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Abstract

The most commonly used models for estimating measures of latent variables from polyto-

mous rating scale data are the Andrich rating scale model and the Samejima graded

response model. The Andrich model has the undesirable property of estimating disordered

rating category thresholds, and users of the model are advised to manipulate data to force

thresholds to come out ordered. The Samejima model estimates ordered thresholds, but

has the undesirable property of estimating person measures on a non-invariant scale—the

scale depends on which items a person rates and makes comparisons across people diffi-

cult. We derive the rating scale model logically implied by the generally agreed upon defini-

tion of rating scale—a real line partitioned by ordered thresholds into ordered intervals

called rating categories—and show that it estimates ordered thresholds as well as person

and item measures on an invariant scale. The derived model turns out to be a special case

of the Samejima model, but with no item discrimination parameter and with common thresh-

olds across items. All parameters in our model are estimated using a fast and efficient

method called the Method of Successive Dichotomizations, which applies the dichotomous

Rasch model as many times as there are thresholds and demonstrates that the derived

model is a polytomous Rasch model that estimates ordered thresholds. We tested both the

Method of Successive Dichotomizations and the Andrich model against simulated rating

scale data and found that the estimated parameters of our model were nearly perfectly cor-

related with the true values, while estimated thresholds of the Andrich model became nega-

tively correlated with the true values as the number of rating categories increased. Our

method also estimates parameters on a scale that remains invariant to the number of rating

categories, in contrast to the Andrich model.
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Introduction

Measures of latent variables are often estimated from rating scale data. For example, in medical

research it is common for disease severity, level of disability or health related quality of life to

be estimated on an interval scale from a set of ordinal ratings that patients assign to items on

health status questionnaires [1]. Examples include patient reported outcome measures

(PROM) such as the SF-36 [2], and clinician judgments of patient signs, symptoms or func-

tional ability such as the Functional Independence Measure [3], Hamilton Depression Rating

Scale [4] and Global Assessment of Functioning [5]. The magnitude of a latent disease severity

variable may also be estimated from combinations of ordinal ratings and continuous measure-

ments of physical variables, with each observation being treated as a different item [6].

Ordinal ratings for all person-item combinations are analyzed using a probabilistic conjoint

measurement model to estimate the magnitude of the latent trait for each person (called the

person measure) and the sensitivity to that trait of each item (called the item measure). The two

models most commonly used to estimate person and item measures from ordinal ratings are

the Andrich rating scale model [7] (a polytomous Rasch model) and the Samejima graded

response model [8] (a polytomous Item Response Theory [IRT] model). Both models also esti-

mate rating category “thresholds”, which are the estimated boundaries between neighboring

rating categories. Because rating categories are by definition ordered, rating category thresh-

olds should also be ordered. The Samejima model always estimates ordered thresholds while

the Andrich model often estimates disordered thresholds. For example, the Andrich model

might estimate the boundary between rating categories 2 and 3 to lie below rather than above

the estimated boundary between rating categories 1 and 2.

Over the past three decades the Andrich model has been repeatedly challenged because of

its disordered thresholds problem [9–12]. Proponents of the Andrich model interpret model

estimates of disordered thresholds as prima fascia evidence of problems with the data [13,14].

They speculate that the putative data problems are a consequence of a flawed rating scale

design that gives respondents more categories than they can discriminate reliably. This line of

reasoning is circular: thresholds are expected to be ordered, so when the model generates dis-

ordered thresholds it must mean there is a problem with the data. What is not being consid-

ered in this reasoning is that disordered thresholds are actually pointing to a problem with the

model. The problem is not just an academic one. When estimated thresholds come out disor-

dered, users are advised to merge two neighboring rating categories of their choice into a single

rating category (equivalent to removing a threshold) and redo the analysis as many times as

necessary until all remaining threshold estimates come out ordered. This post hoc process of

rescoring data for the explicit purpose of estimating ordered thresholds is simply data manipu-

lation to fit expectations. Because of the popularity of the Andrich model, such post hoc rescor-

ing of data is being practiced across a wide range of fields. For example, in health care

research, rescoring has been applied to the development and validation of questionnaires for

Parkinsons disease, lung cancer, rheumatoid arthritis and weight loss, as well as many other

disorders [15–23].

Technically, both the Samejima model and the Andrich model estimate average thresholds

and not the thresholds used on each trial. However, one can prove from the mathematical defi-

nition of rating scale—a real line partitioned by ordered thresholds into ordered intervals

called rating categories—that average thresholds must be ordered if thresholds on every trial

are ordered. To prove this, suppose that on trial k a person rates an item using a rating scale

defined by L > 0 individual thresholds {τh,k: 1� h� L} where τh,k < τh+1,k for all h. These

L ordered thresholds partition the real line into L + 1 rating categories: C0 = (−1, τ1,k),

Ch = [τh,k, τh+1,k) for 1� h� L − 1, and CL = [τh,k,1), where we use half-open intervals to

An improved polytomous Rasch model

PLOS ONE | https://doi.org/10.1371/journal.pone.0206106 October 18, 2018 2 / 14

https://doi.org/10.1371/journal.pone.0206106


ensure that every point on the real line belongs to precisely one rating category. Because

τh,k < τh+1,k for all h on every trial k, average rating category thresholds for N trials must satisfy

th ¼
1

N

PN
k¼1

th;k <
1

N

PN
k¼1

thþ1;k ¼ thþ1 for all h. Thus, no rating scale model should ever esti-

mate disordered thresholds.

The primary alternative to the Andrich model and other polytomous Rasch models is the

Samejima model, an IRT model that always estimates ordered thresholds. The primary objec-

tion to the Samejima model is that, unlike the Andrich model, its estimated person and item

measures lie on a scale where the unit of measurement can change depending on the item,

which makes the interpretation of the estimated scale problematic. Each item lies on its own

scale as a consequence of the model’s item discrimination parameter which converts what

would otherwise be a measurement model into a descriptive statistical model that violates a

fundamental principle of measurement called noninteractive conjoint additivity [24, 25].

Valid Rasch models, including the Andrich model, are constrained to estimate all person and

item measures on an invariant scale.

Another problem with the Samejima model is that it combines all sources of trial by trial

deviations from its estimated person measures, item measures and thresholds into a single

error term without explicitly showing what constraints are placed on the individual sources of

error. For example, it is not clear what assumptions the Samejima model makes about the loca-

tions of individual thresholds on any trial. Thus, while the Samejima model can be easily modi-

fied to estimate scale-invariant measures by removing its item discrimination parameter, a

derivation of the model from plausible and generally agreed upon assumptions about the

sources and nature of variability in observed responses to ordinal rating scale instruments has

yet to be presented.

The primary goal of this paper is to derive a rating scale model that satisfies the basic princi-

ples of measurement from two basic assumptions: 1) the generally agreed upon mathematical

definition of rating scale, and 2) an assumption about how deviates from estimated person

measures, item measures and thresholds are distributed as the number of trials increases. The

derived model turns out to be a special case of the Samejima model. We show that all parame-

ters in the derived model can be estimated through repeated application of the dichotomous

Rasch model, which is the model both the Samejima and Andrich models reduce to when

there are only two rating categories. This new estimation method, called the Method of Succes-

sive Dichotomization (MSD) shows that the derived model is a polytomous Rasch model that

estimates ordered thresholds. We tested MSD against the Andrich model using simulated rat-

ing scale data that ensured there was "no problem with the data". Despite there being no prob-

lem with the data, the Andrich model still estimated disordered thresholds. All estimated

parameters of MSD were nearly perfectly correlated with the true values.

Methods

Deriving a rating scale model from first principles

The derivation of any rating scale model should begin with a definition of rating scale. The

generally accepted mathematical definition of rating scale is a real line partitioned by ordered

thresholds into ordered intervals called rating categories. To ensure that every point on the

real line belongs to precisely one rating category, the L + 1 rating categories on trial k are

defined to be C0 = (−1, τ1,k), Ch = [τh,k, τh+1,k) for 1� h� L − 1, and CL = [τL,k,1). Thresh-

olds {τh,k: 1� h� L} may vary from trial to trial, but on every trial they must remain ordered.

This assumption of threshold ordering may seem unassuming, but as we will show later the

Andrich model does not require thresholds to be ordered on any trial.
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The rating person i assigns to item j on trial k depends on the person measure βi,k, the item

measure δj,k, and the set of thresholds {τh,k: 1� h� L} used by person i on trial k. For conve-

nience, we will let subscript k in τh,k be a universal index across all trials and all persons in the

sample. Thus, if there are N persons and M items and each person rates each item just once,

then k 2 {1, . . ., NM}. By convention, the rating person i assigns to item j on trial k is the rating

category within which βi,k − δj,k lies (rather than the interval in which δj,k − βi,k lies). Conceptu-

ally, βi,k − δj,k represents a comparison of the magnitude of a person’s trait relative to that of

the item.

Our goal is to estimate person measures, item measures and rating category thresholds on

an invariant scale. All parameters we wish to estimate are expected values. If we write bi;k ¼

bi þ εbi ;k; dj;k ¼ dj þ εdj;k and th;k ¼ th þ εth ;k, where βi, δj and τh are expected values and

εbi ;k; εdj;k and εth ;k are deviates, then our goal is to estimate βi, δj and τh for all i, j and h. To esti-

mate all parameters on an invariant scale, it is necessary that the unit of measurement does not

depend on which item is rated, which person rates the item, or which rating is assigned to the

person/item encounter (i.e., which thresholds were used on a particular trial). In both the

Andrich and Samejima models, the units of measurement are functions of the variance in the

distributions of the error terms. Thus, to estimate parameters on an invariant scale, we will

assume that as k!1, the distribution of εbi ;k is identical for all persons i, the distribution of

εdj;k is identical for all items j, and the distribution of εth ;k is identical for all thresholds h.

With these assumptions, we can calculate the probability of observing any rating. Person i
will assign the lowest rating C0 to item j when βi,k − δj,k< τ1,k, or equivalently, when

bi � dj � t1 < εt1 ;k � εbi ;k þ εdj;k. Using the shorthand notation γij = βi − δj and defining φ(ε)

to be the distribution of the combined deviate εth ;k � εbi ;k þ εdj;k as k!1, the probability

pij(C0) of person i assigning rating C0 to item j becomes

pijðC0Þ ¼

Z1

gij � t1

φðεÞdε ð1Þ

More generally, φ(ε) represents the distribution of the combined deviate εth;k � εbi ;k þ εdj ;k
for any h as k!1 because the distribution of εth ;k was assumed to be identical for all h. This

means that
R1
gij� th

φðεÞdε represents the probability person i rates item j with some rating Cq

where q< h. Therefore, the difference

pijðChÞ ¼

Z1

gij � thþ1

φðεÞdε�
Z1

gij � th

φðεÞdε ð2Þ

specifies the probability of person i assigning rating Ch to item j, for 1� h� L − 1. For the spe-

cial case where h = L, we have

pijðCLÞ ¼ 1 �

Z1

gij � tL

φðεÞdε ð3Þ

Eqs 1–3 represent the rating scale model implied by the mathematical definition of rating scale

and the assumption that the combined error term has distribution φ(ε) as k!1 regardless of

which item is rated, which person rated the item, or which rating category was observed. Esti-

mated thresholds are always ordered using Eqs 1–3 because disordered thresholds produce
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negative probabilities, which are undefined. Thus, all valid sets of candidate thresholds in a

maximum likelihood estimation (MLE) using Eqs 1–3 must be ordered.

Comparison to the Samejima model. Eqs 1–3 represent a special case of the Samejima

model [8] with no item discrimination parameter and with common thresholds across items.

Stated differently, Eqs 1–3 are the same as Muraki’s modified graded response model

(MGRM) [26] with no item discrimination parameter. The lack of an item discrimination

parameter allows the derived model to satisfy a key property of measurement, namely that the

unit of measurement remain invariant to the specific set of items each person responded to.

Our derivation also demonstrates that the MGRM, and by extension the Samejima model, is

consistent with allowing individual thresholds to lie anywhere on each trial as long as they

remain ordered. Previously it had been thought that these IRT models imply all thresholds

must be perfectly correlated across people [27].

Comparison to the Andrich model. The Andrich model [7] makes the same assumptions

we made except that it does not require thresholds to be ordered on any trial [28]. When per-

son i assigns rating Ch to item j on trial k, the Andrich model assumes that βi,k − δj,k lies both

above the set of thresholds {τq,k: q� h} and below the set of thresholds {τq,k: q> h}. Thus, the

Andrich model requires thresholds to be segregated into two different sets, but not ordered.

To estimate expected values, the Andrich model assumes that the cumulative logistic function

specifies the probability γij = βi − δj lies above or below τq. The probability γij lies above τq
becomes

pðgij > tqÞ ¼
expðgij � tqÞ

1þ expðgij � tqÞ
ð4Þ

and the probability γij lies below τq, or 1 − p(γij> τq), becomes

pðgij < tqÞ ¼
1

1þ expðgij � tqÞ
ð5Þ

The Andrich model is derived by calculating the probability p(Ch) that γij lies above all thresh-

olds {τq: q� h} and below all thresholds {τq: q> h}, assuming all events are statistically inde-

pendent:

pðChÞ ¼

Yh

q¼1
pðgij > tqÞ

YL

q¼hþ1
pðgij < tqÞ

XL

h¼0
½
Yh

q¼1
pðgij > tqÞ

YL

q¼hþ1
pðgij < tqÞ�

ð6Þ

where for notational simplicity we define p(γij> τ0)� 1 because τ0 is undefined. Eq 6 reduces

to the more familiar Andrich model equation when Eqs 4 and 5 are substituted in for the cor-

responding response probabilities:

pðChÞ ¼
exp
Xh

q¼1
ðgij � tqÞ

XL

h¼0
½exp

Xh

q¼1
ðgij � tqÞ�

ð7Þ

Because the Andrich model does not require thresholds to be ordered on any trial, it is no sur-

prise that its estimates of expected rating category thresholds frequently come out disordered.

We note that Andrich claims that all thresholds of any rating scale model must be ordered on

every trial in order to satisfy the requirements of a Guttman scale [29]. However, his model

does not satisfy this requirement.
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The method of successive dichotomizations

All parameters in Eqs 1–3 can be estimated in a fast and efficient way through repeated appli-

cation of the dichotomous Rasch model. We call this method of estimation the Method of Suc-

cessive Dichotomizations (MSD). MSD is possible because threshold τh in Eqs 1–3 is defined

to be at
Ph� 1

q¼0
pijðCqÞ ¼

PL
q¼h pijðCqÞ ¼ 0:5. This means that merging Cq−1 and Cq by removing

threshold τq 6¼ τh has no effect on the estimated location of τh (up to a choice of axis origin)

because pij(Cq−1) [ pij(Cq) = pij(Cq−1) + pij(Cq). In other words, as long as we have some means

of keeping the axis origin constant, any thresholds that remain after rescoring as well as all

other parameters in Eqs 1–3 are invariant to how data are rescored. In particular, we could

repeat this rescoring operation L − 1 times (given L thresholds) until the original data are

dichotomized and only a single threshold remains without altering the estimated location of

that threshold. In contrast, rescoring with the Andrich model leads to different parameter esti-

mates because τh is defined to be at pij(Ch−1) = pij(Ch). If we rescore by merging Ch and Ch+1,

then τh will move to a different location, namely where pij(Ch−1) = pij(Ch) [ pij(Ch+1) would

have been before rescoring.

Because Eqs 1–3 permit rescoring of data, MSD begins by constructing L different dichoto-

mized matrices {Dh: 1� h� L} from the original rating scale data where Dh maps the observed

response rij of person i to item j in the original rating scale to 0 if rij< h and to 1 if rij� h. For

each Dh, the dichotomous Rasch model can be used to estimate a person measure b̂ iðthÞ for

each person i and an item measure d̂ jðthÞ for each item j. Final MSD-estimated person and

item measures b̂i and d̂ j are simply the averages of the L different estimated person and item

measures: b̂i ¼

PL

h¼1
b̂ iðthÞ

L and d̂ j ¼

PL

h¼1
d̂ jðthÞ

L , with the axis origin chosen by convention to be

the mean item measure.

The second step of MSD is to estimate all thresholds. Each threshold can be estimated inde-

pendently of other thresholds because Dh is known and b̂i and d̂ j have already been estimated

for all i and j. Specifically, to estimate a given threhold τh, use Eqs 1–3 with Dh as the rating

scale data and with b̂i and d̂ j as known parameters rather than parameters to be estimated. The

only unknown is threshold τh, which even with a brute force MLE takes little time to estimate.

In summary, MSD is a fast and efficient means of estimating all parameters in Eqs 1–3 (code

provided [30]) because L separate MLE’s are used to estimate the person measures and item

measures (via the dichotomous Rasch model) and L separate single-parameter estimation

MLE’s are used to estimate the thresholds, which is computationally more efficient than a sin-

gle MLE estimating all person measures, item measures and thresholds.

Standard errors for each MSD estimated person or item measure can be calculated by tak-

ing the standard deviation of the L individually estimated person or item measures and divid-

ing it by
ffiffiffi
L
p

, which is the degrees of freedom. Note however that in the case of the person

measures, we must first subtract the estimated thresholds: the standard errors are calculated

on b̂iðthÞ � t̂h rather than b̂iðthÞ because the threshold (unknown in the dichotomous case) is

incorporated into the estimated person measure of the dichotomous Rasch model. Standard

errors for the thresholds come from the MLE used to estimate the thresholds: the reciprocal of

the square root of the Hessian.

MSD has a theoretical significance in addition to a practical one: it demonstrates that a spe-

cial case of the Samejima model is a polytomous Rasch model. There is no unique extension of

the dichotomous Rasch model because different assumptions can be made about how two or

more thresholds are distributed on any trial. Eqs 1–3 represent the extension of the dichto-

mous Rasch model to the polytomous case when thresholds are required to be ordered on
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every trial. The Andrich model represents the extension of the dichtomous Rasch model to the

polytomous case when thresholds are required to be segregated, but not ordered, on every

trial.

Simulations to test the models

There is currently no known way to directly observe the neural representations of thresholds,

rating scales, or the decision making process that leads to the assignment of ratings to items.

Thus, the only way to test the "accuracy" of different rating scale models is to compare parame-

ter estimates to their true values in simulations. Every simulation is based on assumptions, and

the key assumption in our simulation is that thresholds must be ordered on every trial. This is

an assumption that Andrich agrees with even if his model is logically inconsistent with it. We

also ensured that the distributions of all threshold deviates were identical across trials, and that

simulated persons had no trouble assigning ratings to items because every point on the real

line belonged to precisely one rating category. In other words, there was no "problem with the

data" as defenders of the Andrich model often claim when the Andrich model estimates disor-

dered thresholds.

The method we used for generating ordered thresholds on every trial requires some expla-

nation because the method commonly used—on each trial, keep randomly selecting a set of

thresholds until by chance all thresholds are ordered—leads to threshold distributions that dif-

fer from the distributions they were initially drawn from. For example, thresholds randomly

drawn from normal distributions will have skewed distributions if one discards all sets of dis-

ordered thresholds. Our method ensures that thresholds have the desired threshold distribu-

tion across all trials. We emphasize that our method is not in any way meant to represent how

humans select thresholds and is only a means of generating sets of thresholds with desired

properties.

Let φτ(ε) represent the desired distribution of threshold deviates and let {τh: 1� h� L} rep-

resent the desired means of the threshold distributions. Our goal will be to produce K sets of L
ordered thresholds that are not perfectly correlated with each other such that the distribution

of deviates for each threshold approaches φτ(ε) as K!1. The method has two parts. First, we

will create K sets of L ordered thresholds with the desired threshold distributions but where all

thresholds are perfectly correlated with each other. Then, we will decorrelate those thresholds

while preserving the desired threshold distributions. Begin by randomly selecting K deviates

from φτ(ε). For each deviate, add the set of L threshold means {τh} to create K sets of L ordered

thresholds that are perfectly correlated with each other. Thresholds can now be decorrelated

without altering the threshold distributions by repeating the following process a sufficient

number of times (KL iterations were sufficient for our simulations): 1) randomly choose

two of the K sets, say sets Si and Sj where 1� i< j< K, then 2) randomly choose an h where

1� h� L, and 3) switch threshold h in Si with threshold h in Sj only if switching preserves

ordering; otherwise do not modify Si and Sj. This iterative procedure allows us to generate

K sets of L ordered thresholds that are not perfectly correlated with each other such that the

deviates for each threshold have the same distribution φτ(ε) as K!1.

Results

To test MSD and the Andrich model, we simulated rating scale data in MATLAB (code pro-

vided [30]) for N = 1000 persons, M = 100 items and L = 9 thresholds (10 rating categories),

with the probability of missing data set to 10%. All true person measures, item measures and

thresholds were randomly chosen from a uniform distribution over the interval [−2,2] with

the mean item measure set to zero; thresholds were ordered (relabeled) only after being
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randomly chosen. Two types of error terms were added: a trial-by-trial error term placed on

βi,k − δj,k and a within-person threshold error term that guaranteed thresholds were different

from trial to trial. Both error terms were chosen from the standard normal distribution.

Between-person threshold error terms representing differences in average thresholds between

persons were not added after we confirmed that neither model can distinguish between a

between-person threshold error term and a difference in true person measures.

We estimated parameters using both MSD (code provided [30]) and Winsteps (software

implementing the Andrich model) and compared estimated values to the true values. Thresh-

olds came out disordered for the Andrich model, which led us to rescore data post hoc and

reduce the number of thresholds to L = 8. Once again, we compared MSD to Winsteps, and

continued this rescoring process and comparison process until Andrich model thresholds

came out ordered, which finally occurred at L = 2 thresholds. Fig 1 shows the probability

curves (solid curves)—predicted frequencies for differences between person and item mea-

sures—for the Andrich model and MSD, with the true values (dots) also plotted for compari-

son, for all cases from L = 9 to L = 2 (at L = 1 both models reduce to the same dichotomous

Rasch model and there is nothing to compare). The "accuracy" of MSD was much higher than

that of the Andrich model when the number of rating categories was large, while both models

exhibited similar accuracy with a small number of rating categories.

Fig 2 compares the cumulative distribution function of the person "infit mean squares"

(blue curves)–the ratio of the observed response variance to the expected variance, across

items for each person—to the cumulative distribution function of chi squared over degrees of

freedom (red curves) for both models from L = 9 to L = 2. The two cumulative distribution

functions should be identical if the assumption of unidimentionality is satisfied and the only

source of variance is random error [27]. MSD satisfies this assumption (an a priori assumption

in our simulations) better than the Andrich model when the number of rating categories

increases.

Fig 3 shows a key difference between the two models that has important practical conse-

quences: the slope of the best-fitting line between estimated and true item measures changes as

a function of the number of rating categories for the Andrich model while the slope remains

invariant for MSD. This means that rescoring data with the Andrich model changes the scale

on which it estimates parameters, making it difficult or impossible to compare estimated

parameters from different studies or across different conditions (e.g. pre- vs. post-treatment if

rescoring was done differently in the two conditions). With MSD, estimated parameters are

not dependent on the number of rating categories making such comparisons feasible. We note

that the scale for both models is sensitive to the combined variance of the error terms added.

For example, changing the standard deviation of the error distribution from 1 to 2 will change

the scale for both models. However, the effect of doing so can be predicted for MSD because

variance in the dichotomous Rasch model (which uses a logistic function) is defined to be

s2 ¼ p2

3a2 where a is its discrimination index. The sum of the variances in our error terms was

σ2 = 2, giving us a predicted slope of a = 1.2826. The average slope for MSD across all 9 simula-

tions in Fig 2 was 1.2546. The small difference between the predicted and average slopes might

be the consequence of using a normal distribution to generate error terms in the simulation

rather than using the logistic distribution assumed by the model.

Fig 4A shows the correlations between estimated and true thresholds for both models as a

function of the number of rating categories. MSD-estimated thresholds were in nearly perfect

agreement with the true thresholds regardless of the number of categories (r2 > 0.998 across

all conditions except with 4 rating categories where r2 = 0.97) while Andrich model thresholds

were negatively correlated with the true thresholds when the number of rating categories
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became large. This negative correlation is not specific to this particular simulation. As the

number of thresholds increases, the number of rating categories that are used infrequently

increases, and because Andrich model thresholds are defined to be at the crossing points

between neighboring probability curves (i.e. where pij(Ch−1) = pij(Ch) for any h), the probability

of these crossing points being in reversed order increases with lower frequencies of observing

Fig 1. Comparing probability curves for the Andrich model and MSD. Actual frequencies (dots) of observing rating categories as a function of differences in true

person and item measures, or gamma, compared to the predicted values (curves) from the Andrich model (left) and MSD (right). Binning of gamma was done for

the simulated data in intervals of 0.2 logits. The Andrich model becomes less accurate than MSD the greater the number of rating categories.

https://doi.org/10.1371/journal.pone.0206106.g001
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that rating. Fig 4B and 4C show how MSD thresholds and Andrich model thresholds compare

to true thresholds when there are 10 rating categories.

Estimated person and item measures from both models (not shown) were nearly perfectly

correlated with their true values [31] with a range of 0.9939� r2� 0.9970 for Andrich model

Fig 2. Comparing person infit mean squares for the Andrich model and MSD. Cumulative distribution functions of the person infit mean squares (blue curves) are

compared to cumulative distribution functions of chi square divided by degrees of freedom (red curves), for the Andrich model (left) and MSD (right). The red and

blue curves should be identical under the assumption that the only source of variance is random error. MSD satisfies this assumption better than the Andrich model as

the number of rating categories increases.

https://doi.org/10.1371/journal.pone.0206106.g002
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item measures, a range of 0.9954� r2� 0.9969 for MSD item measures, a range of 0.9607� r2

� 0.9773 for Andrich model person measures, and a range of 0.9484� r2� 0.9729 for MSD

person measures. Although data analyzed using the Andrich model result in person and item

measure estimates that are linearly related to the true values, they cannot be compared across

Fig 3. Slopes of the best-fitting line between estimated and true item measures. Slopes of the best-fitting line

between estimated and true item measures for MSD (blue squares) and the Andrich model (red triangles) are plotted

as a function of the number of rating categories. MSD estimates parameters on the same scale regardless of the number

of rating categories because it only uses the dichotomous Rasch model, while the Andrich model estimates parameters

on a scale that is dependent on the number of rating categories.

https://doi.org/10.1371/journal.pone.0206106.g003

Fig 4. Comparing estimated vs. true thresholds for the Andrich model and MSD. Correlations between estimated thresholds and true thresholds for MSD (blue

squares) and the Andrich model (red triangles). Fig 4A shows that the correlation between estimated and true thresholds is nearly perfect for MSD, with r> 0.999

across all conditions except when there were 4 rating categories where r = 0.985. The correlation between thresholds estimated by the Andrich model and the true

thresholds turned negative with a sufficiently high number of rating categories. Fig 4B shows an example of MSD thresholds vs. true thresholds with 10 rating

categories, and Fig 4C shows an example of Andrich thresholds vs. true thresholds for the same condition.

https://doi.org/10.1371/journal.pone.0206106.g004
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studies without equating scales. This can be demonstrated by calculating r2 between all 8 sets

of estimated person and item measures (i.e., combining estimates across all 8 conditions into

a single set of estimates) and their true values. The combined person measure estimates of

the Andrich model had an r2 = 0.7456 with the true values while MSD person measure esti-

mates had an r2 = 0.9103. For combined item measure estimates, the Andrich model had an

r2 = 0.7790 while MSD had an r2 = 0.9966.

Discussion

Defenders of the Andrich model have argued that estimating disordered thresholds suggests

there is a problem with the data, and not with the model, because thresholds should be ordered.

But if we assume that thresholds are ordered on every trial, then all average thresholds must be

ordered. Thus, given the assumptions Andrich himself agrees with, there is no theoretical justi-

fication for any rating scale model to estimate disordered thresholds. Conversely, we have

shown that the Andrich model itself does not require thresholds to be ordered. This calls into

question the practice of manipulating data to force the model to estimate ordered thresholds.

Our simulations also ensured there was no "problem with the data", demonstrating that the

problem lies with the Andrich model and not with the data.

We have derived the rating scale model logically implied from the generally agreed upon

definition of a rating scale as a real line partitioned by ordered thresholds into ordered inter-

vals called rating categories. Our derived model is a special case of the Samejima model with

no item discrimination parameter and with common thresholds across items. We also intro-

duced a simple, fast and efficient way of estimating all parameters in our model called the

Method of Successive Dichotomizations, or MSD. The approach used in MSD—successively

dichotomize the original rating scale data and apply the dichotomous Rasch model each

time—is similar in spirit to previous approaches that estimated parameters one rating category

at a time [32,33]. However, by repeatedly applying the dichtomous Rasch model, MSD shows

that a special case of an IRT model is the correct extension of the dichotomous Rasch model to

the polytomous case when all thresholds are required to be ordered on every trial.

MSD is an approximation to an MLE done on all parameters simultaneously, and while its

estimated parameters were nearly perfectly correlated with the true values in our simulated rat-

ing scale data, its estimates are only as good as the estimates of the dichotomous Rasch model

on each dichotomization. In particular, the dichotomizations for the lowest and highest

thresholds may lead to unreliable estimates of person and item measures if there are too few

ratings in the lowest and/or highest rating categories.

Users of the Andrich model need not redo previous analyses with MSD as long as they are

only interested in estimated person and item measures and do not plan on comparing parame-

ter estimates across studies. If however the average rating scale used by respondents is relevant

in a study, or if parameter estimates from multiple studies are to be compared, then the

Andrich model should not be used. Disordered thresholds do not define a rating scale, and

merging neighboring rating categories fundamentally alters the locations of any remaining

thresholds in the Andrich model as well as the scale upon which all parameters are estimated.
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