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Abstract: Enterovirus 71 (EV71) can invade the central nervous system (CNS) and cause neurological
disease. Accumulating evidence indicates that EV71 can directly infect neurons in the CNS. Innate
immune responses in the CNS have been known to play an essential role in limiting pathogen infections.
Thus, investigating the effects of EV71 infection of neural cells is important for understanding disease
pathogenesis. In this study, human neural cells were infected with EV71, and interferonβ (IFNβ)
expression was examined. Our results show that IFNβ expression was upregulated in EV71-infected
neural cells via pattern recognition receptors (PRRs) sensing of virus RNA. The PRRs Toll-like receptor
3 (TLR3), Toll-like receptor 8 (TLR8), and melanoma differentiation-associated gene-5 (MDA-5),
but not retinoic acid-inducible gene-I (RIG-I) and Toll-like receptor 7 (TLR7), were found to be
EV71-mediated IFNβ induction. Although viral proteins exhibited the ability to cleave mitochondrial
antiviral signaling protein (MAVS) and Toll/IL-1 receptor (TIR) domain-containing adaptor-inducing
IFN-β (TRIF) in neural cells, levels of viral protein expression were low in these cells. Furthermore,
neural cells efficiently produced IFNβ transcripts upon EV71 vRNA stimulation. Treating infected
cells with anti-IFNβ antibodies resulted in increased virus replication, indicating that IFNβ release
may play a role in limiting viral growth. These results indicate that EV71 infection can induce IFNβ
expression in neural cells through PRR pathways.
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1. Introduction

Enterovirus 71 (EV71) is a member of the family Picornaviridae, which is composed of non-enveloped
single-stranded RNA viruses. EV71 has been recognized for its ability to invade the central nervous
system (CNS) and cause neurological symptoms. Data from clinical and animal studies suggest that
after infection EV71 viral capsid proteins are present in neural cells in the brain, thus providing evidence
that EV71 can directly infect neurons [1,2]. In the brains of EV71-infected monkeys, EV71 antigen could
be detected in the thalamus and motor cortex [1]. Furthermore, EV71 RNA and protein expression
could be detected in the brain neurons from deceased EV71-infected patients [2]. However, the effects
of EV71 infection in host neural cells remain to be identified.

Antiviral innate immune responses have been shown to play essential roles in defending cells
against viral infections. Type I interferons (IFNs), the key regulators of innate immunity, are produced
by cells in response to viral sensing. Once secreted, IFNs interact with their receptors resulting in
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the expression of interferon-stimulated genes (ISGs), which function to suppress viral replication
and regulate the inflammatory process [3,4]. For example, a previous study showed that IFNβ
may have important functions in controlling the replication of enteroviruses [5]. IFNβ has also
been demonstrated to be effective in decreasing the virus yield in coxsackeivirus B3 (CVB3)-infected
myocardial fibroblasts [6]. In another study, mice treated with IFN inducers before EV71 infection
showed increased survival rates with decreased viral loads in brain/muscle tissue [7]. Nonetheless,
conflicting results have been obtained when interferon was administered after EV71 infection, with
mortality increasing in one study [8]. Therefore, it has been suggested that interferon plays different
roles during different phases of EV71 infection.

Viral pathogens can be detected through pattern recognition receptors (PRRs), including Toll-like
receptors (TLRs), NOD-like receptors (NLRs), retinoid acid-inducible gene I (RIG-I), and melanoma
differentiation-associated gene 5 (MDA-5). These receptors induce IFNβ expression by activating
TIR domain-containing adaptor-inducing IFN-β (TRIF) and mitochondrial antiviral signaling protein
(MAVS), which form a complex with TANK-binding kinase (TBK), IκB kinase ε (IKKε), and interferon
regulatory factors (IRFs) [9]. Subsequent activation of IRFs results in expression of type I IFNs and
proinflammatory cytokines [10]. However, not all infected cells can produce IFNs because certain
viruses can subvert cellular IFN induction pathways [11]. For example, some viral proteins, including
influenza virus proteins PB1-F2 and PB2-S1, interact with the mitochondrial protein MAVS to inhibit the
induction of IFN production [12,13]; other viruses such as hepatitis C virus and dengue virus suppress
IFN activation by cleaving MAVS and Stimulator of interferon genes (STING), respectively [14–16].

Accumulating evidence indicates that the initiation of innate immune responses is regulated in a
cell type-specific manner. Different cell types are equipped with specific PRR patterns to sense invading
pathogens. Previous studies have demonstrated that some viruses such as dengue virus can induce
IFNβ and ISG production in the brain; in contrast, IFNs are not detectable in infected dendritic cells,
which suggests that IFN induction is disparately regulated in different cells [17,18]. In the brain, TLR2 is
expressed by astrocytes, whereas TLR1 and TLR9 expression is limited to infiltrating immune cells [19].
RIG-I-like receptors (RLRs), including RIG-I, MDA-5, and laboratory of genomics and physiology 2
(LGP2), are widely expressed in most tissues. IFNs can also be generated by neurons [20]; neurons
express TLR3, and poly(I:C) alone can induce expression of IFNβ in NT2-differentiated neurons [21].
In addition, RNA viruses such as rabies virus have been shown to evoke IFNβ expression in neuronal
cells [21]. Furthermore, a recent study showed that the brains of Theiler’s murine encephalomyelitis
virus (TMEV) infected mice containing type I IFN mRNA during the acute phase of encephalitis [22],
indicating that enteroviruses might be able to activate IFN production.

Recent studies have demonstrated that EV71 can actively replicate in neural lineage ranging
from neuroblastoma cells to primary neurons [23,24]. Regardless, it is not completely clear whether
EV71 evokes innate immune responses in neural cells. Although EV71 has been demonstrated to
inhibit IFNβ induction by affecting the pathways mediated by RIG-I, TLR3, and MDA-5 via viral
proteases [25,26], animal experiments have indicated that IFNβ expression is enhanced in the brain
tissue of EV71-infected mice [27]. Therefore, we hypothesized that EV71 infection may trigger activation
of IFN expression in the CNS. Our results also demonstrate that EV71 can induce IFNβ expression
in neural cells and that this increased IFNβ expression is associated with TLR3, TLR8, and MDA5.
Furthermore, ISGs are upregulated in EV71-infected neural cells, indicating that these cells can respond
to secreted IFN.

2. Materials and Methods

2.1. Cells and Viruses

EV71 strain TW-2231 (EV71 2231) (subgenotype C2) and EV71 strain BrCr (subgenotype A) were
used in this study. Unless otherwise stated, cells were infected with EV71 TW-2231. RD (human
rhabdomyosarcoma) cells were grown in Dulbecco’s modified Eagle medium (DMEM) containing 10%
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fetal bovine serum (FBS), 1% non-essential amino acid, 1% L-Glutamine, and 1% penicillin/streptomycin
(all from Thermo-Fisher Scientific, Waltham, MA, USA). SF268, SH-SY5Y, and IMR32 cells were
obtained from Bioresource Collection and Research Center, Taiwan. SF268 cells are defined as human
malignant glioblastoma cells, while IMR32 and SH-SY5Y cells were derived from human neuroblastoma.
These cells were maintained in DMEM supplemented with 10% fetal bovine serum (FBS) and 1%
L-Glutamine (all from Thermo-Fisher Scientific, Waltham, MA, USA). Human neural stem cells
(hNSCs) were obtained from commercial sources (HUXNF-01001, Cyagen Biosciences or U7800-100,
Thermo-Fisher Scientific, Waltham, MA, USA). The human neural stem cells were cultivated in a neural
stem cell medium containing neural stem cell supplements. For neuronal differentiation, hNSCs were
plated in the CELLStart coated plate and incubated for 2 days. The culture medium was then changed
to knockout DMEM/F12 with 2% StemPro Neural Supplement and 1% Glutamax, and incubated
for 5–7 days at 37 ◦C and 5% CO2. The differentiation was confirmed by detecting the expression
of neuron-specific markers including MAP-2 and Neuron-specific class III β-tubulin. All cells were
maintained in a 37 ◦C humidified incubator equilibrated with 5% CO2.

2.2. Viral Infection

Cells were seeded on 12-well plates at the concentration of 2 × 105 cells per well. The cells
were washed by PBS once after overnight seeding. Virus was then added at specified multiplicity of
infection (MOI) with serum-free DMEM. After one hour of adsorption, the virus-containing medium
was decanted and DMEM containing 2% FBS was then added. To inactivate EV71, virus stock was kept
on ice and exposed to UV light in UV crosslinker (Spectronics corporation, NY, USA) at 2 × 105 µJ/cm2

for 20 min.

2.3. Reagents

Poly(I:C) (Sigma-Aldrich, St. Louis, MO, USA) was prepared using PBS. Motolimod (Selleckchem,
Houston, TX, USA) were prepared at 1 mM in DMSO. Poly(I:C)_HMW/LyoVecTM (InvivoGen,
San Diego, CA, USA) was prepared at 0.125 µg/mL in endotoxin-free water. Poly(A:U) (InvivoGen,
San Diego, CA, USA) was prepared at 1 µg/mL in sterile physiologic water. The cells were seeded in
12-well plates and incubated overnight. Lipofectamine 2000 (Thermo-Fisher Scientific, Waltham, MA,
USA) was used for transfection and reagents A and B were prepared according to the manufacturer’s
protocol. Reagent A contained 100 µL opti-MEM with EV71 RNA, 1 µg poly(I:C), 1 µg poly(I:C)_HMW,
1 µg poly(A:U), or 10 µM motolimod. Reagent B contained 100 µL opti-MEM with 2 µL Lipofectamine
2000. Reagents A and B were mixed and incubated at room temperature for 20 min. The mixtures were
then added into tested cells for transfection.

2.4. Immunofluorescence Staining

Cells were fixed with ice-cold 4% paraformaldehyde for 15 min at room temperature. After being
washed by 1× PBS three times, the fixed cells were then permeabilized by addition of 0.5% triton
X-100 for another 5 min. After being washed by PBS three times, the cells were then blocked by
PBS containing 2% FBS for 1 hour at room temperature. After blocking, the cells were incubated
with primary antibodies: mouse anti-EV71 3D (1:500, Genetex, Irvine, CA, USA), rabbit anti-MAP2
(1:200, Millipore, Burlington, MA, USA), TUJ1 (mouse anti-neuron-specific class III β-tubulin)(1:200,
Millipore, Burlington, MA, USA), and rabbit anti-phosphorylated IRF3-Ser396 (1:200, Cell Signaling
Technology, Danvers, MA, USA) at 4 ◦C overnight. The cells were then washed three times with 1×
PBS and incubated with Dylight 594 conjugated donkey anti-mouse secondary antibody or Dylight 488
conjugated goat anti-rabbit secondary antibody (1:1000, Jackson ImmunoResearch Laboratories, West
Grove, PA, USA) for 1 h at room temperature. The cells were washed three times with 1× PBS, and cell
nuclei were counterstained with DAPI (4′,6-diamidino-2-phenylindole) (Sigma-Aldrich, St. Louis,
MO, USA). The images were collected by a fluorescence microscope (Olympus BX51, Olympus,
Tokyo, Japan).
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2.5. Protein Isolation and Western Blot

Total protein was extracted from mock- and EV71-infected cells. Protein samples were separated
by 8% or 12% SDS-polyacrylamide gel electrophoresis and then transferred onto a polyvinylidene
fluoride membrane (PVDF) (GE Healthcare Life Sciences, Boston, MA, USA). The protein-containing
membranes were blocked with 5% skim milk in Tris-buffered saline Tween-20 (TBST, 20 mmol/mL
Tris-HCl, pH 7.4, 150 mmol/L NaCl, and 0.1% Tween-20) at room temperature for 1 h. The membrane
was then incubated with primary antibodies: mouse anti-EV71 3D (1:2000, Genetex, Irvine, CA, USA),
mouse anti-EV71 3C (1:500, a generous gift from Dr. Shin-Ru Shih, Chang Gung University), mouse
anti-EV71 VP (1:2000, Millipore, Burlington, MA, USA), anti-IRF3 (1:1000, Santa Cruz Biotechnology,
Dallas, TX, USA), anti-phosphorylated IRF3-Ser396 (1:1000, cell signaling, Danvers, MA, USA), rabbit
anti-TRIF (1:1000, cell signaling, Danvers, MA, USA), mouse anti-MAVS (1:1000, Santa Cruz, Dallas,
TX, USA), mouse anti-TLR3 (1:1000, Abcam, CAMB, UK), mouse anti-TLR8 (1:1000), rabbit anti-TLR7
(1:1000, both from Thermo-Fisher Scientific, Waltham, MA, USA), rabbit anti-MDA5 Ab (1:2000,
Enzo Life Sciences, Farmingdale, NY, USA), rabbit anti-RIG-I (1:1000, Pro-Sci, San Diego, CA, USA),
and mouse anti-β-actin (1:20,000, Sigma-Aldrich, St. Louis, MO, USA). Subsequently, the membrane
was probed with anti-mouse or anti-rabbit secondary antibody conjugated with horseradish peroxidase
(1:5000, Jackson ImmunoResearch Laboratories, St. Louis, USA). The protein was detected with
a chemiluminescence reagent (PerkinElmer, Waltham, MA, USA) and a ChemiTM imaging system
(Bio-rad, Hercules, CA, USA).

2.6. RNA Isolation and RT-PCR

The total RNA was collected by TRI reagentTM solution (Thermo-Fisher Scientific, Waltham,
MA, USA) at various times. The cells were homogenized by TRI reagent solution and mixed with
chloroform. The homogenate was incubated for 5 min at room temperature and centrifuged at 12,000× g
for 15 min at 4 ◦C. The aqueous phase was transferred to fresh tubes. The aqueous phase containing
RNA was added with an equal amount of isopropanol and incubated at room temperature for 10
minutes. The mixture was centrifuged at 12,000× g for 10 min at 4 ◦C and the supernatant was removed.
The RNA pellet was washed by 1 ml 75% ethanol at 7000× g for 5 min at 4 ◦C. The 75% ethanol was
removed and the RNA pellet was air dried at room temperature. The RNA pellet was then dissolved by
sterile water. One microgram of total RNA was used for cDNA synthesis. The synthesis of cDNA was
performed with using RevertAid First Strand cDNA Synthesis Kit (Thermo-Fisher Scientific, Waltham,
MA, USA). One µL of cDNA sample with 5 µM primers was performed for the qPCR and SYBR green
(KAPA Biosystems, Wilmington, MA, USA) was used as the quantifying expression. qPCR assay was
carried out in a 384-well plate and analyzed by Roche Lightcycle 480 (Roche, Basel, SW). Each sample
was assayed in triplicates and 18S rRNA was used as a reference gene. The relative quantification
of each gene was analyzed by 2−∆∆CT method. The primers were designed according to the gene
sequence published in NCBI (Table 1).

2.7. siRNA Knockdown

The cells were seeded in 12-well plates and incubated overnight. The siRNAs specific for
TLR3, TLR7, TLR8, RIG-I, and MDA-5, as well as scrabble siRNA, were used in this study
(all from Sigma-Aldrich, St. Louis, MO, USA). The stock of siRNA was prepared in 100 µM with
RNase-free distilled water and the working concentration was 100 nM. Lipofectamine 2000 RNAiMAX
(Thermo-Fisher Scientific, Waltham, MA, USA) was used for siRNA transfection, and reagent A and B
were prepared. Reagent A contained siRNA diluted in 100 µL opti-MEM and reagent B contained
4 µL lipofectamine 2000 RNAiMAX diluted in 100 µL opti-MEM. Reagent A was added to reagent B
and incubated for 5 min at room temperature. The cells were washed once with PBS and fresh culture
medium was added to the cells. The mixture of reagent A and B was added to the cells and incubated
at 37 ◦C with 5% CO2 for 72 h.
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Table 1. Primers used in this study.

Genes Sequence (5′–3′)

EV71 5′UTR Forward CCC TGA ATG CGG CTA ATC C

Reverse ATT GTC ACC ATA AGC AGC CA

Human IFN Forward AGA AGG AGG ACG CCG CAT TG

Reverse TCA GTT TCG GAG GTA ACC TG

Human TLR3 Forward AAG GGT GGC CCT TAA AAA TG

Reverse GTT TCC AGA GCC GTG CTA AG

Human TLR8 Forward CAG AGC ATC AAC CAA AGC AA

Reverse GCT GCC GTA GCC TCA AAT AC

Human MDA5 Forward AGG AGT CAA AGC CCA CCA TCT G

Reverse ATT GGT GAC GAG ACC ATA ACG GAT A

Human ISG56 Forward TCT CAG AGG AGC CTG GCT AAG

Reverse CCA CAC TGT ATT TGG TGT CTA GG

Human MxA Forward TTC AGC ACC TGA TGG CCT ATC

Reverse TGG ATG ATC AAA GGG ATG TGG

Human 18S rRNA Forward GTA ACC CGT TGA ACC CCA TT

Reverse CCA TCC AAT CGG TAG TAG CG

2.8. In Vitro Proteinase Cleavage Assay

The protein extracts of SF268 and 293T cells were prepared upon treatment with CA630 lysis
buffer (1% CA630, 50 mM Tris-base, 150 mM NaCl, pH8.0, without protease inhibitor) for 30 min on
ice. The cells were harvested and centrifuged at 13,000 rpm for 10 min at 4 ◦C and the supernatants
were collected. 30 µg of SF268 or 293T protein extract was incubated with 15 µg of viral proteinase
EV71 3C or EV71 3CC147S (kindly provided by Dr. Shin-Ru Shih, Chang Gung University, Taiwan)
and cleavage buffer (50 mM Tris-HCl, 50 mM NaCl, 5 mM DTT and 1 mM EDTA, pH 7.5) at a total
volume of 15 µL. The mixture was incubated for 4 h at 37 ◦C and the signal of proteolytic cleavage was
analyzed by immunoblotting.

2.9. IFN-β Antibody Blocking Assay

SF268 was seeded on 12-well plates at the concentration of 2.5 × 105 cells/well. After incubation
overnight, the cells were infected with EV71 at an MOI of 40 and then IFN-β antibody (Thermo-Fisher
Scientific, Waltham, MA, USA) was added in the fresh DMEM containing 2% FBS after virus
adsorption. The total RNA was harvested at 24 h post infection and RT-qPCR was performed
to detect viral replication.

2.10. Plaque Assay

The viruses were harvested at different time points and then quantified by plaque assay. RD cells
were expanded in DMEM/10% FBS and seeded on 6-well plates at the concentration of 5 × 105 cells/well.
After incubation overnight, the cells were infected by serially diluted virus solution. After one hour
of adsorption, the virus suspension was decanted and replaced by DMEM (supplemented with 2%
FBS and 0.3% agarose). After 96 h, the medium was removed and the cells were stained by crystal
violet solution.
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2.11. Statistical Analysis

Results were expressed as the mean ± standard deviation. Statistical significance was determined
by Student’s two-tailed t-test. Statistical significances are indicated as follows: *, p < 0.05, **, p < 0.01,
***, p < 0.001.

3. Results

3.1. EV71 Induces IFNβ Expression in Neural Cells

To examine whether EV71 infection was sufficient to induce IFNβ expression in neural cells,
human glioblastoma cell line (SF268) and neuroblastoma cell lines (IMR32 and SH-SY5Y) were cultured
and infected with EV71 at a multiplicity of infection (MOI) of 40, and the infected cells were harvested
at different time points. RT-qPCR analysis revealed that the expression levels of IFNβ increased
in a time-dependent manner (Figure 1A). To examine whether IFNβ expression is upregulated in
differentiated neuronal cells, we examined the expression of IFNβ in mock- and EV71-infected human
NSC-derived neuronal cells. RT-qPCR analysis revealed that IFNβ transcripts were also upregulated in
EV71-infected differentiated neurons (Figure 1B). Immunofluorescence staining was applied to examine
the expression of neuron-specific markers MAP2 and neuron-specific class III β-tubulin to confirm
differentiation (Figure 1C). EV71 infection was confirmed by detecting the presence of virus 3D in
MAP2 positive neurons (Figure 1C). SF268 cells were chosen for subsequent experiments because EV71
infection is able to induce more IFNβ transcripts in these cells. Expression of the EV71 5’ untranslated
region (UTR) was used to confirm EV71 infection and upregulation of IFNβ expression occurred in
a dose-dependent manner (Figure 1D). Different EV71 strains, including 2231 and BrCr, were used
to infect SF268 cells at an MOI of 40 for 12 h, and according to RT-qPCR, all tested viruses were able
to induce expression of IFNβ (Figure 1E). Taken together, our results show that IFNβ expression is
increased in various neural cell types upon EV71 infection.

3.2. EV71 Induces IRF3 Phosphorylation in Neuronal SF268 Cells

Previous studies have shown that IRF3 phosphorylation plays an essential role in the viral
induction of IFNβ in cultured cells [28]. Furthermore, IRF3 has been demonstrated to be important
in protecting the brain from ischemic injury [29]. We next sought to examine whether IRF3 is
phosphorylated in SF268 cells in response to EV71 infection. Double immunofluorescence staining
of mock- and EV71-infected cells was used to reveal the localizations of the EV71 3D protein and
phosphorylated IRF3 (pIRF3) in infected SF268 cells (Figure 2A), and pIRF3 was detected in the nucleus
of the infected cells. The percentages of double and single positive cells were counted and the results
were as shown (Figure 2B). We noticed that some EV71 infected cells were absent for pIRF3 expression.
The time needed for virus antigen expression and IRF3 phosphorylation may differ and not all infected
cells were at the same stage of infection. Therefore, the phosphorylation of IRF3 cannot be detected
in all viral antigen positive cells. Additionally, total protein was extracted from the infected cells
at different time points, and the levels of pIRF3 expression were determined by western blotting.
Our results indicated that the amount of pIRF3 increased in a time-dependent manner (Figure 2C).
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Figure 1. Enterovirus 71 (EV71) induces the expression of IFNβ in neural cells. (A) SF268, IMR32,
and SH-SY5Y cells were infected with EV71 at an multiplicity of infection (MOI) of 40, and the expression
levels of IFNβ and EV71 vRNA were examined by RT-qPCR at different time points. (B) Human neural
stem cells (hNSC)-derived neurons were infected with EV71 at an MOI of 40, and the expression levels
of IFNβ and EV71 vRNA were examined by RT-qPCR at different time points. (C) Human NSCs were
differentiated into neurons and the expression of MAP2 (i) and Neuron-specific class III beta-tubulin
(ii) was assessed by immunofluorescence staining (magnification = 200x). The differentiated neurons
were then infected with EV71 at an MOI of 40 for 24 h and double immunofluorescence staining was
applied to detect EV71 infection. Arrows point to the cells expressing EV71 3D antigen (red) and MAP2
(green)(iii); a higher magnification of white box is shown (iv). (D) SF268 cells were infected with EV71
at different MOIs for 12 h, total RNA was extracted, and RT-qPCR was applied to detect the expression
levels of IFNβ and vRNA. (E) SF268 cells were infected with EV71 2231 and EV71 BrCr at an MOI
of 40 for 12 h, and the expression of IFNβ and vRNA was detected by RT-qPCR. Asterisks indicate
values that are with statistically significant compared to mock-infected cells (*, p < 0.05, **, p < 0.01,
***, p < 0.001).
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Figure 2. EV71 infection induces IRF3 phosphorylation. Cells were seeded and infected with EV71
at an MOI of 40 for 12 h. (A) Expression of pIRF3 and viral protein 3D was examined by double
immunofluorescence staining. Mock-infected cells were used as negative controls; cells transfected
with poly(I:C) were applied as positive controls (magnification = 200×). Arrows indicate the cells were
positive stained with anti-EV71 3D and anti-pIRF3 antibodies. (B) Percentages of pIRF3-positive and
negative cells were counted in EV71-infected cells. (C) Cells were infected with EV71 at an MOI of 100.
Western blot analysis was performed to detect expression of total IRF3 (T-IRF3), phosphorylated IRF3
(P-IRF3), and viral protein 3CD. Expression of β actin was used as a control. Asterisks indicate values
that are statistically significant compared to mock-infected cells (*, p < 0.05, **, p < 0.01, ***, p < 0.001).

3.3. EV71 Cleaves TRIF and MAVS in SF268 Cells

SF268 and RD cells were infected with EV71 at the MOI of 40, and the expression levels of
MAVS and EV71 VP were detected by western blotting. The results revealed that MAVS protein was
cleaved in EV71 infected RD cells after nine hours of infection. However, the cleaved protein was
hardly to be detected in EV71-infected SF268 cells (Figure 3A). Similar results were observed in TRIF
protein: the expression levels were significantly degraded in RD cells, but not in SF268 cells (Figure 3B).
Previous studies reported that EV71 can inhibit induction of the IFN response through the 2A and
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3C proteases, which cleave MAVS and TRIF, respectively, and the activities of viral proteases have
been used to explain why IFNβ is not upregulated in EV71-infected RD and HeLa cells [26,30]. As the
absence of degradation of MAVS and TRIF in SF268 cells at early stages of infection, we postulated
that the difference could be due to the low viral protein levels in these cells. To test this, SF268 and
RD cells were infected with EV71 at the same MOI, and expression levels of various viral proteins
were examined by immunoblotting analysis. Our results revealed that much more viral proteins
were synthesized in RD cells compared to SF268 cells (Figure 3C). Nevertheless, it is possible that the
protease activities of viral proteins could be affected by cellular environment. To evaluate whether the
ability of viral proteins to cleave TRIF and MAVS proteins is cell type-dependent, SF268 and RD cells
were infected with EV71 at MOIs of 40 and 1, respectively. Western blotting was performed to detect
expression levels of MAVS and viral protein. Based on our results, EV71 is able to cleave MAVS in
SF268 cells with an efficiency similar to that observed in RD cells (Figure 3D). Next, SF268 cells were
transfected with 3xflag-TRIF-myc and then with 3C-EGFP, and TRIF and 3C expression was analyzed
by immunoblotting. Levels of TRIF protein were decreased in SF268 cells at 12 hours after transfection
of the 3C-containing plasmid (Figure 3E). However, in RD cells, TRIF expression was drastically
decreased at eight hours post-transfection, which might be explained by the distinct transfection
efficiencies of different cell types. An enzymatic digestion assay was also applied to assess whether
SF268 cells contain proteins that block the action of EV71 3C. Purified wild type (WT) 3Cpro and mutant
3Cpro (C147S) were incubated with lysates harvested from SF268 and 293T cells, and western blotting
results showed that TRIF expression was affected by WT 3Cpro, but not the mutant 3Cpro(C147S)
(Figure 3F), suggesting that SF268 cell lysates did not contain components that inhibit the activity of
the viral 3C protease. Our results revealed that viral proteases can cleave MAVS and TRIF in both cell
types. Thus, EV71-induced IFNβ expression in SF268 cells is not involved with the cellular factors that
affect protease activity in cleaving TRIF and MAVS.

3.4. EV71 RNA Induces IFNβ Expression via TLR3, TLR8, and MDA-5

IFNβ expression was not upregulated in SF268 cells treated with UV-irradiated EV71 viral particles,
which cannot actively replicate in host cells (Figure 4A). This observation suggests that the binding of
viral particles to receptors is not sufficient to induce type I IFN expression. To determine whether viral
RNA (vRNA) can induce IFNβ, EV71 vRNA was transfected into SF268 cells, and IFNβ transcript
levels were measured. RT-PCR results showed that the expression levels of IFNβ were increased
in a dose-dependent manner (Figure 4B). To further identify which PRRs are responsible for the
EV71-induced type I IFN response, we performed a knockdown experiment by transfecting siRNAs
specific for TLR3, TLR7, TLR8, RIG-I, and MDA5 and then analyzed IFNβ expression by RT-PCR
after EV71 infection. Knockdown efficiencies were confirmed by western blotting and our results
demonstrated that TLR3, TLR8, and MDA-5 play essential roles in mediating upregulation of IFNβ
expression upon EV71 infection (Figure 4C).
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Figure 3. MAVS and TRIF proteins are cleaved in EV71 infected SF268 and human rhabdomyosarcoma
(RD) cells. SF268 and RD cells were infected with EV71 at an MOI of 40. (A) Expression levels of
MAVS, EV71 VP, and β actin were assessed by western blot. (B) Protein levels of TRIF, EV71 3C, and β
actin were examined by immunoblot analysis. (C) Protein lysates were harvested at indicated times
from SF268 and RD cells that were mock-infected or infected with EV71. Expression levels of virus
protein 3CD, 3D, 3C, and VP were assessed by immunoblot analysis. (D) SF268 and RD cells were
infected with EV71 at MOIs of 1 and 40, respectively. After 12 h of infection, expression of MAVS,
EV71 VP, and β actin was analyzed by western blotting. (E) SF268 and RD cells were transfected with
3xflag-TRIF-myc and 3C-EGFP plasmids. Immunoblot analysis was performed to detect the expression
levels of TRIF and 3C. (F) In vitro cleavage assays were performed to assess the activities of 3C WT and
3CC147S in cleaving TRIF proteins in SF268 and 293T cells. The expression of β actin was used as an
internal control.
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Figure 4. TLR3, TLR8, and MDA-5 are responsible for inducing IFN expression. (A) SF268 cells were
infected with EV71 or UV-treated EV71 for 9 h and 12 h. Western blotting was performed to detect
expression of EV71 VP and βactin, which was applied as an internal control. IFNβ transcript expression
was examined by RT-qPCR. (B) Different amounts of EV71 viral RNA were transfected into SF268 cells
for 12 h and expression of IFN was analyzed by RT-qPCR (LF2K= lipofectamin 2000). (C) SF268 cells
were transfected with scrambled or siRNA against TLR3, TLR7, TLR8, MDA5, and RIG-I. After 48 h,
the cells were infected with EV71 at an MOI of 40 for 12 h. RT-qPCR analysis was then applied to detect
the expression levels of IFNβ. The inhibition efficiency of specific siRNAs was examined by western
blotting (sc = scramble). Asterisks indicate values that are statistically significant compared to control
cells (*, p < 0.05, **, p < 0.01, ***, p < 0.001).

3.5. EV71 vRNA Causes Higher IFNβ Expression in SF268 Cells Than in RD Cells

We speculated that enhanced IFNβ expression in SF268 cells may relate to cell-type differences
in IFNβ induction. To evaluate this hypothesis, RD and SF268 cells were seeded and infected with
EV71 at MOIs of 1 and 40, and total protein was extracted to measure expression levels. Our results
showed that viral protein expression levels were similar in RD cells infected with EV71 at an MOI of
1 and in SF268 cells infected at an MOI of 40 (Figure 5A). RT-qPCR was then performed to examine
expression of vRNA and IFNβ. Although RD cells infected with EV71 at an MOI of 1 and SF268 cells
infected with EV71 at an MOI of 40 expressed similar amounts of vRNA at 9 h p.i., 10 times more
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IFNβ transcripts were observed in EV71-infected SF268 cells (Figure 5A). These results indicate that
SF268 cells are potent producers of IFN. Different amounts of EV71 vRNA were transfected into SF268
and RD cells, and we found that RD cells transfected with 0.25 µg EV71 vRNA yielded more virus
RNA than did SF268 cells transfected with 0.5 µg EV71 vRNA (Figure 5B). However, much higher
levels of IFNβ transcripts were detected in SF268 cells transfected with 0.5 µg EV71 vRNA than in RD
cells transfected with 0.25 µg vRNA (Figure 5B). Therefore, in comparison to RD cells, SF268 cells may
produce more IFNβ in response to virus insult.

To investigate which pathways are involved in efficient IFNβ gene induction in SF268 cells,
TLR3, -8, and MDA-5 agonists were transfected into RD and SF268 cells for comparison. According
to our previous data, the transfection efficiency for SF268 cells is approximately half that for RD
cells, thus, different doses of agonists were utilized. SF268 and RD cells were treated with poly(A:U),
a TLR3 agonist, for 12 h, and IFNβ expression levels were examined by RT-qPCR. Significantly more
IFNβ transcripts were observed in SF268 cells than in RD cells (Figure 5C). Similarly, transfection of
motolimod and poly(I:C)_HMW also induced a stronger IFNβ response in SF268 cells than in RD
cells (Figure 5C). Next, the expression levels of TLR3, TLR8, and MDA-5 were assessed by RT-qPCR,
revealing that mRNA expression of TLR3, TLR8, and MDA-5 was higher in SF268 cells than in RD
cells (Figure 5D). In addition, the protein expression levels of TLR3, TLR8, and MDA-5 were examined
by western blot analysis (Figure 5E). Our results revealed that higher amounts of TLR3 and MDA-5
proteins were expressed in SF268 cells than in RD cells.

3.6. EV71 Infection Induces Expression of ISGs

Secreted IFNβ can interact with IFNα/β receptors to activate expression of IFN-stimulated
response element (ISRE)-containing genes. Neurons have been shown to be able to respond to IFNβ
by upregulating transcription of CXCL10, CCL-5, and IRF7 [21], though a recent report showed
that levels of IFNAR1 decrease in response to EV71 infection, which was attributed to inhibition of
downstream ISG expression [8]. To examine whether expression of ISGs can be activated by EV71,
SF268 cells were infected with EV71 or transfected with poly(I:C), and RT-PCR was applied to assess
TLR3, ISG56, and MxA expression. Although the transcript levels of these three genes were increased
in a time-dependent manner, we noticed that the increases in MxA and ISG56 levels in infected cells
were less significant than those observed in cells stimulated with poly (I:C) (Figure 6A). To examine the
roles of IFNβ in EV71-infected cells, secreted IFNβ was blocked by adding anti-IFNβ antibodies, and
the expression of vRNA was analyzed by RT-PCR. Based on the results, IFNβ neutralization increased
the expression levels of vRNA (Figure 6B). Therefore, IFNβ secreted by SF268 cells interacts with other
cells to restrict viral growth.
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Figure 5. Transfection of EV71 viral RNA induces more IFN transcripts in SF268 cells than in RD cells.
SF268 and RD cells were infected with EV71 at MOIs of 1 and 40, as indicated, and samples were
collected at different time points. (A) Total protein was isolated and subjected to immunoblotting to
detect expression of EV71 viral protein 3D and VP; β actin was used as an internal control. RT-qPCR
was performed to detect the expression levels of EV71 vRNA and IFNβ. (B) EV71 genomic RNA
(0.5 and 0.25 µg) was transfected into SF268 and RD cells, respectively, and the expression levels
of EV71 vRNA and IFNβ were examined by RT-qPCR. (C) RD and SF268 cells were transfected
with poly(A:U), poly(I:C)_HMW, and motolimod with lipofectamine 2000. Total RNA was collected
at 12 h post transfection and RT-qPCR was performed to detect the expression levels of IFNβ.
(LF2K = lipofectamine 2000) (D) RT-qPCR was performed to assess the expression levels of TLR3, TLR8,
and MDA-5. (E) The expression levels of TLR3, MDA-5, and TLR8 were assessed by western blotting.
Asterisks indicate values that are statistically significant compared to mock-infected cells (*, p < 0.05,
**, p < 0.01, ***, p < 0.001).
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Figure 6. EV71 induces expression of interferon-stimulated genes (ISGs) in SF268 cells. (A) SF268 cells
were infected with EV71 at an MOI of 40 or transfected with poly(I:C). Total RNA was extracted and the
expression levels of MxA, ISG56, and TLR3 mRNA were determined by RT-qPCR. (B) SF268 cells were
infected with EV71 at an MOI of 40 in the presence or absence of anti-IFNβ antibodies, after which
expression of vRNA was analyzed by RT-qPCR. Asterisks indicate values that are statistically significant
compared to mock-infected cells (*, p < 0.05, **, p < 0.01, ***, p < 0.001).

4. Discussion

Accumulating evidence demonstrates that neuronal cells can produce IFNβ in response to viral
infections. For example, Theiler’s virus and La Crosse virus induce IFN production in the brain neurons
of infected animals [20]. Moreover, differentiated NT2-N cells secrete IFNβ in response to rabies virus
infection [21]. A recent study demonstrated that Sabin attenuated type 1 poliovirus-induced IFNβ
expression in SK-N-SH cells [31]. However, knowledge regarding the abilities of other non-polio
neurotropic enteroviruses to induce type I IFN production in human neuronal cells is limited. To the
best of our knowledge, this is the first paper to show that EV71 can induce IFNβ expression in neural
lineage cells.

Several members of the Picornaviridae family have evolved strategies to inhibit IFN production by
interfering with the cascades involved in the induction of type I IFN expression [32,33], and thorough
studies have been performed to investigate the inhibitory effect of EV71 on innate immune response
regulation. It has recently been shown that EV71 3Cpro can cleave TRIF and thus suppress the
transcription of IFNβ initiated by RIG-I recognition [25,26]. Furthermore, 2Apro targets MAVS and
thus reduces IFNβ expression [34]. A previous study also demonstrated that EV71 3Cpro inhibits
the TLR3-mediated innate immune response by blocking TRIF [26]. The results of these studies
suggest that EV71 viral proteins can efficiently suppress IFNβ induction in host cells. However,
because we can observe enhanced expression of IFNβ transcripts in neural cells, we assumed that this
phenomenon might be attributed to postponed expression of viral proteins in infected neural cells and
efficient simulation of IFNβ transcription by vRNA. Nevertheless, other factors may also contribute to
EV71-induced IFNβ upregulation in these specific host cells.

The translation efficiency of enteroviruses is affected by both viral and cellular factors. It has been
demonstrated that the lower translational efficiency of Sabin-PV correlates with its superior ability to
induce type I IFN production in neuronal cells when compared to that of wild type PV [31]. Thus,
IFNβ induction may not be obvious in RD cells because viral proteins are expressed in large amounts
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at the early stage of infection. In contrast, EV71 viral protein expression levels are significantly lower
than those observed in RD cells. Accordingly, the low translation activity of viral proteins may be in
part attributed to the significant IFNβ induction in EV71-infected SF268 cells.

TLR3 has been demonstrated to cause an antiviral response in bronchial epithelial cells infected
with rhinovirus [35]. In addition, TLR3-mediated type I interferon signaling is important in limiting
the replication of CVB3 in cells [36]. A recent study also demonstrated that silencing TLR3 impairs
IFNβ expression in EV71-infected immune cells [37]. Except TLR3, EV71 infection has been shown to
increase expression of TLR7 and -8 in brain tissues from fatal EV71 cases [38]. Additionally, TLR8 is
associated with the cardiac inflammatory responses induced by infection with Coxsackie B viruses [39].
These findings indicate that TLR3 and TLR8 play roles in enterovirus infection. As our results reveal
that TLR3 and TLR8 play essential roles in mediating IFN upregulation in SF268 cells, TLR3 and -8
may play essential roles in mediating EV71-induced IFNβ induction.

In addition to TLRs, neurons are equipped with functional RLRs such as RIG-I and MDA-5 [40].
Recent studies have shown that JEV infection activates neural production of proinflammatory cytokines
including IL-6, IL-12p70, MCP-1, IP-10, and TNF-α via RIG-I-dependent pathways, and that ablation
of RIG-I in neurons results in increased viral load [41]. Furthermore, Co et al. demonstrated that
simian immunodeficiency virus (SIV) infection enhances expression of RIG-I and MDA-5 in the brains
of infected monkeys [42]. Our knockdown experiments revealed that IFNβ mRNA expression is
dependent on MDA-5, in accordance with the results obtained by Kuo et al. [43].

Differentiated neural cells are known to express more TLR3 than undifferentiated neural
progenitors and thus evoke more potent immune responses [39]. Therefore, we hypothesized that
enhanced IFNβ expression in neural cells may involve with IFNβ induction upon PAMP stimulation.
Furthermore, our vRNA transfection experiments showed that when similar amounts of vRNA were
detected in SF268 and RD cells, many more IFNβ transcripts were present in SF268 cells. Poly(A:U),
motolimod, and poly(I:C)_HMW, agonists for TLR3, TLR8, and MDA-5, respectively, stimulate SF268
cells to produce more IFNβ transcripts in a dose-dependent manner. We also demonstrated that
TLR3 and MDA-5 protein expression levels were significantly higher in SF268 cells than in RD cells.
The discrepant PRR expression patterns between these two cell types may be associated with their
different IFNβ induction capacities. Interestingly, our results showed that in addition to SF268
cells, other neural lineage cells are also capable of producing IFNβ when infected by EV71. Hence,
these neural cells may also have superior ability to upregulate IFN expression. However, more
experiments need to be performed to support this conclusion.

In summary, our results demonstrate that EV71 infection is able to upregulate expression of IFNβ
in neural cells via TLR3, TLR8, and MDA-5, which may be associated with inefficient translation of
EV71 RNA in neuronal cells and the superior ability of neural cells to produce IFNβ transcripts upon
recognizing the virus. Additionally, IFNβ secreted by infected SF268 cells can interact with cells to
limit viral growth, which is in accordance with previous observations [3,5–7]. Interestingly, MxA is the
ISG that is able to regulate cell cycles [44]. A recent study showed the evidence that replication of EV71
could be affected by cell cycle arrest [45]. However, more experiments have to be performed to link cell
duplication and anti-viral activities of IFNβ. The difference in IFNβ-inducing abilities in neural and
RD cells reveals the unique properties of neural cells in restricting viral replication.
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