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Abstract. Glioblastoma multiforme  (GBM) is the most 
common malignant brain tumor. This study aimed to identify 
the hub genes and regulatory factors of GBM subgroups by 
RNA sequencing (RNA-seq) data analysis, in order to explore 
the possible mechanisms responsbile for the progression of 
GBM. The dataset RNASeqV2 was downloaded by TCGA-
Assembler, containing 169 GBM and 5 normal samples. Gene 
expression was calculated by the reads per kilobase per million 
reads measurement, and nor malized with tag count comparison. 
Following subgroup classification by the non-negative matrix 
factorization, the differentially expressed genes (DEGs) were 
screened in 4 GBM subgroups using the method of significance 
analysis of microarrays. Functional enrichment analysis was 
performed by DAVID, and the protein-protein interaction (PPI) 
network was constructed based on the HPRD database. The 
subgroup-related microRNAs (miRNAs or miRs), transcription 
factors (TFs) and small molecule drugs were predicted with pre-
defined criteria. A cohort of 19,515 DEGs between the GBM 
and control samples was screened, which were predominantly 
enriched in cell cycle- and immunoreaction-related pathways. 
In the PPI network, lymphocyte cytosolic protein 2 (LCP2), 
breast cancer 1 (BRCA1), specificity protein 1 (Sp1) and chro-
modomain-helicase-DNA-binding protein 3 (CHD3) were the 
hub nodes in subgroups 1-4, respectively. Paired box 5 (PAX5), 
adipocyte protein 2 (aP2), E2F transcription factor 1 (E2F1) 
and cAMP-response element-binding protein-1 (CREB1) were 
the specific TFs in subgroups 1-4, respectively. miR‑147b, 

miR‑770-5p, miR‑220a and miR‑1247 were the particular 
miRNAs in subgroups 1-4, respectively. Natalizumab was the 
predicted small molecule drug in subgroup 2. In conclusion, the 
molecular regulatory mechanisms of GBM pathogenesis were 
distinct in the different subgroups. Several crucial genes, TFs, 
miRNAs and small molecules in the different GBM subgroups 
were identified, which may be used as potential markers. 
However, further experimental validations may be required.

Introduction

Glioblastoma multiforme (GBM) is the most frequent and 
lethal malignant brain tumor (1). Based on the World Health 
Organization classification, GBM belongs to the grade  IV 
astrocytoma group, which includes diffusely infiltrating astro-
cytomas that account for half of all primary brain gliomas (2). 
Despite the advanced detection techniques, such as spec-
troscopy and perfusion, and improved treatments including 
surgery and the combination of radiation with chemotherapy, 
the usual survival time of the majority of patients with GBM 
after diagnosis is approximately 1 year (3). The major caus-
ative factors are the high resistance of GBM to therapeutics 
and the high variability of the benefits of therapeutic drugs in 
different GBM patients (4).

To improve the poor prognosis, considerable investigations 
have been conducted to explore more effective therapeutics at the 
genetic and protein level. For instance, via the enzyme-linked 
immunosorbent assay (ELISA), the level of serum glial fibril-
lary acidic protein (GFAP) was found to be increased in GBM 
patients, and was thus proposed as a biomarker for the prognosis 
of GBM (5). Other candidate genes, such as epidermal growth 
factor receptor (EGFR) (6) and herpes simplex virus (HSV)-
thymidine kinase (TK)/interleukin (IL)-2 (7) have been shown 
to be involved in the prognosis of GBM, and are considered 
as potential therapeutic markers. MicroRNAs (miRNAs or 
miRs) are small non-coding RNAs that play central roles in 
cancer development via the regulation of target genes. Several 
miRNAs, including miR‑21 (8), miR‑124 and miR‑137 (9) have 
been verified to play significant roles in anti-apoptosis and in the 
inhibition of tumor cell proliferation during GBM progression. 
Several small molecules have been applied in the treatment of 
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GBM, such as temsirolimus (CCI-779), which is an inhibitor of 
mammalian target of rapamycin (mTOR), and has been identi-
fied as a therapeutic target of GBM (10). Additionally, the use 
of the small molecule drug, vorinostat, has been shown to result 
in the increased expression of anti-proliferative genes, such as 
death receptor 5 (DR5), and in the decreased expression of 
anti-apoptotic genes, such as cyclin-dependent kinase (CDK)2. 
Via the mediation of these genes, vorinostat serves as another 
crucial therapeutic target of GBM (11). Recently, a novel small 
molecule, CG500354, has been reported to target the specific 
variant, PDE4D, and thus plays a significant role in the suppres-
sion of GBM (12).

Previous studies have used the technique of RNA 
sequencing (RNA-seq), an emerging deep sequencing method 
for transcriptome profiling and provides more accurate 
expression measurements  (13), to explicate the molecular 
events in GBM (14). However, most of these studies focused 
on the function of fusion genes, such as neurofascin (NFASC)-
neurotrophic tyrosine kinase receptor type 1 (NTRK1) (14) 
and RNA splicing-related genes, such as PHD finger 
protein  5A  (PHF5A)  (15). The exploration of therapeutic 
small drugs in GBM patients using RNA-seq, and focusing 
on different subgroups of individuals in particular, is limited. 
Considering that different mechanisms may be presented due 
to different individuals, in this study, we analyzed the RNA-seq 
data to identify differentially expressed genes  (DEGs) in 
samples between patients with GBM and normal subjects. 
Furthermore, the non-negative matrix factorization (NMF) 
method was used to further identify the subgroups of GBM. 
NMF is a well-known approach that could reduce the dimen-
sionality of a dataset and cluster the data samples (16). The 
method has been widely used in computational biology. 
Previous studies have utilized NMF to discover subgroups of 
patients with complex genetic diseases (16,17). 

In this study, by functional enrichment analysis and protein-
protein interaction (PPI) network analysis, the altered pathways 
and the interactions of DEGs in each subgroup were predicted. 
Furthermore, the miRNAs, transcription factors  (TFs) and 
small molecule drugs related to the DEGs in the subgroups were 
also explored. All these bioinformatics methods were used in 
an aim to elucidate the comprehensive molecular mechanisms 
responsible for the development and progression of GBM, and 
to provide potential small molecule agents as therapeutic candi-
dates for the treatment of patients with different subgroups of 
GBM.

Data collection and analysis

Data preprocessing and GBM subgroup classification. The 
dataset of RNASeqV2 was downloaded using The Cancer 
Genome Atlas (TCGA)-Assembler (18), consisting of 169 GBM 
samples and 5 normal samples. The reads per kilobase per 
million reads (RPKM) measurement were used to calculate 
gene expression, followed by normalization with the tag count 
comparison  (TCC; http://www.bioconductor.org/packages/
release/bioc/ html/TCC.html) package (19). The expression 
value was complemented as ‘1’ for gene loss in several samples, 
followed by the transformation by log2 to achieve an approxi-
mate normal distribution. Following normalization, we applied 
the NMF method to classify the subgroup of all the GBM 

samples, and selected the optimal  ‘k’ value based on the 
cophenetic correlation coefficient  (CCC) (20), whose value 
varies from 0-1. The classification is more stable if the ‘k’ value 
is closer to 1. Finally, the highest ‘k’ value of the CCC was 
selected as the optimal value.

Identification of DEGs. Following normalization and subgroup 
classification, the DEGs were screened out using the significance 
analysis of microarrays (SAM) method (21). The thresholds 
for DEG selection were a false discovery rate (FDR) <0.05 
and |log2 fold change| >1. Top 500 DEGs were clustered using 
Euclidean distance and the hierarchical clustering method, 
which were executed by heatmap.2 function in the gplot R 
package (https://cran.r-project.org/web/packages/gplots/).

Pathway enrichment analysis. The Kyoto Encyclopedia 
of Genes and Genomes  (KEGG; http://www.genome.
jp/kegg/pathway.html) (22) and Reactome (http://www. reac-
tome. org) (23) pathway enrichment analyses were carried out 
for the selected DEGs, using the Database for Annotation, 
Visualization and Integration Discovery (DAVID; http://david.
abcc.Ncifcrf.gov/) online software (24), based on the hyper-
geometric distribution test. The cut-off value for significant 
terms was p<0.05.

Construction of PPI network and transcriptional regulatory 
network. The Human Protein Reference Database (HPRD; http://
hprd.org/) is a database of curated proteomic information, such as 
protein annotation, PPI and protein subcellular localization (25). 
The Pearson correlation coefficient was calculated of two inter-
played proteins basing on the miRNA expression profiles, and 
the proteins with the Pearson correlation coefficient >0.5 were 
extracted to establish the PPI network. A node in the PPI network 
serves as a protein, and the degree of a node reflects the number 
of the interacted proteins with this specific protein. Hub nodes 
were deemed as the prominent nodes with high degrees.

Prediction of miRNAs, TFs and small molecule drugs. The 
combinatorial gene regulatory networks (cGRNB; http://www.
scbit.org/cgrnb/) is a web server for the establishment of two 
major network modules such as miRNA-perturbed gene expres-
sion (MPGE) datasets and the parallel miRNA/mRNA expression 
datasets, to provide the combinatorial regulations involving TFs, 
miRNAs and genes (21). Among these regulations, the miRNA-
gene interactions were derived from the starBase (http://starbase.
sysu.edu.cn/) database (26), under the criteria of ‘microRNA 
read Num’ >0 and ‘biological complexity’ (BC) >1.

The DrugBank (http://www.drugbank.ca/) database (27) 
was utilized to recognize potential pharmaceutical molecules 
and the drug targets. Only the drugs that approved by the Food 
and Drug Administration (FDA) were downloaded.

GBM subgroup-related miRNAs, TFs and drug selec-
tion. Integrating the regulatory information in the cGRNB 
database, the miRNA-target or TF-target interactions were 
extracted, while the small molecule drugs and the targets were 
identified in combination with the information on DrugBank. 
Subsequently, the overlapping significance between 
DEGs  (gene set N) in a subgroup and target genes  (gene 
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set Mi) of selected miRNAs/TFs/drugs (i) were detected based 
on Fisher's exact test (28). The formula used was as follows:

		  a+b	 c+d		  a	 P =	 (-------- )	 (-------- )	/	 -------- 	 (equation 1)		  a	 c		  (a+c)

where ‘a’, indicates genes included in both Mi and N; ‘d’, 
included genes included in neither Mi nor N; ‘b’, included genes 
are only included in Mi and ‘c’, included genes only included 
in N. The threshold for the selection of eligible miRNAs, TFs 
or drugs was p<0.05.

Survival curve analysis. By recruiting the survival package in 
Bioconductor R, we assessed the median survival with the corre-
sponding intervals from Kaplan-Meier (KM) curve (29), to detect 
the differences in survival time amongst the GBM subgroups.

Results

Pre-processing of the expression profile data and marker 
genes of GBM subgroups. A set of 11,078 genes was subjected 
to normalization in the GBM samples. As indicated in the box 
plot (Fig. 1), the gene expression levels among the different 
samples were relatively uniform. The top 1,500 genes with 
variable coefficient in the tumor samples were filtered out for 
the subgroup classification. The CCC was calculated with the 
‘k’ value varying from 2 to 12, and achieved the highest level 
when ‘k’ was 4, which was defined as the final ‘k’ value for 
subgroup classification. In all 169 GBM samples, 13 samples 
were excluded from subsequent analyses for the lack of prog-
nostic information. The remaining 156 samples were classified 
into 4 subgroups: 52 samples were divided into subgroup 1; 
57 in subgroup 2; 26 in subgroup 3 and 21 in subgroup 4.

DEGs between GBM and control samples in different 
subgroups and the disrupted functions and pathways. Based 

on the aforementioned criteria, a cohort of  19,515  DEGs 
between the GBM and control samples in the 4 subgroups was 
identified (subgroup 1: 4,430; subgroup 2: 3,271; subgroup 3: 
4,046; subgroup 4: 7,768) (Fig. 2). The Venn diagram indi-
cates substantially overlapping DEGs among the 4 subgroups. 
The overlapped DEGs in >2 subgroups were considered as 
the common DEGs, and we identified a set of 7,106 common 
DEGs, which were mainly enriched in the cell cycle and 
immunoreaction-related pathways  (Table  I). The heatmap 
of the clustering analysis of gene expression is presented 
in Fig. 3.

The PPI networks of the DEGs in the 4  subgroups. By 
integrating the information in the HPRD database, a set of 
39,240 interactions was obtained, containing 11,390 interac-

Figure 1. Box plot of gene expression among different samples. The x-axis represents samples, while the y-axis represents the expression of genes.

Figure 2. Venn diagram of the differentially expressed genes in the 4 subgroups.
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tions that involved 7,768 DEGs in the 4 GBM subgroups. 
Four PPI networks were then constructed based on the 
Pearson's correlation coefficient. The PPI network for DEGs 
in subgroup 1 consisted of 790 edges involving 821 nodes, and 
that for the DEGs in subgroup 2 was comprised of 864 edges 
and 830 nodes. There were 1,186 edges and 1,174 nodes in the 
network for subgroup 3, and 2,190 edges and 1,760 nodes in the 
network for subgroup 4 (data not shown). The top 10 hub nodes 
in the 4 subgroups are presented in Table II. Among these, 
CDK1 was the hub node in all 4 subgroups, while several nodes 
were only remarkable in a specific subgroup, such as lympho-
cyte cytosolic protein 2 (LCP2), breast cancer 1 (BRCA1), 
specificity protein 1 (Sp1) and chromodomain-helicase-DNA-
binding protein 3 (CHD3) were the hub nodes in subgroups 1, 
2, 3 and 4, respectively.

The GBM subgroup-related miRNAs, TFs and small molecular 
drugs. A total of 210,637 pair wise miRNA-target interac-
tions was extracted, containing 207 TFs and 16,862 target 
genes. A total of 6,108 drug-target interactions was acquired, 
involving 1,348 small molecule drugs and 1,353 drug targets. 
According to the formula (equation 1, described above) and 
the predefined threshold, we screened 8, 17, 6 and 48 miRNAs 
separately in subgroups 1-4; 34, 50, 45 and 65 TFs respec-

tively in subgroup 1-4; and 2 and 21 small molecule drugs in 
subgroups 1 and 2, but none in subgroups 3 and 4 (data not 
shown). The top 5 (ranked by the P-value) significant regu-
lators (miRNAs, TFs and small molecular drugs) are listed 
in Table III. Among the significant TFs, paired box 5 (PAX5), 
adipocyte protein 2 (aP2), E2F transcription factor 1 (E2F1) 
and cAMP-response element-binding protein-1  (CREB1) 
were the specific regulators in subgroup 1, 2, 3 and 4, respec-
tively. Several miRNAs, such as miR‑147b, miR‑770-5p, 
miR‑220a and miR‑1247 were the specific ones respectively 
in subgroups 1-4. Furthermore, a spectrum of small molecule 
drugs was identified in subgroup 2, including natalizumab, 
trastuzumab, efalizumab, bevacizumab and etanercept.

Prognostic analysis of GMB. The clinical survival time of 
the 156  samples was extracted from the TCGA database. 
With the KM method, the differences among the 4 subgroups 
were identified. There were 31, 37, 19  and 15  deaths in 
subgroups 1-4, respectively (data not shown). The KM analysis 
indicated no significant differences in survival time among the 
4 subgroups (p=0.182). However, as shown in Fig. 4A, a similar 
trend in the survival rate was detected between subgroups 1 
and 4, and between subgroups 2 and 3. Therefore, the data 
in subgroups 1 and 4 were merged into m-group 1, whereas 

Figure 3. Heat map of cluster analysis of differentially expressed genes. The x-axis represents samples, while the y-axis represents genes. Red represents 
subgroup 1; orange represents subgroup 2; yellow represents subgroup 3; green represents subgroup 4.
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the data in subgroups 2 and 3 were merged ito m-group 2. 
m-group 1 exhibited a pronounced higher survival rate than 
m-group 2 (p=0.04; Fig. 4B).

Discussion

GBM is the most common malignant brain tumor and is 
characterized by invasiveness (30). Despite several effective 
therapeutic agents available, not all patients benefit from these 
due to individual differences (4). In this study, we utilized the 
RNA-seq data in the TCGA database to detect gene altera-
tions during the progression of GBM and to further explore 
the possible mechanisms responsible for its pathogenesis. 
As a result, 4 subgroups of GBM were classified and a set 
of 19,515 DEGs between the GBM and control samples was 
identified; the majority of these genes were enriched in the 
cell cycle and immunoreaction-related pathways. In the PPI 
network, LCP2, BRCA1, Sp1 and CHD3 were 4 striking nodes 
in subgroups 1-4, respectively. PAX5, aP2, E2F1 and CREB1 
were the specific TFs in subgroups 1-4, respectively. Several 
small molecule drugs, such as efalizumab and natalizumab 
were identified in subgroup 2.

Immunosuppression is the major hallmark of GBM 
patients, who have to receive radiation therapy in combination 
with with temozolomide for the restoration of the antitumor 
immune response (31). LCP2 is known to play significant roles 

in promoting T cell progression. It was recently reported that 
a splice variant of LCP2 resulted in severe immune dysregu-
lation (32). The PAX5 encoded transcription factor is a PAX 
family member which plays important roles in B-cell devel-
opment (33). Via the chromatin immunoprecipitation (ChIP) 
technique, PAX5 was found to regulate target genes by directly 
activating chromatin at the promoter or enhancer region, and 
PAX5-activated targets are crucial regulators involved in B-cell 
signaling, migration and immune function (34). Our findings 
revealed that LCP2 and PAX5 were (separately) the hub nodes 
in the PPI network and the prominent TFs for subgroup 1 of 
GBM, and were mainly enriched in the pathway of cytokine 
signaling in the immune system, suggesting that the LCP2- and 
PAX5-mediated immune pathway may play important roles in 
the progression of GBM in subgroup 1. Furthermore, miR‑147b 
was identified as an oncomiR in prostate cancer (PC), but with 
no detectable targets (35). Our study indicated that miR‑147b 

Table I. Top 15 significantly enriched pathways of the common 
DEGs.

Source	 Name	 q-value Bonferroni

KEGG	 Ribosome	 5.21E-22
REACTOME	 Gene expression	 1.71E-14
REACTOME	 Cell cycle, mitotic	 5.82E-13
REACTOME	 Metabolism of proteins	 4.08E-10
REACTOME	 M phase	 6.87E-09
REACTOME	 Interferon signaling	 7.66E-08
REACTOME	 Disease	 8.23E-08
REACTOME	 Cell cycle	 1.01E-07
REACTOME	 Cytokine signaling in	 1.57E-07
	 immune system
REACTOME	 Class I MHC mediated	 1.88E-06
	 antigen processing
	 and presentation
KEGG	 Epstein-Barr virus	 4.95E-06
	 infection
REACTOME	 Translation	 1.04E-05
KEGG	 Protein processing in	 1.17E-05
	 endoplasmic reticulum
KEGG	 Ubiquitin mediated	 1.95E-05
	 proteolysis
REACTOME	 Interferon γ signaling	 3.50E-05

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differ-
entially expressed genes.

Figure 4. Survival rates of glioblastoma multiforme (GBM) patients by 
Kaplan-Meier (KM) estimation. (A) Survival rates in the 4 subgroups prior 
to merging. (B) Survival rates after merging.
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was the specific miRNA in subgroup 1, suggesting that it may 
be an oncomiR in this GBM subgroup.

BRCA1 is known to act as a tumor suppressor associated 
with DNA repair and genome integrity. The DNA repair 
pathway was established as a crucial pathway for identifying 
the glioblastoma cases-control status, and the SNP, rs799917 of 
BRCA1 was shown to be involved in this pathway  (36). 
Additionally, the methylation PRKCDBP was implicated in 
GBM and identified as a BRCA1-interacting protein  (37), 
suggesting that BRCA1 exerts its functions in GBM via its 
interactions with other proteins. EGFR abnormalities occur 
frequently in GBM patients. The aP2 protein is an essential 
component of growth factor receptor endocytosis (38), implying 
that aP2 may also play important roles in the progression of 
GBM. Notably, in a previous study, aP2-α was shown to be 
one of the putative TFs of BRCA1 through the combination 
of microarray and ChIP-chip analysis (39). Considering that 
BRCA1 and aP2 were both specific in subgroup 2 in our study, 
it can be speculated that aP2 may be the TF regulating the 
expression of BRCA1 in GBM patients in this subgroup. With 
regard to the miRNAs in subgroup 2, miR‑770-5P was identified 
as the specific one, which was also predominant in the miRNA 
co-expression network of GBM (40). Moreover, miR‑770-5P 
has been shown to be upregulated in neuronal stem cells which 

progress into GBM (41). All these data suggest the potential use 
of miR‑770-5P as a target for GBM subgroup 2.

The disruption of cell cycle program is often involved in 
the development of GBM. For instance, JSI-124 functions as 
an inhibitor of GBM cell proliferation by inducing cell cycle 
arrest at G2/M phase (42). The protein Sp1 is a zinc finger 
TF that is involved in multiple cellular processes related to 
the cell cycle. p53 acts as a tumor suppressor in the develop-
ment of various types of cancer, such as lung cancer (43) and 
GBM (44). The loss of p53 is often the initiation of oncogenesis. 
A previous study demonstrated that the p53-mediated repres-
sion of cyclin B1 (CCNB1), a cell cycle-related transcript, 
required the binding of Sp1 to the CCNB1 prompter  (45). 
Emerging evidence has verified the interactions of p53 and 
Sp1 in the regulation of other cell cycle related genes, such 
as CDC25B  (46). E2F1 is another vital TF that promotes 
cell progression. Δ9-tetrahydrocannabinol functions as an 
inhibitor of cell growth via the downregulation of E2F1 in 
GBM (47). Furthermore, E2F1 was suggested to be involved 
in the mediation of telomerase activity in malignant glioma 
cells and the overexpression of E2F1 and telomerase were 
proposed as markers for the prognosis of glioblastoma (48). 
Notably, the cyclin-dependent kinase inhibitor, p18INK4c, 
which plays significant roles in cell cycle progression and 

Table II. Top 10 hub nodes in the 4 PPI networks from the 4 subgroups.

	 Subgroup 1	 Subgroup 2	 Subgroup 3	 Subgroup 4
	------------------------------------------------	 -----------------------------------------------	 -----------------------------------------------	 -------------------------------------------------
Name	 Degree	 Name	 Degree	 Name	 Degree	 Name	 Degree

SYK	 20	 CDK1	 26	 CDK1	 24	 SRC	 30
CDK1	 18	 SYK	 22	 SYK	 21	 YWHAG	 26
LYN	 16	 LYN	 16	 PTPN6	 20	 CDK1	 26
GRB2	 16	 PTPN6	 14	 CREBBP	 18	 CHD3	 23
CREBBP	 14	 GRB2	 14	 LYN	 17	 ATN1	 22
HCK	 13	 BRCA1	 14	 GRB2	 17	 CREBBP	 22
PTPN6	 12	 HCK	 14	 PCNA	 16	 HTT	 21
LCP2	 11	 PCNA	 13	 Sp1	 16	 SYK	 20
VAV1	 10	 CREBBP	 13	 VAV1	 13	 EP300	 20
WAS	 10	 MCM7	 12	 HCK	 13	 EWSR1	 19

Table III. Subgroup-specific miRNAs, TFs and small molecule drugs.

	 miRNAs	 TFs	 Drugs

Group 1	 miR‑147b, miR‑1269, miR‑744, 	 Sp1, DAND5, PSG1, PAX5, Pax-5	 Efalizumab, trastuzumab
	 miR‑483-5p, miR‑1207-5p
Group 2	 miR‑770-5p, miR‑1184, miR‑133a,	 DAND5, PSG1, Sp1,	 Natalizumab, trastuzumab,
	 miR‑516a-3p, miR‑133b	 aP2-α, aP2-γ	 efalizumab, bevacizumab,
			   etanercept
Group 3	 miR‑220a, miR‑492, miR‑626, 	 Sp1, DAND5, PSG1, E2F1, E2F	 NA
	 miR‑24-1a, miR‑489
Group 4	 miR‑1247, miR‑940,miR‑198, 	 DAND5, PSG1, Sp1, Elk-1, CREB1	 NA
	 miR‑1289, miR‑214

NA, not applicable.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  38:  1170-1178,  20161176

cellular differentiation, is regulated by the synergistic action 
of E2F1 and Sp1 (49). In the present study, Sp1 was the hub 
node and E2F1 was the crucial TF in subgroup 3, suggesting 
that they may play significant roles in the progression of 
GBM in this subgroup, both via the involvement of cell cycle 
regulation. miR‑220 was predicted as a remarkable miRNA in 
subgroup 3. In Chinese patients with prostate cancer, miR‑220 
was also suggested to be a crucial therapeutic target  (50). 
Additionally, the elevated level of miR‑220 was also predicted 
based on an miRNA array analysis in colorectal cancer (51). 
Therefore, dysregulated miR‑220 may also be a therapeutic 
marker of GBM in subgroup 3.

The CHD3 encoded protein is related to chromatin 
remodeling. The GO functional terms of this gene are helicase 
activity and ATP-dependent DNA helicase activity (52). It was 
discovered that CHD3 was one of the 60 genes significantly 
associated with the overall survival (OS) of GBM (53). The 
TF encoded by CREB1 was reported to be involved in a large 
number of cellular processes, such as survival and prolif-
eration. CREB was implicated in the development of myeloid 
leukemia for it positively increased the expression of cell 
cycle-related genes and thus promoted the cellular transforma-
tion and survival of myeloid cells (54). Companied with other 
synergetic factors, such as forkhead box protein A1 (FOXA1) 
and MYB proto-oncogene like 2 (MYBL2), CREB1 induced 
histone H3 acetylation, which contributed to the transition of 
G1 to S phase cell cycle stage in castration-resistant prostate 
cancer (55). Our study revealed the dysregulated CHD3 and 
CREB1 in GBM subgroup 3, suggesting their roles as potential 
biomarkers of GBM in this subgroup.

miR‑1247 has been shown to be markedly dysregulated 
in the tumor tissues in GBM (56,57), implying its role as a 
therapeutic target in GBM in subgroup 4. However, only two 
validated targets of this miRNA have been reported, such as 
the cartilage transcription factor, SRY-box 9 (SOX9) (58) and 
Myc-binding protein 2 (MYCBP2) (59).

As one of the approaches that target a specific inte-
grin-ligand interaction, natalizumab has been applied for the 
treatment of GBM by targeting α4 integrin, which results in 
the blocking of α4β1 or α4β7 binding to vascular cell adhe-
sion molecule 1 (VCAM-1) (60). The integrin, integrin subunit 
alpha 4 (ITGA4), was revealed as a target of natalizumab in 
GBM of subgroup 2 in the present study (data not shown), 
suggesting that ITGA4 may be a novel target of the small 
molecule of natalizumab in this subgroup.

The administration of the monoclonal antibodies of natali-
zumab has been shown to be responsible for the suppression of 
T-lymphocyte trafficking into the central nervous system (CNS); 
however it is also related to the risk of progressive multifocal 
leukoencephalopathy (61). Considering the adverse side-effects, 
caution should excised as regards the application of this agent 
for the management of GBM in subgroup 2.

The overall survival of GBM is often distinct among 
different subgroups, due to the factors of population, age, 
recursive partitioning analysis (RPA) class and other genetic 
factors (62). Our findings indicated that the survival rate of 
m-group 1 (subgroups 1 and 4) was significantly higher than 
that of m-group 2 (subgroups 2 and 3), suggesting that the 
same agent of GBM may be more beneficial to individuals 
in m-group 1 than that of m-group 2. This also supports the 

necessity of the use of specific agents in different subgroups. 
In conclusion, the molecular regulatory mechanisms respon-
sible for the pathogenesis GBM were distinct in the different 
subgroups. Several crucial genes, TFs, miRNAs and small 
molecules in the different subgroups of GBM were identified, 
which may be used as potential markers in the 4 subgroups, 
respectively. Among these, the LCP2- and PAX5-mediated 
immune pathway, the transcriptional regulation of BRCA1 by 
aP2 in subgroup 2, the synergistic action of Sp1 and E2F1 and 
CREB1-modulated cell cycle process in subgroups 1-4, respec-
tively, may play significant roles in the progression of GBM. 
Moreover, natalizumab may be used as a potent therapeutic 
agent for GBM in subgroup 2. However, all these predicted 
results need to be further verified by extensive experiments.
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