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Active inference is a general framework for perception and action that is

gaining prominence in computational and systems neuroscience but is less

known outside these fields. Here, we discuss a proof-of-principle implemen-

tation of the active inference scheme for the control or the 7-DoF arm of a

(simulated) PR2 robot. By manipulating visual and proprioceptive noise

levels, we show under which conditions robot control under the active infer-

ence scheme is accurate. Besides accurate control, our analysis of the internal

system dynamics (e.g. the dynamics of the hidden states that are inferred

during the inference) sheds light on key aspects of the framework such as

the quintessentially multimodal nature of control and the differential roles

of proprioception and vision. In the discussion, we consider the potential

importance of being able to implement active inference in robots. In particu-

lar, we briefly review the opportunities for modelling psychophysiological

phenomena such as sensory attenuation and related failures of gain control,

of the sort seen in Parkinson’s disease. We also consider the fundamental

difference between active inference and optimal control formulations, show-

ing that in the former the heavy lifting shifts from solving a dynamical

inverse problem to creating deep forward or generative models with

dynamics, whose attracting sets prescribe desired behaviours.
1. Introduction
Active inference has recently acquired significant prominence in computational

and systems neuroscience as a general theory of brain and behaviour [1,2]. This

framework uses one single principle—surprise (or free energy) minimization—

to explain perception and action. It has been applied to a variety of domains,

which includes perception–action loops and perceptual learning [3,4]; Bayes

optimal sensorimotor integration and predictive control [5]; action selection

[6,7] and goal-directed behaviour [8–12].

Active inference starts from the fundaments of self-organization which

suggests that any adaptive agent needs to maintain its biophysical states

within limits, therefore maintaining a generalized homeostasis that enables it

to resist the second law of thermodynamics [2]. To this aim, both an agent’s

actions and perceptions both need to minimize surprise, that is, a measure of

discrepancy between the agent’s current predictive or desired states. Crucially,

agents cannot minimize surprise directly but they can minimize an upper

bound of surprise, namely the free energy of their beliefs about the causes of

sensory input [1,2].

This idea is cast in terms of Bayesian inference: the agent is endowed with

priors that describe its desired states and a (hierarchical, generative) model of

the world. It uses the model to generate continuous predictions that it tries to

fulfil via action; that is to say, the agent activity samples the world to minimize

prediction errors so that surprise (or its upper bound, free-energy) is sup-

pressed. More formally, this is a process in which beliefs about (hidden or
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latent) states of the world maximize Bayesian model evidence

of observations, while observations are sampled selectively to

conform to the model [13,14]. The agent has essentially two

ways to reduce surprise: change its beliefs or hypotheses

(perception), or change the world (action). For example, if it

believes that its arm is raised, but observes it is not, then it

can either change its mind or to raise the arm—either way,

its prediction comes true (and free energy is minimized).

As we see, in active inference, this result can be obtained

by endowing a Bayesian filtering scheme with reflex arcs

that enable action, such as raising a robotic arm or using it

to touch a target. In this example, the agent generates a (pro-

prioceptive) prediction corresponding to the sensation of

raising alarm, and reflex arcs fulfil this prediction effectively

raising the hand (and minimizing surprise).

Active inference has clear relevance for robotic motor con-

trol. As in optimal motor control [15,16], it relies on optimality

principles and (Bayesian) state estimation; however, it has

some unique features such as the fact that it dispenses with

inverse models (see the Discussion). Similar to planning-as-

inference and KL control [17–22], it uses Bayesian inference,

but it is based on the minimization of a free-energy functional

that generalizes conventional cost or utility functions.

Although the computations underlying Bayesian inference or

free-energy minimization are generally hard, they become

tractable as active inference uses variational inference, usually

under the Laplace assumption, which enables one to summar-

ize beliefs about hidden states with a single quantity (the

conditional mean). The resulting (neural) code corresponds

to the Laplace code, which is simple and efficient [3].

Despite its success in computational and systems neuro-

science, active inference is less known in related domains

such as motor control and robotics. For example, it remains

unproven that the framework can be adopted in challenging

robotic set-ups. In this article, we ask if active inference can

be effectively used to control the 7-DoF arm of a PR2 robot

(simulated using Robot Operating System (ROS)). We present

a series of robot reaching simulations under various conditions

(with or without noise on vision and/or proprioception), in

order to test the feasibility of this computational scheme in

robotics. Furthermore, by analysing the internal system

dynamics (e.g. the dynamics of the hidden states that are inferred

during the inference), our study sheds light on key aspects of the

framework such as the quintessentially multimodal nature of

control and the relative roles of proprioception and vision.

Finally, besides providing a proof of principle for the usage of

active inference in robotics, our simulations help to illustrate

the differences between this scheme and alternative approaches

in computational neuroscience and robotics, such as optimal

control, and the significance of these differences from both a

technological and biological perspective.
2. Methods
In this section, we first define, mathematically, the active infer-

ence framework (for the continuous case). We then describe its

application to robotic control and reaching.

2.1. Active inference formalism
The free-energy term that is optimized (minimized) during

action control rests on the tuple ðV,C, S, A, R, q, pÞ [23].

A real-valued random variable is denoted by X :V� . . .! R
and x [ X for a particular value. The tilde notation
~x ¼ ðx, x0, x0 0, . . .Þ corresponds to variables in generalized coordi-

nates of motion [24]. Each prime is a temporal derivative. p(X )

denotes a probability density.

— V is the sample space from which random fluctuations v [ V

are drawn.

— Hidden states C :C� A�V! R. They depend on actions

and are part of the dynamics of the world that causes sensory

states.

— Sensory states S :C� A�V! R. They are the agent’s sen-

sations and constitute a probabilistic mapping from action

and hidden states.

— Action A : S� R! R. They are the agent’s actions and depend

on its sensory and internal states.

— Internal states R : R� S�V! R. They depend on sensory

states and cause actions. They constitute the dynamics of

states of the agent.

— A recognition density qð~Cj~mÞ, which corresponds to the

agent’s beliefs about the causes C (and brain state m describ-

ing those beliefs).

— A generative density pð~C,~sjmÞ corresponding to the density

of probabilities of the sensory states s and world states C,

knowing the predictive model m of the agent.

According to Ashby [25], in order to restrict themselves in a

limited number of states, an agent must minimize the dispersion

of its sensory and hidden states. The Shannon entropy corre-

sponds to the dispersion of the external states (here S � C).

Under ergodic assumption, this entropy equals the long-term

average of Gibbs energy

HðS,CÞ ¼ kGð~C, ~sjmÞlt

G ¼ � ln pð~C, ~sjmÞ:

9=
; ð2:1Þ

One can see that the Gibbs energy is defined in terms of the gen-

erative model. k:l is the expectation or the mean under a density

when indicated. However, agents cannot minimize this energy

directly, because hidden states are unknown by definition.

However, mathematically

HðS,CÞ ¼ HðSÞ þHðCjSÞ
¼ k� ln pð~sðtÞjmÞ þHðCjS ¼ ~sðtÞÞlt:

ð2:2Þ

With this latter equation, we observe that sensory surprise

� ln pð~sðtÞjmÞ minimizes the entropy of the external states and

can be minimized through action if action minimizes conditional

entropy. In this sense

aðtÞ� ¼ arg min
a
ð� ln pð~sðtÞjmÞÞ

~mðtÞ� ¼ arg min
~m

ðHðCjS ¼ ~sðtÞÞÞ:

9>=
>; ð2:3Þ

Unfortunately, we cannot minimize sensory surprise directly

(see equation (2.3)) as this entails a marginalization over hidden

states which is intractable

� ln pð~sjmÞ ¼ � ln

ð
pðC,~sjmÞ dC: ð2:4Þ

Happily, there is a solution to this problem that comes

from theoretical physics [26] and machine learning [27]

called variational free energy, which furnishes an upper bound

on surprise. This is a functional of the conditional density,

which minimized by action and internal states, to produce
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action and perception

aðtÞ� ¼ arg min
a

Fð~sðtÞ, ~mðtÞÞ

~mðtÞ� ¼ arg min
~m

Fð~sðtÞ, ~mÞ

Fðs,mÞ ¼ kGð~C, ~sjmÞlq þH½qð~Cj~mÞ�

¼ D½qð~Cj~mÞjjpð~Cj~smÞ� � ln pð~sðaÞjmÞ
� � ln pð~sðaÞjmÞ:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:5Þ

The term D½:jj:� is the Kullback–Leibler divergence (or cross-

entropy) between two densities. The minimizations on a and ~m

correspond to action and perception, respectively, where the

internal states ~m parametrize the conditional density q. We

need perception in order to use free energy to finesse the (intract-

able) evaluation of surprise. The Kullback–Leibler term is

non-negative, and the free energy is therefore always greater

than surprise as we can see it in the last inequality. When free

energy is minimized, it approximates surprise and as a result,

the conditional density q approximates the posterior density

over external states

D½qð~Cj~mÞjjpð~Cj~smÞ� � 0)
qð~Cj~mÞ � pð~Cj~smÞ
H½qð~Cj~mÞ� � HðCjS ¼ ~sÞ

(
:

ð2:6Þ

This completes a description of approximate Bayesian infer-

ence (active inference) within the variational framework. This

free-energy formulation resolves several issues in perception

and action control problems, but in the following, we focus on

action control. According to equation (2.5), free energy can be

minimized using actions via its effect on hidden states and sen-

sation. In this case, action changes the sensations to match the

agent’s expectations.

The only outstanding issue is the nature of the generative

model used to explain and sample sensations. In continuous

time formulations, the generative model is usually expressed in

terms of coupled (stochastic) differential equations. These

equations describe the dynamics of the (hidden) states of the

world and the ensuing behaviour of an agent [5]. This leads us

to a discussion of the agent’s generative model.
2.2. The generative model
Active inference generally assumes that the generative model

supporting perception and action is nonlinear, dynamic and

deep (i.e. hierarchical), of the sort that might be entailed by

cortical and subcortical hierarchies in the brain [28].

s ¼ gðx, v, aÞ þws

x ¼ fðx, v, aÞ þwx

_a ¼ �@aFð~s,~mÞ
_~m ¼ �D~m� @~mFð~s, ~mÞ:

9>>=
>>; ð2:7Þ

In bold, we have real-world states and in italic, internal states

of the agent. s is the sensory input, x corresponds to hidden

states, v to hidden causes of the world and a to action. Intuitively,

hidden states and causes are used by the brain as abstract quan-

tities in order to predict sensations. Dynamics over time is linked

by hidden states, whereas the hierarchical levels are linked by

hidden causes. The ~ notation means that we are using general-

ized coordinates of motion, i.e. a vector of positions, velocities,

accelerations, etc. [5]. ~s, ~n and a corresponds to sensory input,

conditional expectations and action, respectively.

One can observe a coupling between these differential

equations: sensory states depend upon action a(t) via causes

(x, v) and the functions (f, g). While action depends upon sen-

sory states via internal states ~nðtÞ. These differential equations

are stochastic owing to random fluctuations (vx, vv).
A generalized gradient descent on variational free energy is

defined in the second pair of equations. This method is termed

generalized filtering and rests on conditional expectations to pro-

duce a prediction (first) term and an update (second) term

based upon free-energy gradients that, as we see below, can be

expressed in terms of prediction errors (this corresponds to the

basic form of a Kalman filter). D is a differential matrix operator

that operates on generalized motion and D~m describes the gener-

alized motion of conditional expectations. Generalized motion

comprises vectors of velocity, acceleration, jerk, etc.

The generative model has the following hierarchical form

s ¼ gð1Þðxð1Þ, nð1ÞÞ þ vð1Þn

_x ¼ f ð1Þðx, nð1ÞÞ þ v
ð1Þ
x

..

.

nði�1Þ ¼ gðiÞðxðiÞ, nðiÞÞ þ vðiÞn

_xðiÞ ¼ f ðiÞðx, nðiÞÞ þ v
ðiÞ
x

..

.

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:8Þ

The level of the hierarchy in the generative model corre-

sponds to i. f(i) and g(i) and their Gaussian random fluctuations

vx and vv on the motion of hidden states and causes define a

probability density over sensations, causes of the world and

hidden states that constitute the free energy of posterior or con-

ditional (Bayesian) beliefs about the causes of sensations. Note

that the generative model becomes probabilistic because of

the random fluctuations (where sensory or sensor noise corre-

sponds to fluctuations at the first level of the hierarchy and at

fluctuations at higher levels induces uncertainty about hidden

states). The inverse of the covariances matrices of these random

fluctuations is called precision (i.e. inverse covariance) and is

denoted by ðPðiÞx , PðiÞn Þ.
2.3. Prediction errors and predictive coding
We can now define prediction errors on the hidden causes and

states. These auxiliary variables represent the difference between

conditional expectations and their predicted values based on the

level above. Using A � B :¼ AT � B:

_~mðiÞx ¼ D~mðiÞx þ
@~gðiÞ

@~mðiÞx

�PðiÞn ~1ðiÞn

þ @~f
ðiÞ

@~mðiÞx

�PðiÞx ~1ðiÞx �DPðiÞx ~1ðiÞx

_~mðiÞn ¼ D~mðiÞn þ
@~gðiÞ

@~mðiÞ
�PðiÞn ~1ðiÞn

þ @~f
ðiÞ

@~mðiÞn
�PðiÞx ~1ðiÞx �Pðiþ1Þ

n ~1ðiþ1Þ
n

~1ðiÞx ¼ D~mðiÞx � ~f
ðiÞð~mðiÞx , ~mðiÞn Þ

~1ðiÞn ¼ ~mði�1Þ
n � ~gðiÞð~mðiÞx , ~mðiÞn Þ

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:9Þ

~1ðiÞn and ~1ðiÞx correspond to prediction errors on hidden causes and

hidden states, respectively. The precisions PðiÞn and PðiÞx weights

the prediction errors, so that more precise prediction errors

have a greater influence during generalized filtering.

The derivation of equation (2.8) enables us to express the

gradients equation (2.7) in terms of prediction errors. Effectively,

precise prediction errors update the prediction to provide a

Bayes optimal estimate of hidden states as a continuous function

of time—where free energy corresponds to the sum of the

squared prediction error (weighted by precision) at each level

of the hierarchy. Heuristically, this corresponds to an instan-

taneous gradient ascent in which prediction errors are
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assimilated to provide for online inference. For a more detailed

explanation of the mathematics under this scheme, see [24].

2.4. Action
A motor trajectory (e.g. the trajectory of raising the arm) is pro-

duced via classical reflex arcs that suppress proprioceptive

prediction errors

_a ¼ �@aF ¼ ð@a~1
ð1Þ
n Þ �Pð1Þn ~1ð1Þn

ð2:10Þ

Intuitively, conditional expectations in the generative model

drive (top-down) proprioceptive predictions (e.g. the propriocep-

tive sensation of raising one’s own arm), and these predictions

are fulfilled by reflex arcs. This is because the only way for an

agent to minimize its free energy through action (and suppress

proprioceptive prediction errors) is to change proprioceptive sig-

nals, i.e. raise the arm and realize the predicted proprioceptive

sensations. According to this scheme, reflex arcs thus produce

a motor trajectory (raising the arm) to comply with set points

or trajectories prescribed by descending proprioceptive predic-

tions (cf. motor commands). At the neurobiological level, this

process is thought to occur at the level of cranial nerve nuclei

and spinal cord.

2.5. Application to robotic arm control and reaching
Having described the general active inference formalism, we now

illustrate how it can be used to elicit reaching movements with a

robot: the 7-DoF arm of a PR2 robot simulated using the ROS

[29] (figure 1). Essentially, in our simulations, the robot has to

reach a target by moving (i.e. raising) its arm. We see that

the key aspect of this behaviour rests on a multimodal integra-

tion of visual and proprioceptive signals [30,31], which play

differential—yet interconnected—roles.

In this robotic setting, the hidden states are the angle of the

joints ðx1, x2, . . . , x7Þ. The visual input is the position of the

end effector, here the arm of the PR2 robot. This location

ðn1, n2, n3Þ can be seen as autonomous causal states. We

assume that the robot knows the true mapping between

the position of its hand Pos and the angles of its joints. In

other words, we assume that the robot knows its forward

model and can extract the true position of its end effector in

three-dimensional coordinates into the visual space.

gðx, nÞ ¼ gðx, nÞ ¼
x
n

Pos

2
4

3
5 ð2:11Þ

If we assume a Newtonian dynamics with viscosity k and

elasticity k, then we obtain the subsequent equations of

motion that describe the true (physical) evolution of hidden

states

fðx̃, vÞ ¼

_x1

_x2

..

.

_x7

_x01
_x02

..

.

_x07

2
6666666666664

3
7777777777775
¼

x01
x02

..

.

x07
ða1 � k1x1 � k1x01Þ

m1

ða2 � k1x2 � k1x02Þ
m1

ða3 � k1x3 � k1x03Þ
m1

ða4 � k2x4 � k2x04Þ
m2

ða5 � k2x5 � k2x05Þ
m2

..

.

ða7 � k2x7 � k2x07Þ=m2

2
6666666666666666666666666666664

3
7777777777777777777777777777775

ð2:12Þ
The behaviour of the robot arm during its reaching task is

specified in terms of the robot’s prior beliefs that constitute its

generative model. Here, these beliefs are based upon a basic

but efficient feedback control. In other words, by specifying a

particular generative model, we create a robot that thinks it

will behave in a particular way: in this instance, we think it

behaves as an efficient feedback controller, as follows. Within

the joint configuration space (thanks to geometrical consider-

ations), the prior control law provides a per-joint angular

increment to be applied according to the position of the end

effector, allowing its convergence towards the target position.

In order to avoid the singular configurations of the PR2 arm,

two actions a and b are superposed. The first one is a per-joint

action: each joint tries to align the portion of arm it supports

with the target position. The second action is distributed over

the shoulder, and the elbow providing the flexion–extension

primitive in order to reach or escape the singular configurations

of the first action (e.g. stretched arm).

Let T ¼ (t1, t2, t3) be the target position in the Euclidean

space, Ji ¼ ðji1, ji2, ji3Þ the position of the joint i in W, W ¼ R3,

w ¼ T � J the vector describing the shortest path in W to reach

the target, fi ¼ Ti � J=jjTi � Jjj the unit vector linking each

joint to the arm’s distal extremity, Posi ¼ ðPosi1, Posi2, Posi3Þ
the unit vector collinear to the rotation axis of the joint i. Let ‘�’
be the dot product in W and ‘�’ the cross product. The feedback

error to be regulated to zero by the first action of the control law

for the joint i is

ei ¼ ðw� fiÞ � Posi: ð2:13Þ

Classically, the first action is designed as a PI controller that

ensures

_ei ¼ ai ¼ �ppei þ pi

ðt¼t0

t¼0

eiðtÞ dt, ð2:14Þ

where t0 is the current time and fpp,pig are two positive settings

used to adjust the convergence rate. To preclude wind-up

phenomena, the absolute value of the integral term is bounded

by amax . 0.

To operate as expected, the second action needs to predict

the influence of the ‘stretched arm’ singularity. This is
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achieved with two parameters gm and gc. They are defined as the

dot products

gm ¼
w

jjwjj �
f2

jjf2jj

����
����

gc ¼ w � f2,

9=
; ð2:15Þ

where the absolute value of gc is bounded by gmax . 0. Then, the

second action is defined as

b1 ¼ b3 ¼ b5 ¼ b6 ¼ b7 ¼ 0
b2 ¼ gmgcp p2 ðshoulderÞ
b4 ¼ �gmgcp p4 ðelbowÞ,

9=
; ð2:16Þ

where p p2 and p p4 are additional positive settings used to balance

the contribution of the two joints (roughly: p p2 ¼ p p4=2). Finally,

the controller provides the empirical prior

Fi ¼ ai þ bi: ð2:17Þ

In practice, to obtain reasonable behaviour, the controller set-

tings were chosen as: pp ¼ 0.3, pi ¼ 0.01, amax ¼ 0.001, pp2 ¼ 2.25,

pp4 ¼ 5, gmax ¼ 0.1.

Finally, we obtain the following generative model

f ð~x,nÞ ¼

_x1

_x2

..

.

_x7

_x01
_x02
..
.

_x07

2
6666666666664

3
7777777777775
¼

x01
x02
..
.

x07
ðF1 � k1x1 � k1x01Þ

m1

ðF2 � k1x2 � k1x02Þ
m1

ðF3 � k1x3 � k1x03Þ
m1

ðF4 � k2x4 � k2x04Þ
m2

ðF5 � k2x5 � k2x05Þ
m2

..

.

ðF7 � k2x7 � k2x07Þ
m2

:

2
666666666666666666666666666666664

3
777777777777777777777777777777775

ð2:18Þ

Importantly, we see that the generative model has a very

different form from the true equations of motion. In other

words, the generative model has prior beliefs that render

motor behaviour purposeful. It is this enriched generative

model that produces goal-directed behaviour, which fulfils the

robot’s predictions and minimizes surprise. In this instance,

the agent believes it is going to move with its arm towards the

target until it touches it. The distance between the end effector

and the target is used as an error that drives the motion, as if

the end effector is pulled to the target. The ensuing movement

therefore resolves the Bernstein’s problem that tries to solve the

converse problem of pushing the end effector towards the

target (which is an ill-posed problem). This formulation of

motor control is related to the equilibrium point hypothesis

[32] and the passive motion paradigm [33,34] and, crucially,

dispenses with inverse models. Note that no solution of an

optimal control problem is required here. This is because the

causes of desired behaviour are specified explicitly by the gener-

ative or forward model (the arm is pulled to a target), and do

not have to be inferred from desired consequences; see section

Discussion for a comparison of active inference and optimal

control schemes.
3. Results
We tested the model in four scenarios. In all the scenarios, the

robot arm started from a fixed starting position and had to
reach a desired position in three dimensions with its 7-DoF

arm. We simulated various starting and desired positions,

but in this illustration, we focus on the sample problem

illustrated in figure 2, where the start position is on the

bottom-centre, and the desired position is the green dot.

The four panels of figure 2 exemplify the robot reaching

under the four scenarios that we considered. In the first scen-

ario (figure 2a), there was no noise on proprioception and

vision. In the second, third and fourth scenarios, propriocep-

tion (figure 2b), vision (figure 2c) or both (figure 2d ) were

noisy, respectively. We used noise with a log precision of 4.

As illustrated by the figures, in the absence of noise (first

scenario), the reaching trajectory is flawless and free of static

error (figure 2a). Trajectories become less accurate when

either proprioception (second scenario) or vision (third scen-

ario) are noisy, still the arm reaches the desired target

(figure 2b,c). However, when both proprioception and

vision are noisy, the arm becomes largely unable to reach

the target (figure 2d ).

A more direct comparison between the four scenarios is

possible, if one considers the average of 20 simulations

from a common starting point (figure 3). Here, the four col-

ours correspond to the four scenarios: first scenario (no

noise) is blue; second scenario (noisy proprioception) is

black, third scenario (noisy vision) is red and fourth scenario

(noisy proprioception and vision) is yellow. To compare the

trajectories under the four scenarios quantitatively, we com-

puted the sum of Euclidian distances between the position

of the end effector for each iteration of the algorithm under

the best trajectory (corresponding to scenario 1) and the

other trajectories. We obtained a difference between the

normal and noisy proprioception scenarios of 0.2796;

between normal and noisy vision scenarios of 0.143; and a

difference between the normal and noisy proprioception

and vision scenarios of 1.2169.

These differences can be better appreciated if one con-

siders the internal dynamics of the system’s hidden states

(i.e. angles of the arm) during the different conditions, as

shown in figures 4–7 for the simulations without noise,

noisy proprioception, noisy vision and noisy proprioception

and vision, respectively. The hidden states are inferred

while the agent optimizes its expectations as described

above (see equation (2.12)). In turn, action (a(t)) is selected

based on the hidden states (technically, action is part of the

generative process but not the generative model).

The four panels of figures 4–7 show the conditional pre-

dictions and prediction errors during the task. In each figure,

the top right panel shows the hidden states, and the grey

areas correspond to 90% Bayesian confidence intervals. The

figures show that adding noise to proprioception (figure 5)

makes the confidence interval much larger compared with

a standard case with no noise (figure 4). Confidence intervals

further increase when both proprioception and vision are

noisy (figure 7). The top left panel shows the conditional pre-

dictions of sensory signals (coloured lines) and sensory

prediction errors (red). These are errors on the proprioceptive

and visual input, and are small in relation to predictions. The

bottom left panel shows the true expectation (dotted line) and

conditional expectation (solid line) about hidden causes. The

bottom right panel shows actions (coloured lines) and true

causes (dotted lines). In the noisy proprioception scenario

(figure 5), one of the hidden states (top right panel) and

one action (bottom right panel) rises with time. This
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corresponds to an internal degree of freedom that does not

have any effect on the trajectory. The figures show some

slight oscillations after 20 iterations, which are due to the

fact that the arm is moving in the proximity of the target.
4. Discussion
Our case study shows that the active inference scheme can

control the seven DoFs arm of a simulated PR2 robot—focus-

ing here on the task of reaching a desired goal location from a

(predefined) start location.

Our results illustrate that action control is accurate with

intact proprioception and vision, and only partly impaired if

noise is added to either of these modalities. The comparison

of the trajectories of figure 2b,c shows that adding noise to pro-

prioception is more problematic. The analysis of the dynamics

of internal system variables (figures 4–7) helps us understand-

ing the above results, highlighting the differential roles of

proprioception and vision in this scheme. In the noisy proprio-

ception scenario (figure 5), hidden states are significantly more

uncertain compared with the reference case with no noise

(figure 4). Yet, despite the uncertainty about joint angles, the

robot can still rely on (intact) vision to infer where the arm is

in space, and thus it is able to reach the target ultimately—

although it follows largely suboptimal trajectories (in relation

to its prior beliefs preferences). Multimodal integration or com-

pensation is impossible if both vision and proprioception are

sufficiently degraded (figure 7). In the noisy vision scenario,

figure 6, noise has some effect on inferred causes but only

affects hidden states (and ultimately action selection) to a

minor extent.
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This pattern of results shows that control is quint-

essentially multimodal and based on both vision and

proprioception, and adding noise to either modality can be

(partially) compensated for by appealing to the other, more

precise dimension. However, proprioception and vision

play differential roles in this scheme. Proprioception has a

direct effect on hidden states and action selection; this is

because action dynamics depend on reflex arcs that suppress

proprioceptive (not visual) prediction errors (see §2.4). If the

robot has poor proprioceptive information, then it can

use multimodal integration and the visual modality to com-

pensate and restore efficient control. However, if both

modalities are degraded with noise, then multimodal inte-

gration becomes imprecise, and the robot cannot reduce

error accurately—at least in the simplified control scheme

assumed here, which (on purpose) does not include any

additional corrective mechanism. Adding noise to vision is

less problematic, given that in the (reaching) task considered

here, it plays a more ancillary role. Indeed, our reaching task

does not pose strong demands on the estimation of hidden

causes for accurate control; the situation may be different
if one requires, for example, to estimate the pose of a

to-be-grasped object.

The above-mentioned results are consistent with a large

body of studies showing the importance of proprioception

for control tasks. Patients with impaired proprioception can

still execute motor tasks such as reaching, grasping and loco-

motion, but their performance is suboptimal [35–38]. In

principle, the scheme proposed here may be used to explain

human data under impaired proprioception [4] or other def-

icits in motor control—or even to help design rehabilitation

therapies. In this perspective, an interesting issue that we

have not addressed pertains to the attenuation of propriocep-

tive prediction errors during movement. Heuristically, this

sensory attenuation is necessary to allow the prior beliefs of

the generative model to supervene over the sensory evidence

that movement has not yet occurred (or in other words, to

prevent internal states encoding the fact that there is no

movement). This speaks to a dynamic gain control that med-

iates the attenuation of the precision of prediction errors

during movement. In the example shown above, we simply

reduced the precision of ascending proprioceptive prediction
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errors to enable movement. Had we increased their precision,

the ensuing failure of sensory attenuation would have sub-

verted movement; perhaps in a similar way to the poverty

of movements seen in Parkinson’s disease—a disease that

degrades motor performance profoundly [39]. This aspect

of precision or gain control suggests that being able to

implement active inference in robots will allow us to perform

simulated psychophysical experiments to illustrate sensory

attenuation and its impairments. Furthermore, it suggests a

robotic model of Parkinson’s disease is in reach, providing

an interesting opportunity for simulating pathophysiology.

Clearly, some of our choices when specifying the genera-

tive model are heuristic—or appeal to established notions.

For example, adding a derivative term to equation (2.14)

could change the dynamics in an interesting way. In general,

the framework shown above accommodates questions about

alternative models and dynamics through Bayesian model

comparison. In principle, we have an objective function (vari-

ational free energy) that scores the quality of any generative

model entertained by a robot—in relation to its embodied

exchange with the environment. This means we could

change the generative model and assess the quality of the

ensuing behaviour using variational free energy—and select

the best generative model in exactly the same way that
people characterize experimental data by comparing the evi-

dence for different models in Bayesian model comparison.

We hope to explore this in future work.

We next hope to port the scheme to a real robot. This will

be particularly interesting, because there are several facets of

active inference that are more easily demonstrated in a real-

world artefact. These aspects include a robustness to exogen-

ous perturbations. For example, the movement trajectory

should gracefully recover from any exogenous forces applied

to the arm during movement. Furthermore, theoretically, the

active inference scheme is also robust to differences between

the true motor plant and the various kinematic constants in

the generative model. This robustness follows from the fact

that the movement is driven by (fictive) forces whose fixed

points do not change with exogenous perturbations—or

many parameters of the generative model (or process).

Another interesting advantage of real-world implementations

will be the opportunity to examine robustness to sensorimotor

delays. Although not necessarily a problem from a purely

robotics perspective, biological robots suffer non-trivial

delays in the signalling of ascending sensory signals and des-

cending motor predictions. In principle, these delays can be

absorbed into the generative model—as has been illustrated

in the context of oculomotor control [40]. At present, these
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proposals for how the brain copes with sensorimotor delays in

oculomotor tracking remain hypothetical. It would be extre-

mely useful to see if they could be tested in a robotics setting.

As noted above, active inference shares many similarities

with the passive movement paradigm (PMP, [33,34]). Although

strictly speaking, active inference is a corollary of the free-

energy principle, it inherits the philosophy of the PMP in the

following sense. Active inference is equipped with a generative

model that maps from causes to consequences. In the setting of

motor control, the causes are forces that have some desired

fixed point or orbit. It is then a simple matter to predict the

sensory consequences of those forces—as sensed by proprio-

ception or robotic sensors. These sensory predictions can

then be realized through open loop control (e.g. peripheral

servos or reflex arcs); thereby realizing the desired fixed point

(cf. the equilibrium point hypothesis [32]). However, unlike the

equilibrium point hypothesis, active inference is open loop.

This is because its motor predictions are informed by deep gen-

erative models that are sensitive to input from all modalities

(including proprioception). The fact that action realizes the

(sensory) consequences of (prior) causes explains why there

is no need for an inverse model.

Optimal motor control formulations [15,16] are fundamen-

tally different. Briefly, optimal control operates by minimizing

some cost function in order to compute motor commands for a
robot performing a particular motor task. Optimal control

theory requires a mechanism for state estimation as well as

two internal models: an inverse and forward model. This

scheme also assumes that the appropriate optimality equation

can be solved [41]. In contrast, active inference uses prior

beliefs about the movement (in an extrinsic frame of reference)

instead of optimal control signals for movements (in an intrin-

sic frame of reference). In active inference, there is no inverse

model or cost function and the resulting trajectories are

Bayes optimal. This contrasts with optimal control, which

calls on the inverse model to finesse problems incurred by sen-

sorimotor noise and delays. Inverse models are not required in

active inference, because the robot’s generative (or forward)

model is inverted during the inference. Active inference also

dispenses with cost functions, as these are replaced by the

robot’s (prior) beliefs (of note, there is a general duality

between control and inference [15,16]). In brief, replacing the

cost function with prior beliefs means that minimizing cost

corresponds to maximizing the marginal likelihood of a gen-

erative model [42–44]. A formal correspondence between

cost functions and prior beliefs can be established with the

complete class theorem [45,46], according to which there is

at least one prior belief and cost function that can produce a

Bayes-optimal motor behaviour. In sum, optimal control for-

mulations start with a desired endpoint (consequence) and
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tried to reverse engineer the forces (causes) that produce the

desired consequences. It is this construction that poses a diffi-

cult inverse problem with solutions that are not generally

robust—and are often problematic in robot control. Active

inference finesses this problem by starting with the causes of

movement, as opposed to the consequences.
Accordingly, one can see the solutions offered under opti-

mal control as special cases of the solutions available under

an (active) inferential scheme. This is because some policies

cannot be specified using cost functions but can be described

using priors; specifically, this is the case of solenoidal move-

ments, whose cost is equal for every part of the trajectory

[47]. This comes from variational calculus, which says that

a trajectory or a policy has several components: a curl-free

component that changes value and a divergence-free com-

ponent that does not change value. The divergence-free

motion can be only specified by a prior and not by a cost

function. Discussing the relative benefits of control schemes

with or without cost functions and inverse models is

beyond the scope of this article. Here, it suffice to say that

inverse models are generally hard to learn for robots, and

cost functions sometimes need to be defined in ad hoc
manner for robot control tasks. By eluding these constraints,

active inference may offer a promising alternative to optimal

control schemes. For a more detailed discussion on the links

between optimal control and active inference, see [47].
Although active inference resolves many problems that

attend optimal control schemes, there is no free lunch. In

active inference, all the heavy lifting is done by the generative

model—and in particular, the priors that define desired set-

points or orbits. The basic idea is to induce these attractors

by specifying appropriate equations of motion within the

generative model of the robot. This means that the art of

generating realistic and purposeful behaviour reduces to

creating equations of motion that have desired attractors.

These can be simple fixed-point attractors as in the example

above. They could also be much more complicated, pro-

ducing quasi-periodic motion (as in walking) or fluent

sequences of movements specified by heteroclinic cycles.

All the more interesting theoretical examples in the theoreti-

cal literature to date rest upon some form of itinerant

dynamics inherent in the generative model that sometimes

have deep structure. A nice example of this is the handwrit-

ing example in [48] that used Lotka–Volterra equations to

specify a sequence of saddle points—producing a series of

movements. Simpler examples could use both attracting

and repelling fixed points that correspond to contact points

and collision points, respectively, to address more practical

issues in robotics. Irrespective of the particular repertoire of

attractors implicit in the generative model, the hierarchi-

cal aspect of the generative models that underlie active

inference enables the composition of movements, sequences
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of movements and sequences of sequences [49–51]. In other

words, provided one can write down (or learn) a deep gen-

erative model with itinerant dynamics, there is a possibility

of simulating realistic movements that inherit deep temporal

structure and context sensitivity.

In conclusion, in this article, we have presented a proof-

of-concept implementation of robot control using active

inference, a biologically motivated scheme that is gaining

prominence in computational and systems neuroscience.

The results discussed here demonstrate the feasibility of the

scheme; having said this, further work is necessary to fully

demonstrate how this scheme works in more challenging

domains or whether it has advantages (from both technologi-

cal and biological viewpoints) over alternative control

schemes. Future work will address an implementation of

the above scheme on a real robot with the same degrees of

freedom as the PR2. Other predictive models could be devel-

oped, the generative model illustrated above is very simple

and does not take advantage of the internal degrees of free-

dom. A key generalization will be integrating planning

mechanisms that may allow, for example, the robot to pro-

actively avoid obstacles or collisions during movement—or
more generally, to consider future (predicted) and not only

currently sensed contingencies [17,52–56]. Planning mechan-

isms have been described under the active inference scheme

and can solve challenging problems such as the mountain–

car problem [5], and can thus been seamlessly integrated in

the model presented here—speaking to the scalability of the

active inference scheme. Finally, one reason for using a bio-

logically realistic model such as active inference is that it

may be possible to directly map internal dynamics generated

by the robot simulator (e.g. of hidden states) to brain signals

(e.g. EEG signals reflecting predictions and prediction errors)

generated during equivalent action planning or performance.

Data accessibility. All data underlying the findings described in the
manuscript can be downloaded from https://github.com/LPioL/
activeinference_ROS.

Authors’ contribution. L.P.L., A.N., K.F. and G.P. conceived the study and
wrote the manuscript. L.P.L. and A.N. performed the simulations. All
authors gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by the French–Italian University
(C2-21). K.F. is supported by the Wellcome trust (ref no. 088130/
Z/09/Z).
References
1. Friston K. 2010 The free-energy principle: a unified
brain theory? Nat. Rev. Neurosci. 11, 127 – 138.
(doi:10.1038/nrn2787)

2. Friston K, Kilner J, Harrison L. 2006 A free energy
principle for the brain. J. Physiol.-Paris 100, 70 – 87.
(doi:10.1016/j.jphysparis.2006.10.001)

3. Friston K, Kiebel S. 2009 Predictive coding under
the free-energy principle. Phil. Trans. R. Soc. B 364,
1211 – 1221. (doi:10.1098/rstb.2008.0300)

4. Friston K et al. 2012 Dopamine, affordance and
active inference. PLoS Comput. Biol. 8, e1002327.
(doi:10.1371/journal.pcbi.1002327)

5. Friston KJ, Daunizeau J, Kilner J, Kiebel SJ. 2010
Action and behavior: a free-energy formulation.
Biol. Cybern. 102, 227 – 260. (doi:10.1007/s00422-
010-0364-z)

6. Friston K, Schwartenbeck P, FitzGerald T, Moutoussis
M, Behrens T, Dolan RJ. 2013 The anatomy of
choice: active inference and agency. Front. Hum.
Neurosci. 7, 598. (doi:10.3389/fnhum.2013.00598)

7. FitzGerald T, Schwartenbeck P, Moutoussis M, Dolan
RJ, Friston K. 2015 Active inference, evidence
accumulation, and the urn task. Neural Comput. 27,
306 – 328. (doi:10.1162/NECO_a_00699)

8. Friston KJ, Daunizeau J, Kiebel SJ. 2009
Reinforcement learning or active inference?
PLoS ONE 4, e6421. (doi:10.1371/journal.pone.
0006421)

9. Friston K, Rigoli F, Ognibene D, Mathys C, FitzGerald
T, Pezzulo G. 2015 Active inference and epistemic
value. Cogn. Neurosci. 6, 187 – 214. (doi:10.1080/
17588928.2015.1020053)

10. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P,
O’Doherty J, Pezzulo G. 2016 Active inference and
learning. Neurosci. Biobehav. Rev. 68, 862 – 879.
(doi:10.1016/j.neubiorev.2016.06.022)
11. Pezzulo G, Cartoni E, Rigoli F, Pio-Lopez L, Friston K.
2016 Active inference, epistemic value, and
vicarious trial and error. Learn. Mem. 23, 322 – 338.
(doi:10.1101/lm.041780.116)

12. Pezzulo G, Rigoli F, Friston K. 2015 Active inference,
homeostatic regulation and adaptive behavioural
control. Prog. Neurobiol. 134, 17 – 35. (doi:10.1016/
j.pneurobio.2015.09.001)

13. Dayan P, Hinton GE, Neal RM, Zemel RS. 1995 The
Helmholtz machine. Neural Comput. 7, 889 – 904.
(doi:10.1162/neco.1995.7.5.889)

14. Knill DC, Pouget A. 2004 The Bayesian brain: the
role of uncertainty in neural coding and
computation. Trends Neurosci. 27, 712 – 719.
(doi:10.1016/j.tins.2004.10.007)

15. Todorov E, Jordan MI. 2002 Optimal feedback
control as a theory of motor coordination. Nat.
Neurosci. 5, 1226 – 1235. (doi:10.1038/nn963)

16. Todorov E. 2008 General duality between optimal
control and estimation. In 47th IEEE Conf. on
Decision and Control (CDC), 2008, IEEE.
pp. 4286 – 4292.

17. Botvinick M, Toussaint M. 2012 Planning as
inference. Trends Cogn. Sci. 16, 485 – 488. (doi:10.
1016/j.tics.2012.08.006)

18. Donnarumma F, Maisto D, Pezzulo G. 2016 Problem
solving as probabilistic inference with subgoaling:
explaining human successes and pitfalls in the
tower of Hanoi. PLoS Comput. Biol. 12, e1004864.
(doi:10.1371/journal.pcbi.1004864)

19. Pezzulo G, Rigoli F. 2011 The value of foresight:
how prospection affects decision-making. Front.
Neurosci. 5, 79. (doi:10.3389/fnins.2011.00079)

20. Pezzulo G, Rigoli F, Chersi F. 2013 The mixed
instrumental controller: using value of information
to combine habitual choice and mental simulation.
Front. Psychol. 4, 92. (doi:10.3389/fpsyg.2013.
00092)

21. Todorov E. 2006 Linearly-solvable Markov
decision problems. Adv. Neural Inf. Process Syst. 19,
1369 – 1376.

22. Maisto D, Donnarumma F, Pezzulo G. 2015 Divide et
impera: subgoaling reduces the complexity of
probabilistic inference and problem solving. J. R. Soc.
Interface 12, 20141335. (doi:10.1098/rsif.2014.1335)

23. Friston K, Adams R, Perrinet L, Breakspear M. 2012
Perceptions as hypotheses: saccades as experiments.
Front. Psychol. 3, 151.

24. Friston K, Stephan K, Li B, Daunizeau J. 2010
Generalised filtering. Math. Probl. Eng. 2010,
621670. (doi:10.1155/2010/621670)

25. Ashby WR. 1947 Principles of the self-organizing
dynamic system. J. Gen. Psychol. 37, 125 – 128.
(doi:10.1080/00221309.1947.9918144)

26. Feynman RP. 1998 Statistical mechanics: a set of
lectures (advanced book classics). Boulder, CO:
Westview Press Incorporated.

27. Hinton GE, Van Camp D. 1993 Keeping the neural
networks simple by minimizing the description
length of the weights. In Proc. the Sixth Annual
Conf. Computational Learning Theory, ACM.
pp. 5 – 13.

28. Zeki S, Shipp S. 1988 The functional logic of cortical
connections. Nature 335, 311 – 317. (doi:10.1038/
335311a0)

29. Quigley M et al. 2009 ROS: an open-source robot
operating system. In Proc. Open-Source Software
Workshop Int. Conf. Robotics and Automation, Kobe,
Japan, May, vol. 3, p. 5.

30. Körding KP, Wolpert DM. 2004 Bayesian integration
in sensorimotor learning. Nature 427, 244 – 247.
(doi:10.1038/nature02169)

https://github.com/LPioL/activeinference_ROS
https://github.com/LPioL/activeinference_ROS
https://github.com/LPioL/activeinference_ROS
http://dx.doi.org/10.1038/nrn2787
http://dx.doi.org/10.1016/j.jphysparis.2006.10.001
http://dx.doi.org/10.1098/rstb.2008.0300
http://dx.doi.org/10.1371/journal.pcbi.1002327
http://dx.doi.org/10.1007/s00422-010-0364-z
http://dx.doi.org/10.1007/s00422-010-0364-z
http://dx.doi.org/10.3389/fnhum.2013.00598
http://dx.doi.org/10.1162/NECO_a_00699
http://dx.doi.org/10.1371/journal.pone.0006421
http://dx.doi.org/10.1371/journal.pone.0006421
http://dx.doi.org/10.1080/17588928.2015.1020053
http://dx.doi.org/10.1080/17588928.2015.1020053
http://dx.doi.org/10.1016/j.neubiorev.2016.06.022
http://dx.doi.org/10.1101/lm.041780.116
http://dx.doi.org/10.1016/j.pneurobio.2015.09.001
http://dx.doi.org/10.1016/j.pneurobio.2015.09.001
http://dx.doi.org/10.1162/neco.1995.7.5.889
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://dx.doi.org/10.1038/nn963
http://dx.doi.org/10.1016/j.tics.2012.08.006
http://dx.doi.org/10.1016/j.tics.2012.08.006
http://dx.doi.org/10.1371/journal.pcbi.1004864
http://dx.doi.org/10.3389/fnins.2011.00079
http://dx.doi.org/10.3389/fpsyg.2013.00092
http://dx.doi.org/10.3389/fpsyg.2013.00092
http://dx.doi.org/10.1098/rsif.2014.1335
http://dx.doi.org/10.1155/2010/621670
http://dx.doi.org/10.1080/00221309.1947.9918144
http://dx.doi.org/10.1038/335311a0
http://dx.doi.org/10.1038/335311a0
http://dx.doi.org/10.1038/nature02169


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160616

12
31. Diedrichsen J, Verstynen T, Hon A, Zhang Y, Ivry RB.
2007 Illusions of force perception: the role of
sensori-motor predictions, visual information, and
motor errors. J. Neurophysiol. 97, 3305 – 3313.
(doi:10.1152/jn.01076.2006)

32. Feldman AG, Levin MF. 2009 The equilibrium-point
hypothesis—past, present and future. In Progress
in motor control, pp. 699 – 726. Berlin, Germany:
Springer.

33. Mussa-Ivaldi F. 1988 Do neurons in the motor
cortex encode movement direction? An alternative
hypothesis. Neurosci. Lett. 91, 106 – 111. (doi:10.
1016/0304-3940(88)90257-1)

34. Mohan V, Morasso P. 2011 Passive motion
paradigm: an alternative to optimal control. Front.
Neurorob. 5, 1 – 28. (doi:10.3389/fnbot.2011.00004)

35. Butler AJ, Fink GR, Dohle C, Wunderlich G, Tellmann
L, Seitz RJ, Zilles K, Freund H-J. 2004 Neural
mechanisms underlying reaching for remembered
targets cued kinesthetically or visually in left or
right hemispace. Hum. Brain Mapp. 21, 165 – 177.
(doi:10.1002/hbm.20001)

36. Diener H, Dichgans J, Guschlbauer B, Mau H. 1984
The significance of proprioception on postural
stabilization as assessed by ischemia. Brain
Res. 296, 103 – 109. (doi:10.1016/0006-
8993(84)90515-8)

37. Dietz V. 2002 Proprioception and locomotor
disorders. Nat. Rev. Neurosci. 3, 781 – 790. (doi:10.
1038/nrn939)

38. Sainburg RL, Ghilardi MF, Poizner H, Ghez C. 1995
Control of limb dynamics in normal subjects and
patients without proprioception. J. Neurophysiol. 73,
820 – 835.
39. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro
M, Tuite P, Volkmann J, Maschke M. 2009
Proprioception and motor control in Parkinson’s
disease. J. Motor Behav. 41, 543 – 552. (doi:10.
3200/35-09-002)

40. Perrinet LU, Adams RA, Friston KJ. 2014 Active
inference, eye movements and oculomotor delays.
Biol. Cybern. 108, 777 – 801. (doi:10.1007/s00422-
014-0620-8)

41. Bellman R. 1952 On the theory of dynamic
programming. Proc. Natl Acad. Sci. USA 38,
716 – 719. (doi:10.1073/pnas.38.8.716)

42. Cooper GF. 2013 A method for using belief
networks as influence diagrams. (https://arxiv.org/
abs/1304.2346)

43. Shachter RD. 1988 Probabilistic inference and
influence diagrams. Oper. Res. 36, 589 – 604.
(doi:10.1287/opre.36.4.589)

44. Pearl J. 2014 Probabilistic reasoning in intelligent
systems: networks of plausible inference.
San Francisco, CA: Morgan Kaufmann.

45. Brown LD. 1981 A complete class theorem for
statistical problems with finite sample spaces. Ann.
Stat. 9, 1289 – 1300. (doi:10.1214/aos/1176345645)

46. Robert CP. 1992 L’analyse statistique bayésienne.
Paris, France: Economica.

47. Friston K. 2011 What is optimal about motor
control? Neuron 72, 488 – 498. (doi:10.1016/j.
neuron.2011.10.018)

48. Friston K, Mattout J, Kilner J. 2011 Action
understanding and active inference. Biol. Cybern.
104, 137 – 160. (doi:10.1007/s00422-011-0424-z)

49. Kiebel SJ, Von Kriegstein K, Daunizeau J, Friston KJ.
2009 Recognizing sequences of sequences. PLoS
Comput. Biol. 5, e1000464. (doi:10.1371/journal.
pcbi.1000464)

50. Pezzulo G. 2012 An active inference view of
cognitive control. Front. Psychol. 3, 478. (doi:10.
3389/fpsyg.2012.00478)

51. Pezzulo G, Donnarumma F, Iodice P, Prevete R,
Dindo H. 2015 The role of synergies within
generative models of action execution and
recognition: a computational perspective. Comment
on “Grasping synergies: a motor-control approach to
the mirror neuron mechanism” by A. D’Ausilio et al.
Phys. Life Rev. 12, 114 – 117. (doi:10.1016/j.plrev.
2015.01.021)

52. Lepora NF, Pezzulo G. 2015 Embodied choice: how
action influences perceptual decision making. PLoS
Comput. Biol. 11, e1004110. (doi:10.1371/journal.
pcbi.1004110)

53. Pezzulo G, van der Meer MA, Lansink CS, Pennartz
CMA. 2014 Internally generated sequences in
learning and executing goal-directed behavior.
Trends Cogn. Sci. 18, 647 – 657. (doi:10.1016/j.tics.
2014.06.011)

54. Pezzulo G, Cisek P. 2016 Navigating the affordance
landscape: feedback control as a process model
of behavior and cognition. Trends Cogn. Sci. 20,
414 – 424. (doi:10.1016/j.tics.2016.03.013)

55. Stoianov I, Genovesio A, Pezzulo G. 2016 Prefrontal
goal-codes emerge as latent states in probabilistic
value learning. J. Cogn. Neurosci. 28, 140 – 157.
(doi:10.1162/jocn_a_00886)

56. Verschure P, Pennartz C, Pezzulo G. 2014 The why,
what, where, when and how of goal directed choice:
neuronal and computational principles. Phil. Trans.
R. Soc. B 369, 20130483. (doi:10.1098/rstb.2013.0483)

http://dx.doi.org/10.1152/jn.01076.2006
http://dx.doi.org/10.1016/0304-3940(88)90257-1
http://dx.doi.org/10.1016/0304-3940(88)90257-1
http://dx.doi.org/10.3389/fnbot.2011.00004
http://dx.doi.org/10.1002/hbm.20001
http://dx.doi.org/10.1016/0006-8993(84)90515-8
http://dx.doi.org/10.1016/0006-8993(84)90515-8
http://dx.doi.org/10.1038/nrn939
http://dx.doi.org/10.1038/nrn939
http://dx.doi.org/10.3200/35-09-002
http://dx.doi.org/10.3200/35-09-002
http://dx.doi.org/10.1007/s00422-014-0620-8
http://dx.doi.org/10.1007/s00422-014-0620-8
http://dx.doi.org/10.1073/pnas.38.8.716
http://dx.doi.org/https://arxiv.org/abs/1304.2346
http://dx.doi.org/https://arxiv.org/abs/1304.2346
http://dx.doi.org/https://arxiv.org/abs/1304.2346
http://dx.doi.org/10.1287/opre.36.4.589
http://dx.doi.org/10.1214/aos/1176345645
http://dx.doi.org/10.1016/j.neuron.2011.10.018
http://dx.doi.org/10.1016/j.neuron.2011.10.018
http://dx.doi.org/10.1007/s00422-011-0424-z
http://dx.doi.org/10.1371/journal.pcbi.1000464
http://dx.doi.org/10.1371/journal.pcbi.1000464
http://dx.doi.org/10.3389/fpsyg.2012.00478
http://dx.doi.org/10.3389/fpsyg.2012.00478
http://dx.doi.org/10.1016/j.plrev.2015.01.021
http://dx.doi.org/10.1016/j.plrev.2015.01.021
http://dx.doi.org/10.1371/journal.pcbi.1004110
http://dx.doi.org/10.1371/journal.pcbi.1004110
http://dx.doi.org/10.1016/j.tics.2014.06.011
http://dx.doi.org/10.1016/j.tics.2014.06.011
http://dx.doi.org/10.1016/j.tics.2016.03.013
http://dx.doi.org/10.1162/jocn_a_00886
http://dx.doi.org/10.1098/rstb.2013.0483

	Active inference and robot control: a case study
	Introduction
	Methods
	Active inference formalism
	The generative model
	Prediction errors and predictive coding
	Action
	Application to robotic arm control and reaching

	Results
	Discussion
	Data accessibility
	Authors’ contribution
	Competing interests
	Funding
	References


