a physically based distributed hydrological model and the water and energy 

transfers between soil, plants, and atmosphere (WetSpa) were predicted at a daily time step. The WetSpa extension [39], a GIS-based 
distributed watershed model, was employed in this study. WetSpa simulates the hydrological processes (precipitation, interception, 
snowmelt, depression, infiltration, evapotranspiration, percolation, surface runoff, interflow, and groundwater flow) for each grid cell 
by dividing the hydrological system into four control volumes: plant canopy, soil surface, root zone, and groundwater aquifer [39]. 

The hydrological simulation performed using the WetSpa extension can generally be achieved in three stages. The first stage in-
volves the determination of the local variables based on gridded DEM, soil map, and land-use map. This step was conducted using 
ArcView 3.2 software. All local variables were predetermined based on the information provided in the three base maps. Liu and De 
Smedt (2004) provide a detailed description of the preparation and running of the WetSpa extension [39]. In the second stage, the 
external executable is run with the extension providing a choice of fully distributed and semidistributed models. 

The point rainfall records required by the WetSpa model were obtained from the rain gauge stations located in and around the 
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targeted watershed. The point rainfall records were converted to areal rainfall estimates using the Thiessen polygon method. When 
running the fully distributed model, the developed Thiessen polygon map is converted to a raster map, where the station number is the 
cell value. In this study, for the M1 model setup, a similar procedure was followed to create the Thiessen polygon map using the 
available rain gauge stations. In the M2 model setup, each grid cell center was assumed to represent a rain gauge station and the grid 
map was considered the Thiessen polygon. 

3.2.4. WetSpa parameter range 
WetSpa simulations (Fig. 5) are conducted at cell level, and thus for each cell, all local parameters have to be determined. A 32 x 32 

resolution produced a grid mesh area with 859 columns and 1296 rows for the watershed. Default local parameters were determined 
by the WetSpa extension based on the input soil texture class, land-use type, and physiographic characteristics of each cell. All default 
parameters were retained except for the root depth of the forest, which was changed from 1 to 5 m considering the dominant presence 
of Eucalypts in the watershed forest cover. Similar changes were made by Yenehun et al. (2022) and Yenehun et al. (2020) when they 
applied WetSpass simulations to the Lake Tana basin and Gilgel Abay watershed, respectively [40,41]. 

Eleven global parameters (Table 2) were used to calibrate the model that simulated runoff hydrograph at Tikur-Wuha watershed 
outlet [39]. Three of the parameters, namely base snowmelt temperature (To), temperature degree-day coefficient (k-snow), and 
rainfall degree-day coefficient (k-rain), were used to control the snow melt [42]. For regions with no snowing, each of these parameters 
can be set to − 1.0 [39]. Similar adjustments were made by Kidanemariam et al. (2021) presuming that no significant snow formation 
occurred in the targeted basin [43]. The ability to adjust slightly sensitive or insensitive parameters comes as an added advantage when 
narrowing down the feasible parameter range [44]. The initial soil moisture condition (K-s), which affects only the initialization period 
of the simulation, is also a slightly sensitive parameter [42]. 

Other parameters can also be assigned to the model, based on the physical and meteorological characteristics of the targeted 
watershed [44]. Accordingly, the base flow recession curve coefficient (Kg) can be determined from the slope of the master curve of the 
recession limbs; observed precipitation can be used to determine the feasible range of the correction factors used for maximum 
precipitation (P-max), potential evapotranspiration (K-ep), and surface runoff exponent for a zero rainfall intensity (k-run). Moreover, 
the cumulative flow curve can indicate the feasible maximum groundwater level (g-max), while the annual rainfall can indicate initial 
ground water storage (g0) [42]. Finally, the scaling factor for the inter flow (Ki) could be set by considering the most dominant 
land-use class of the watershed [42]. 

3.3. Performance measures 

Choosing statistical performance indicators in a study is highly subjective and should be orientated based on the intended purpose 
of the study [45]. The performance of each simulation model was determined using the daily stream flow at the watershed outlet. The 
estimated evapotranspiration was also used as a performance measure. The two statistical performance measures RMSE and PVE were 
also used. The range of the PVE is from –∞ to +∞. The results falling within the range between − 10 % and +10 % indicate satisfactory 
performance, whereas the results falling outside that range indicates poor performance, with 0 representing perfect performance. PVE 
(Eq. (2)), which considers the computed volume, does not account for the peak magnitude as indicated below. 

Fig. 5. WetSpa simulation at grid cell level [39].  
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PVE= 100|
Vo − Vs

Vo

⃒
⃒
⃒
⃒ (2)  

where: PVE is the percentage error in volume, Vo is the observed volume, and Vs is the simulated volume. 
The error variation between raw and bias-corrected SREs and ground observation can be indicated by the RMSE, which falls within 

the range between 0 and ∞. If the RMSE (RMSE; Eq. (3)) is close to zero, performance would be quite satisfactory and vice versa. The 
mathematical representation of the RMSE is as follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Qsi − Qoi)

2

√

(3)  

where Qsi and Qoi are the simulated results and ground based observations, at day i, respectively; and n is the total number of available 
data pairs. After calculating the performance measures for each model iteration (10,000 iterations for each of the model setups M1 and 
M2), model realizations having a PVE less than 10 % were accepted for further analysis. The errors introduced by factors such as human 
errors, during stream depth measurements are unavoidable. Thus, a 10 % error margin, which makes model realization with ±20 % 
PVE for discharge is acceptable, was considered. Additional cut-off criteria were set because the RMSEs of some model realizations 
were as high as 110 % of the minimum RMSE. 

Calibration procedures can help to narrow down the parameter range applicable to a given watershed. Thus, Nash–Sutcliffe ef-
ficiency (NSE; Eq. (4)) was implemented during model calibration. When NSE is 1, it indicates a perfectly fitting model [45]. 

NSE= 1 −

⎛

⎜
⎜
⎝

∑n
i=1(sim − obs)2

∑n

i=1
(obs − obs)2

⎞

⎟
⎟
⎠ (4)  

where − obs is the observed value during the ith time interval; sim is the simulated value during the ith time interval; obs is the mean of 
the observed parameter; and n is the total number of observations. 

4. Results and discussion 

4.1. Meteorological data analysis 

A meteorological data analysis was conducted for the study duration, which was from 2005 to 2015. A preanalysis of the obtained 

Table 2 
WetSpa global parameter ranges.  

Parameter Range Description 

Ki 1.5–2.2 Seasonally vegetated farm lands and commercial mixed forest are the dominant land covers 
Kg 0.0001–0.0003 Based on the recession curve of observed hydrograph 
K-s 1.0–1.2 Assuming up to 20 % influence of initial soil moisture condition 
K-ep 0.65–0.95 Based on the assumption that can represent seasonal variability 
g0 1000–1900 Based on the observed annual rainfall amount 
g-max 1000–5100 Based on the assumed maximum root depth 
k-run 7.5–10.5 The observed hydrograph has low noises 
P-max 100–200 Based on the maximum observed rainfall and error factors  

Table 3 
Mean daily minimum and maximum temperature values and annual evapotranspiration values recorded at the Hawassa, Kofele, and Wateraressa rain 
gauge stations.  

Year Minimum Temperature (oC) Maximum Temperature (oC) Annual Evapotranspiration (mm) 

Hawassa Kofele Wateraressa Hawassa Kofele Wateraressa Hawassa Kofele Wateraressa 

2005 12.81 7.63 8.32 27.57 19.74 19.47 1604.96 725.13 907.20 
2006 13.58 7.09 8.80 27.32 19.44 19.18 1565.69 695.45 864.64 
2007 13.02 6.36 9.02 27.13 19.46 20.66 1538.42 698.02 1034.58 
2008 12.86 5.40 6.13 27.27 19.72 21.09 1566.10 726.99 1101.77 
2009 13.38 4.66 4.65 28.24 20.14 19.03 1697.11 760.65 854.65 
2010 14.21 4.37 5.73 27.04 19.61 18.10 1522.26 707.81 758.28 
2011 13.53 3.04 5.74 27.70 19.95 17.61 1623.35 745.51 715.36 
2012 13.37 1.73 8.74 27.99 19.88 20.01 1668.57 741.60 958.19 
2013 13.00 1.92 9.93 27.57 19.26 21.13 1602.31 681.36 1088.86 
2014 13.45 8.74 10.86 27.34 19.33 21.10 1565.37 685.94 1084.88 
2015 14.34 8.68 11.10 28.54 20.25 21.37 1739.46 767.73 1123.93  
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meteorological time-series dataset indicated that the mean annual rainfalls at the Hawassa, Wendo-Genet, Kofele, and Wateraressa 
stations are 954.54, 1069, 1074, and 1152 mm, respectively. The temperature records of the Hawassa station reveal that the mean 
daily maximum temperature at the station is more than the corresponding temperatures at the Kofele and Wateraressa stations, located 
within mountain ranges, by up to 10 ◦C. The evapotranspiration calculated from the available temperature data (Table 3) show a mean 
annual evapotranspiration (Fig. 6) of 1608.5, 721.5, and 953.5 mm at the Hawassa, Kofele and Wateraressa stations, respectively. 

The conventional methods used in previous studies [4,21,41] to represent the spatial distribution of rainfall have mainly depended 
on the Thiessen polygon. These conventional methods are prone to error propagation in areas within a watershed that are sparsely 
represented by rain gauge stations, as is the case with the Tikur-Wuha watershed. 

As Fig. 7 shows, the map prepared from the merged product obtained by combining CHIRP and rain gauge records (Fig. 7(A)) is 
considerably different from the areal rainfall map created employing the Thiessen polygon (Fig. 7(B)) for the four rain gauge stations. 
This type of map discrepancies can have a huge impact on hydrological simulations. Improved spatial rainfall records or represen-
tations would significantly enhance the accuracy of recharge estimations, recharge being directly proportional to rainfall. The 
improvement is indicated by the sharp edges of the recharge map (Fig. 13), similar to the grids of CHIRP-based SREs and the rainfall 
zones produced by the Thiessen polygon (Fig. 7). The sections that follow provide additional details on the effects of each model input. 

4.2. Land use/cover classification 

How the sensitivity of recharge estimations can be influenced by land-use maps has been the subject of several previous studies [3, 
4], which have found that the careful consideration of land-use map could enhance the sensitivity of recharge estimations. Hence, after 
considering the influence of the sensitivity of recharge estimations on land-use maps, a land-use map of the study area (Fig. 8) was 
developed for the year 2014. The training and validation accuracies achieved for land-use classification were 0.965 and 0.864 
respectively. 

As Table 4 indicates, cropland covers the largest proportion (46.72 %) of the total area of the watershed, while 21.35 % of this area 
is covered by mixed forest. According to the land classification performed by Mohammed et al. (2020), in the year 2017, 46.6 % and 
23.6 % of the total area of the watershed were cultivated land and forest cover, respectively [27]. Abraham et al. (2022) found that in 
the year 2017, 58.62 % and 25.5 % of the watershed area were covered by cultivations and forest [4]. 

4.3. Model calibration 

The model calibration was performed at the Dato-village and Wosha stream gauge stations. A widely accepted practice is to 

Fig. 6. Mean annual evapotranspiration from the study area.  
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calibrate a given model using multiple gauge data. Stream gauge data are available at the outlet of the Tikur-Wuha river and its 
tributaries. Hence, in this study, the model calibration was performed using the gauge records of the Tikur-Wuha river outlet and the 
data collected from a tributary located downstream of the Wosha subwatershed. Nevertheless, the NSE (0.28) of the calibration 
performed at the Dato-village station was poor. To improve the calibration results of the Dato-village station, possible parameter 

Fig. 7. Mean annual rainfall distribution for the (B) M1 and (A) M2 model setups.  

Fig. 8. Land-use map of the Tikur-Wuha watershed prepared for the year 2014.  
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combinations were explored. Additionally, the implementation of strategies such as removing peak values from the observed discharge 
time-series data and changing the simulation time periods were investigated. However, the maximum NSE obtained was 0.28. By 
contrast, the NSE of the calibration made at the hydrological station, located downstream of Wosha, was 0.56. Despite the calibration 
discrepancies, no attempt was made to transfer the calibration results obtained from the Wosha subwatershed gauge station to the 
Tikur-Wuha watershed gauge station. 

The estimated long-term mean annual recharge obtained from the semidistributed simulation model with parameters calibrated for 
the Wosha subwatershed, was 218.29 mm. The long-term mean annual recharge obtained using the fully distributed simulation model 
with similar parameters ranged from 0.24 to 579.96 mm. In Fig. 4, a significant mismatch can be observed between the measured 
stream records obtained from the two discharge gauging stations. Another significant variation is difference in the range of recharge 
obtained from model parameter calibration using the two discharge records. 

The runoff in the study area increases as the recharge rate decreases (Fig. 9) according to the results of the model calibrated using 
Wosha discharge data; the mean discharge is three times the mean discharge measured at the Dato-village station. Ayenew and Tilahun 
(2008) argued that fault structures significantly enhance the recharge at the floor of a caldera [23]. Another argument is that the 
contribution made by the wetland to watershed water balance cannot be disregarded when assessing the recharge [4]. In depicting the 
effects of various land-use classes on water balance component modeling, implementing separate values for the local parameters of 
each land-use class would be helpful. The WetSpa model uses permanent wetland, a main land cover class, to calculate the local 
parameter values. Thus, the impact of wetland on the simulated recharge was properly considered. The WetSpa model does not 

Table 4 
Confusion matrix of each land-use class with its percentage coverage area.  

Land_Use_Type Code 12 17 10 11 5 13 16 7 Percent 

Crop land 12 91 0 1 0 0 1 0 0 46.72 
Water body 17 0 11 0 1 0 0 0 0 0.005 
Grassland 10 2 0 49 0 0 0 0 0 19.14 
Permanent wetland 11 0 0 2 19 0 0 0 0 1.520 
Mixed forest 5 0 0 0 1 37 0 0 0 21.35 
Urban and built-up area 13 3 0 1 0 0 44 0 1 3.239 
Barren or sparsely vegetated land 16 1 0 0 0 0 0 3 0 0.138 
Open shrub land 7 1 0 1 0 0 0 0 31 7.885  

Fig. 9. Long-term mean annual recharge in the study area obtained using Wosha station records.  
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considers point recharge and/or wetland contribution to recharge as concentrated seepage through existing fault structures. This 
limitation can cause recharge estimation challenging. 

The discrepancies between the recharge magnitudes obtained from the two models calibrated using the Wosha and Dato-village 
records can be attributed to several factors. However, while the magnitude of recharge rises in an effort to match the discharge 
size at Dato-village, it falls as the flow rate at Wosha station is more accurately estimated. Because fault structures exist between the 
two record stations, point recharges can therefore be considered the primary sources of recharge. 

4.4. Recharge uncertainty 

4.4.1. Semidistributed model simulation 
As already explained, the difference between the M1 and M2 model setups is in their input rainfall datasets. Thus, land-use local 

parameters, soil hydraulic parameters, meteorological input datasets used in each model run are same except for the rainfall time- 
series data. In obtaining the merged rainfall dataset, the original cell size of the CHIRP-based SRE was considered for all rainfall re-
gions. The resulting map had 37 raster cells (0.05◦ x 0.05◦) with own rainfall records. Each grid cell center was assumed to have its own 
station record, which was fed to the simulation model. 

The M1 model set up that simulated 10,000 parameter combinations, produced a mean annual recharge in the range of 
392.03–549.3 mm, whereas semidistributed M2 model simulating 10,000 parameter combinations produced a mean annual recharge 
in the range of 316.4–474.9 mm. The results indicate the impacts of input rainfall estimation uncertainties. The large difference 
between the minimum and maximum simulated recharge values indicates the uncertainty of recharge estimates. 

The iteration results obtained from the M1 model setup demonstrated that both RMSE (Fig. 10(d)) and model volume error (MVE) 
(Fig. 10(c)) increased as the mean annual recharge increased (Fig. 10). The iteration results of the M2 model set up show that RMSE 
(Fig. 10(b)) increases and MVE (Fig. 10(a)) decreases as the mean annual recharge increases; condensed values can be seen in the 
middle sections of the plots. The RMSE values obtained for 10,000 simulations performed using the M2 and M1 setups were in the 
ranges of 0.8–2.57 m3/s and 0.8–3.27 m3/s, respectively. 

The results obtained from both model setups indicated that the long-term mean annual recharge was in the range of 370–430 mm. 
The RMSE values obtained from the M1 model setup are densely distributed at low values of the long-term mean annual recharge, while 
the RMSE values obtained from the M2 model setup are dispersed at the beginning and end of the X-axis depicting long-term mean 
annual recharge values. An exhaustive search of random parameter combinations that will ensure performance measure convergence, 
guided by a literature review and expert knowledge of the hydroclimatic characteristics of the watershed have helped to explore the 
global ranges of each parameter. This predefined ranges of the parameter values were used at the start to randomly generate possible 
parameter combinations. The use of Monte Carlo simulation in conjunction with Latin Hypercube Sampling to generate possible 
parameter combinations has helped to ensure that the parameters were properly distributed in the given parameter space. 

The plot of evapotranspiration coefficient (K-ep) against recharge (Fig. 11) shows an inverse correlation between the mean annual 
recharge and K-ep; that is, the mean annual recharge decreases as K-ep increases. As K-ep increases, PVE also increases. This 

Fig. 10. PVE and RMSE values obtained for 10,000 model realizations using M1 (c & d) and M2 (a & b) model setups.  
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correlation indicates the importance of obtaining accurate evapotranspiration estimates. Thus, we can conclude that improved esti-
mates of evapotranspiration can reduce the uncertainty of recharge estimations. 

4.4.2. Fully distributed simulation 
The fully distributed simulation model available with the WetSpa extension generates the recharge accumulated in a targeted basin 

over the simulation period, taken as 10 years in this study. The average of the long-term recharge obtained from 100 best spatial 
recharge maps produced by the M1 model set up (Fig. 12 (A)) is significantly different from that generated using the M2 model setup. 
The model outputs depend on the input rainfall maps. Additionally, the highest and lowest long-term mean recharge is different for M1 
and M2, where recharge estimates of M2 are greater than M1. CHIRP-based SREs are noted for their overestimated rainfall values [13, 
17], which have been reflected in the highest recharge estimate produced by the M2 model setup. According to Beyene et al. (2023), the 
raw CHIRP rainfall estimates show a false alarm ratio as high as 50 %, indicating a noticeable increase in the depth of estimated rainfall 
values. Various bias correction techniques can be applied to reduce the inaccuracies present in volume estimations. A multistage bias 
correction strategy [35] has improved the PVE of CHIRP-based SREs by up to 70 %. The overestimation can be decreased by using other 
bias correction techniques available. The two images shown below indicate the substantial spatial heterogeneity of the two standard 
deviation (STDEV) maps (Fig. 12). 

Another strategy used to analyze the uncertainty in recharge estimations was to observe the STDEV of the selected 100 model 
realizations obtained from each model setup. A low STDEV indicates low uncertainty, while a high STDEV indicates high uncertainty in 
the estimations. The results show that merged SREs produce recharge maps with low uncertainty. The plots pertaining to the M1 model 
setup shown on the left (Fig. 12(A)) indicate a maximum STDEV of 1156.25 mm with most of the areas in the study area having high 
STDEV values. The plots pertaining to the M2 model set up (Fig. 12(B)) exhibit the highest STDEV in a small part of the watershed. The 
M1 model setup plots indicate that most areas of the watershed have high values of uncertainty. 

By dividing the long-term average recharge by 10, the number of years in the simulation period, the mean annual long-term 
recharge map of the study area can be obtained (Fig. 13). From the maps, the impact on recharge magnitudes and spatial distribu-
tions due to rainfall and evapotranspiration can be observed. Fig. 13 shows a pattern similar to the Thiessen polygon map (Fig. 6) 
developed using the evapotranspiration records obtained from monitoring stations. The pattern indicates that evapotranspiration has a 
significant impact on recharge estimation. 

From the long-term mean annual recharge maps shown in Fig. 13, the continuous impact caused by evapotranspiration can be 
observed. The western flat lands (Fig. 8), dominated by crop land, of the watershed, exhibited a low recharge magnitude (Fig. 13 (A, 
B)), whereas eastern mountain ranges exhibited high recharge magnitudes. 

According to previous studies where similar procedures were followed [7], model calibrations performed to determine possible 
parameter ranges can decrease the uncertainty in recharge estimations. However, this study relied on uncalibrated parameter ranges, 
determined based on literature and prior information related to the watershed. Thus, the output recharge map would not indicate the 
true or near true values of the recharge in the watershed. Nonetheless, the results have illustrated the important role played by spatial 
rainfall distributions in recharge estimations. 

The coefficient of variation (Cv) values obtained from the 100 best recharge maps produced by the M1 model set up (Fig. 14) 
indicated more consistent recharge estimations compared with the corresponding values obtained by the M2 model setup. The highest 
uncertainty in recharge estimations was observed in the wetland-dominated part of the watershed. Abraham et al. (2022) also 
observed a similar high recharge variability in the wetland-dominated part of the watershed [4]. Seventy percent of the watershed 
showed a Cv < 0.15 for the M2 model setup (Fig. 14(B)), while 90 % of the watershed exhibited a Cv < 0.15 for the M1 model setup 
(Fig. 14(A)). 

The recharge estimation sensitivity was studied by Abraham et al. (2022) using the calibrated soil water assessment (SWAT) tool 
SWAT-Cup, and the median recharge for the year 2017 was found to be in the range of 397–575 mm [4]. Despite the differences in the 
model setups, simulation periods, and model structures, significant variations can be observed between the recharge zone results of 
Abraham et al. (2022) and those of this study. According to Abraham et al. (2022), the wetland-dominated central part of the 
watershed exhibited a high median recharge, whereas this study showed that it had a low median recharge [4]. The estimated median 
recharge was low in the eastern mountainous parts of the watershed [4]. The semidistributed simulation performed in this study using 
the M1 model setup produced a mean annual recharge between 392.03 and 549.3 mm. 

5. Conclusions 

Accurate modeling of all hydrological cycle components is necessary to ensure sustainable water resources management. The 
developments in satellite technology throughout the past few decades have played a significant role in the observation and mea-
surement of several meteorological parameters. Additionally, the benefits of merging different techniques to gain advantage of the 
merits of each technique are increasing. Considering the direct relationship between recharge and rainfall records, the uncertainties in 
recharge estimations due to rainfall data uncertainties were assessed in this study. 

The physically based distributed hydrological model WetSpa was used to simulate over 20,000 possible model parameter com-
binations. Ten thousand of these simulations were run using rain gauge-based records, while the remaining simulations were run using 
CHIRP-based SREs that had been bias corrected and combined with the available rain gauge records. All other meteorological data and 
physiographical data used as model inputs were kept constant except for rainfall data. The results demonstrated that improved spatial 
representation of the rainfall increases the accuracy of spatial recharge estimations. Additionally, the results showed that the spatial 
representation of evapotranspiration can have a significant impact on the estimations of long-term recharge distribution. 
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Limitations were encountered in examining point recharges through faults and direct recharge from uncontrolled irrigation fields 
dispersed throughout the watershed along with their respective water uses. The use of a customized look-up table for local variables of 
the WetSpa model was assumed sufficient to overcome the effects of these limitations. Additionally, a literature review revealed that 
few studies have explored the effects of geological faults on groundwater flow patterns [4,23], groundwater abstraction by large-scale 
farm lands in the Tikur-Wuha watershed [23], and the total amount of water abstracted for traditional or uncontrolled irrigation 
practices [46]. However, no previous studies have particularly focused on the quantification of recharge from irrigation fields or point 
recharges in the fault zones. Hence, the recharges estimated in this study does not reflect the actual recharges of the watershed. 

Hence, future studies should consider the direct recharge from irrigation fields, which can be estimated either through field level 
measurements or by introducing representative parameters to existing hydrogeological models. Additionally, the determination of 
point recharges through fault structures using methods such as modified chloride mass balance approach, could be considered in future 
studies. Furthermore, precise spatial evapotranspiration estimation should be explored in future to reduce its influence on recharge 
estimation uncertainty. 

6. Data availability Statement 

Data can be made available on request. 

Fig. 11. Correlation between the evaporation coefficient (K-ep) and percentage volume error (PVE) of the estimated mean annual recharge (R) for 
the 100 best parameter combinations. 

Fig. 12. Standard deviations of the 100 model realizations produced by M1 (A) and M2 (B) model set ups.  
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Fig. 13. Long-term mean annual recharge map of M1 (A) and M2 (B) model setups.  

Fig. 14. Coefficient of variation of the study area obtained from (A) M1 and (B) M2 model setups.  
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