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Summary

The expression of autoantigens on murine cortical brain cells and their first
appearance during development was studied. Autoreactivity was analyzed by weight
increase and lymphocyte proliferation in the popliteal lymph node (PLN). Cortical
brain cells or defined plasma membrane preparations were injected s.c. without
adjuvant into syngeneic recipients. Weak, but significant T cell-dependent PLN
enlargement was triggered with brain cells from adult mice. A stronger reaction
could be elicited with one defined fraction of purified plasma membranes. The
earliest appearance of the antigenic material in the plasma membrane fraction was
observed on day 15 after birth. This time point correlates exactly with the comple-
tion of the blood-brain barrier in large parts of the central nervous system.
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Introduction

Large parts of the central nervous system (CNS) are thought to have a special
immunological status which is guaranteed by the blood-brain barrier. This barrier is
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characterized by special anatomical structures constructed by endothelial cells of the
brain capillaries that prevent entry of antibodies and effector cells. Therefore, in
most parts of the CNS immunity operates with certain constraints and the limited
capacity of the brain to react immunologically might depend on the integrity of the
blood-brain barrier.

The concept of autoantigens secluded by the blood-brain barrier intrigued many
investigators for a long time. So far only a few membrane constituents have been
described as autoantigens. For example, molecules such as myelin basic protein
(MBP), acetylcholine receptor or cerebrosides and gangliosides are targets of the
syngeneic immune system under particular pathological circumstances (Lindstrom et
al. 1976; Frick 1982; Endo et al. 1984). Many disorders of the CNS are correlated
with an increased permeability of the barrier and with abnormal immune response
that are autoimmune in nature. For example, T cell-mediated immunity to MBP can
result in acute encephalomyelitis and CNS lesions (Lisak et al. 1980). Furthermore,
oligoclonal immunoglobulins in the cerebrospinal fluid of multiple sclerosis patients
can be detected (Delmotte and Gonsette 1977). The pathogenesis of these diseases is
studied in various animal model systems. Autoimmune reactions against neuronal
antigens could be produced only by immunization with antigens emulsified in
Freund’s complete adjuvant (FCA) (Moore et al. 1984; Lebar and Vincent 1984).
Thus, T cells sensitized extra-neurally to MBP homogenized in adjuvant have been
shown to migrate to neuronal tissue and to generate severe lesions (Ben-Nun et al.
1981; Ben-Nun and Lando 1983).

The question is still open how the recognition of autoantigens takes place. T cells
recognize foreign antigens only in the context of self-MHC glycoproteins (Doherty
1985). The fact that most brain cells normally do not express MHC antigens (Wong
et al. 1984) raises new aspects about autoantigen recognition and the privileged
immunological status of the CNS. There is increasing experimental evidence that
under pathological conditions the expression of MHC glycoproteins is induced on
neuronal cell populations (Fontana et al. 1984; Wong et al. 1984) which allow T cell
recognition of the antigens (Ben-Nun et al. 1981; Watanabe et al. 1983).

The developmental stage is yet unknown at which antigens first appear that are
capable of inducing autoimmune reactions. In the present study, purified plasma
membrane preparations from murine cortical brain cells of all developmental stages
were tested for their ability to generate immune reactions in syngeneic lymphocytes.
We have shown that murine brain cells or purified plasma membranes from these
cells can induce autoreactivity in the popliteal lymph node but only when the
reactive material was derived from animals older than 10 days.

Material and Methods

Animals

Mice. Inbred BALB/c mice were obtained from the Versuchstieranstalt Han-
nover, F.R.G., or were bred in the animal facility at-the Institute of Molecular
Biology, Salzburg, Austria. The BALB/c congenic nu/nu mice were purchased from
Bombholtgard, Denmark.



Preparation of plasma membrane vesicles

Plasma membrane vesicles were prepared from brain cortex using the modified
procedures of Jones and Matus (1974) and Gurd and Mabhler (1974). Cortices from
mice of various developmental ages were dissected and carefully cleared from
meninges and the white matter. The tissues were diced finely and dissociated in a
cold isotonic 5 mM phosphate-buffered sucrose solution (0.32 M, pH 7.6) containing
1 mM EDTA. Subsequently, the single cells were broken in a Dounce homogenizer
by 20-30 strokes with a tight pestle. After centrifugation of the homogenate
(800 X g, 15 min, at 4°C) the nuclear pellet was rehomogenized as described above
and the supernatants pooled and spun down at 11500 X g,, for 25 min. The
mitochondrial pellet was washed twice in cold lysis buffer (5 mM Tris-HCl, 1 mM
EDTA, pH 8.1 for 30 min). The first purification step of plasma membranes was
achieved by density gradient flotation in a SW 28 rotor (Beckman) for 2.5 h at
60000 X g,.. This centrifugation step resulted in 2 layers and the pellet. The layer
banding at 1.1 M sucrose (designated as A,) was further purified by placing the
sample on a second discontinuous sucrose gradient with the following densities: 1.2
M, 1M, 0.8 M, 0.6 M and 0.4 M sucrose in 5 mM phosphate buffer (plus 1 mM
EDTA, pH 7.4). This second gradient was centrifuged in a SW 28 rotor for 90 min at
53000 X g, . Subsequently, fractions were collected, washed in phosphate buffer and
after the last washing the pellets were resuspended in sterile distilled water. The
samples were either frozen directly or lyophilized and stored at —30°C. Enzyme
activities and biological activity remained unaltered by either treatment. The various
fractions were designated as follows: the fraction that interphased at 0.6-0.8 M
sucrose as B,, at 0.8-1.0 M sucrose as B,, at 1.0-1.2 M sucrose as B, and fraction
‘P’ for the pellet. Plasma membranes from adult mouse liver were isolated according
to Neville (1968).

Electron micrographs of brain plasma membranes were produced as described
previously (Bauer et al. 1979).

Preparation of myelin, MBP and lipid

Myelin was prepared from 5 g of adult BALB/c brain cortices. The tissue was
homogenized in cold 0.3 M sucrose phosphate buffer (5 mM, pH 7.4), layered over
0.85 M sucrose solution in centrifuge tubes and spun at 70000 X g,, for 30 min. The
myelin interphase was removed, homogenized with a Dounce homogenizer in cold
distilled water, centrifuged, rehomogenized and spun down again. The resulting
pellet was resuspended in phosphate-buffered isotonic sucrose solution, homoge-
nized and separated on the discontinuous sucrose gradient described above. Frac-
tions were washed several times, aliquoted and lyophilized. Lipid from 5 g of brain
cortex from BALB /¢ mice was prepared using the protocol of Radin (1969). A crude
preparation of MBP was isolated from adult mouse brain according to the method
of Deibler et al. (1972). Galactocerebroside Type I was purchased from Sigma

Enzyme assays
NA* K*-ATPase activity in membrane fractions was assayed according to
Medzihradsky et al. (1971). The reaction mixture contained 150 mM NaCl, 10 mM
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KCl, 3 mM MgCl,, 3 mM ATP (Na salt, Sigma), 50 mM imidazole Cl (pH 7.2), 0.5
mM EDTA and 20 pg membrane vesicles in a final volume of 100 pl. In samples
incubated at 37°C the reaction was initiated and stopped at various intervals with
cold HCIO, (0.72 M). The samples were centrifuged at 13000 X g,, for 10 min.
Inorganic phosphate was measured colorimetrically at 700 nm. Lactate dehydro-
genase (LDH) activities were determined as described previously (Bergmeyer 1970).
Monoamine oxidase (MAO) was assayed using the procedure of Wurtman and
Axelrod (1963).

The popliteal lymph node (PLN) assay

Brain cells, plasma membranes (PM) derived from brain cells and liver cells,
myelin basic protein, various lipids or phosphate-buffered saline (PBS) were injected
into one hind footpad leaving the contralateral side uninjected as control. The
popliteal lymph nodes were removed at various time points later and weighed
immediately. The strength of the immune reaction was determined by PLN enlarge-
ment, the PLN index being defined as the ratio of the lymph node weights from the
injected over the uninjected side (Gleichmann et al. 1983).

Injection of *'Cr-labeled syngeneic spleen cells or [°H]thymidine

Lymphocyte trapping was tested according to the method of Emeson and Trush
(1973). 10 X 10° *'Cr-labeled syngeneic spleen cells free of red blood cells were
injected intravenously into treated hosts 24 h before sacrifice. To determine prolifer-
ation of the popliteal lymph node cells, mice were given an intravenous injection of
45 pCi [*HJthymidine and killed exactly 30 min later (Sprent and Miller 1972).

Radiochemical determinations

The popliteal lymph nodes from mice injected previously with *'Cr-labeled spleen
cells or with [*H]thymidine were dissolved in 1 ml tissue solubilizer (Soluene 30,
Packard) by overnight incubation in a 56°C water-bath. Those labeled with °'Cr
were counted in a gamma scintillation counter. The samples labeled with
[*H]thymidine were further diluted with Dimilume 30 (Packard) and the radioactiv-
ity was determined in a beta liquid scintillation counter. The indices for lymphocyte
trapping and for proliferation in the popliteal lymph nodes, respectively, were
determined by the ratio of the cpm from the injected side over the uninjected side.

Statistical evaluation

PLN indices are expressed as means and standard errors (SE) or standard
deviations as indicated in the Results section. Significance analysis was performed
by using Student’s ¢-test with a confidence coefficient of 0.95.

Results

Biochemical characterization of the plasma membrane preparations
The composition of cell surface molecules of brain cells from adult mice was
analyzed on plasma membrane fractions. The purification included the fractionation



TABLE 1

CHARACTERIZATION OF THE PLASMA MEMBRANE FRACTIONS FROM MURINE ADULT
CORTICAL BRAIN CELLS

Material tested Protein (Na*,K*-ATPase) MAO LDH
(mg) (pmol) * (%) (pmol) ®

Homogenate 157.5 33 100 365

B, 2.34 10.1 1.04 ND

B, 2.82 6.4 1.01 ND

B, 21 10.4 7.03 ND

P 9 ND ¢ ND ND

% Expressed as ymol/mg protein/h.
® Expressed as pmol/mg protein/min.
¢ ND, not detectable.

by 2 sucrose gradients, which resulted in the 3 bands (B,, B, and B,) and the pellet
(P) (see Methods). These fractions were defined by marker enzyme activities which
are characteristic for the following cell organelles: LDH for cytoplasmic con-
stituents, MAO for mitochondrial organelles and K*, Na*:ATPase for plasma
membranes. The data are summarized in Table 1. No detectable LDH activity was
found in any of the 3 bands or in the pellet. Fractions B;, B, and B,, but not
fraction P exhibited enriched K*,Na*-ATPase activity as compared to the cell
homogenate. In addition, MAO activity was found in all fractions, indicating that

Fig. 1. Electron micrograph of the purified plasma membrane fraction B, from adult murine cortical
brain cells. The bar represents 250 nm.



6

the preparations B,, B, and B; contain plasma membrane vesicles with minor
contaminations of mitochondrial membranes. Among the fractions that were tested
for the ability to stimulate the PLN by inducing an enlargement, only fraction B,
was effective (see data below). Therefore, the purity of this fraction was also
monitored electron microscopically as shown in Fig. 1. Fraction B, contains mem-
brane vesicles of various sizes, a few synaptosomes and minor mitochondrial and
ribosomal contaminants.

Immunological analysis

Brain cell homogenates and plasma membrane fractions were analyzed for the
potential to induce immunoreactivity in syngeneic recipients.

The data in Table 2 demonstrate that a preparation of cortical brain cell
homogenate induced a weak, though significant PLN enlargement at a concentration
of 100 pg protein. The reactivity could not be enhanced further by increasing the
injected dosage. After 3 days the lymph nodes decreased to normal size (data not
shown).

We assumed that the autoreactive antigens are expressed on the cell surface and
therefore plasma membranes were prepared from adult brain cells. After the first
sucrose density gradient centrifugation, 2 bands were obtained of which only one
(banding at 1.1 M sucrose) exhibited autoreactive activity (data not shown). This
fraction (A,) was further purified on a second sucrose gradient, resulting in 4
protein-containing fractions. Out of the 4 fractions, fraction B,, B, and P were
assayed for immunogenicity in the PLN assay. The yield of fraction B, was too low
to be tested in the biological assay. The results in Table 3 indicate that only fraction
B, generated PLN enlargement, whereas fractions B, and P were ineffective.
Dose-response studies showed that B, is most immunogenic at concentrations
between 20 and 100 pg protein (Fig. 2). Higher dose (500 ug protein) induced PLN
enlargement on both sides which, therefore, resulted in reduced PLN indices. An
autoreaction was already detected 24 h after injection, peaked between 48 and 72 h
and declined after 120 h (Table 4).

Myelin and BMP could be possibie contaminants in our active preparations,
although the white matter had been carefully removed during dissection of the adult
brain cortices. Furthermore, since plasma membranes from brain tissue also contain

TABLE 2
PLN REACTIVITY TO BRAIN CELLS FROM SYNGENEIC ADULT MICE

Dose PLN index + SE @ n®
PBS 1.06+0.04 6
0.05 mg 1.25+0.04 6
0.1 mg 1.7040.01 5
0.2 mg 1.64+0.15 4
0.7 mg 1.69+0.08 6

* Assayed after 96 h.
b Number of mice tested.



TABLE 3

PLN REACTIVITY TO DIFFERENT FRACTIONS OF PLASMA MEMBRANE PREPARATIONS
FROM ADULT BRAIN CELLS

Mice injected with * PLN index + SE n
PBS 0.85+0.1 5
Fraction B, 2.32+0.19 4
Fraction B, 1.09+0.26 6
Fraction P 1.30+0.18 5

# Mice were injected with 40 pg protein in 50 ul into one hind footpad. PLN reactivity was determined
48 h later.

PLN-Index
-~

0 0.8 “ 20 100 500
ug protein per mouse

Fig. 2. Dose-response to plasma membrane fraction B, from adult murine cortical brain cells (® o)
and of purified plasma membrane fraction from adult murine liver cells (8— — —@). (The straight line at
PLN index 1 indicates background level) Each point represents the mean of 6—8 mice+ standard
deviation.

TABLE 4
KINETICS OF PLN REACTIVITY TO FRACTION B, FROM ADULT MICE

PLN index tested after (h) PLN index + SE after injection of n
PBS (control) * 100 g B,
24 1.10+0.13 1.78+0.22 7
48 NT 2.17+0.22 5
72 1.06 +0.08 2.37+0.18 12
96 0.91+0.14 1.81+0.12 4
168 0.97+0.1 1.5240.09 4

# NT: not tested.



TABLE 5

PLN REACTIVITY TO MOUSE BRAIN LIPID, GALACTOCEREBROSIDES, MYELIN AND
MYELIN BASIC PROTEIN

Mice injected Dose PLN index + SE * n
with (png)
PBS - 1.10+0.06 8
Lipid 100 1.45+0.21 8
Lipid 20 1.03+0.1 8
Myelin 100 1.214+0.19 8
Myelin 20 1.74+0.25 8
MBP 100 1.49+0.03 6
MBP 20 1.2 +0.15 4
Galactocerebrosides 100 1.29+0.18 4
20 1.32+0.07 5
B, (adult) 100 2.1 +0.12 6

* Assayed after 48 h.

TABLE 6
PLN REACTIVITY TO FRACTION B , IN BALB/c AND nu/nu MICE

Mice injected Dose PLN index * +SE n
BALB/c PBS 1.05+0.15 5
BALB/c 100 ug 2.11+0.18 4
BALB/c nu/nu PBS 0.79+0.05 6
BALB/c nu/nu 100 pg 1.08 + 0.06 7
BALB/c nu/nu 50 ng 0.95+0.12 6
BALB/c nu/nu 20 ug 1.04 +£0.07 6

4 PLN reaction was determined after 48 or 72 h.

TABLE 7

PLN WEIGHT AND PROLIFERATION INDEX OF BALB/c TO B, FROM MICE OF DIFFER-
ENT DEVELOPMENTAL STAGES

Mice injected Dose PLN indices+ SE *# [*H]TdR n
with (png) (weight) incorporation "
PBS - 1.12+0.08 1.14£0.03 8
B, 18-day-old embryos 20 1.15+0.12 NT 6
100 1.424+0.17 NT 6
B, day 10 after birth 4 0.91+0.07 NT 11
20 1.17+0.09 NT 10
100 1.18+0.07 1.21+0.09 11
B, day 15 after birth 4 1.17+0.13 NT 5
20 2.7340.25 NT 7
100 2.6440.17 2.5240.07 7

# Assayed after 48 h.
® NT: not tested.
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Fig. 3. Weight index (D), [*H]thymidine incorporation index (#) and trapping index of 3!Cr-labeled
syngeneic lymphocytes () after injection of 50 u1 PBS (columns a) or 100 pg of fraction B, (columns b)
into the hind footpad. The indices in the popliteal lymph nodes were determined on days 2-3 after
injection by calculating the mean + standard deviation of 6—8 mice per group.

cerebrosides, it was necessary to test stringently whether these lipids could induce
PLN reactivity. The results in Table 5 demonstrate that none of the preparations
elicited comparable reactivity to fraction B, even at the same concentration.

PLN enlargement could be mediated either by lymphocyte trapping, by prolifera-
tion, or both. Therefore, BALB/c mice were immunized with 100 pg B, injected
with °Cr-labeled syngeneic spleen cells 24 h before sacrifice or with [*H]thymidine
30 min before termination of the experiment. The data in Fig. 3 demonstrate that
B,-induced PLN enlargement is mediated by lymphocyte proliferation. The increase
in [*HJthymidine incorporation paralleled exactly the weight increase in the stimu-
lated nodes. This lymphocyte proliferation appears to be T cell dependent, since
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only normal BALB/c mice developed PLN enlargement, but not the athymic
BALB/c nu/nu mice (Table 6). Lymphocyte trapping (Fig. 3) does not contribute
significantly to PLN enlargement.

In further experiments the time point during murine development at which brain
plasma membrane preparations could induce PLN reactivity in syngeneic recipients
was determined. Plasma membranes obtained from brains of 18-day-old embryos or
from pups of 10 or 15 days of age were injected into the footpad of syngeneic, adult
recipients. The results are summarized in Table 7. No detectable PLN reactivity was
observed with fraction B, from embryonic mice nor from mice that were 10 days
old. In contrast, B, from 15-day-old mice induced PLN enlargement with exactly the
same dose-response and kinetics as B, from adult mice (see Fig. 2 and Table 4).

Discussion

This study was initiated to investigate novel membrane-associated autoantigens in
the murine brain. Our data show that brain cells from adult mice, or alternatively, a
distinct fraction of plasma membranes from such cells, can induce T cell-related
lymphocyte proliferation in syngeneic recipients. The experimental system employed
was the popliteal lymph node assay, which permits rapid and easy detection on an
immunogen in vivo. Originally this assay was developed to measure T cell alloreac-
tivity in a graft-versus-host reaction (Rolstad 1976) and more recently, the immuno-
genicity of chemical compounds (Kammuller et al. 1984). The present results
demonstrate that the PLN assay is also a useful technique for the identification of
self-antigens in vivo.

The immunogen was applied in the absence of adjuvant in order to avoid all
adjuvant-associated reactions. Cortical brain cells from adult BALB /c mice, but not
from embryos of neonatal mice (data not shown), then induce a weak but significant
and reproducible enlargement of the popliteal lymph nodes in syngeneic recipients.
This reactivity could be amplified by the use of a distinct plasma membrane fraction
from adult mouse cortical cells (Table 3). The higher reactivity to purified plasma
membranes in relation to cortical brain cells could be explained by an increase in the
antigen concentration in the plasma membrane fraction. It is also possible that the
relatively weak reaction induced by adult cortical brain cells was due to cell damage
during the dissection procedure, with consequent release of lysosomal enzymes and
destruction of relevant antigens. This problem was circumvented by using a purified
plasma membrane fraction, designated as B,, from brain cortex. The purity of the
plasma membranes was documented by electron microscopy (Fig. 1) and by enrich-
ment of the plasma membrane marker enzyme Na™* K -ATPase relative to that in
the cell homogenate (Table 1). As little as 20 pg of fraction B, was sufficient to
induce optimal reaction (Fig. 2).

Plasma membranes contain phospholipids which are the main constituents of
artificial liposomes, and it is known that such liposomes possess adjuvant activity
(Moore et al. 1984). Therefore, the possibility was considered that PLN reactivity is
due to an adjuvant effect mediated by the phospholipid moiety of the plasma
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membranes. This, however, is unlikely for the following reasons: only fraction B,
induced PLN reactivity; fraction B, (Table 3), which also was derived from adult
brain cells, was ineffective; likewise, B, from 10-day-old mice (Table 7), plasma
membranes from liver cells of adult syngeneic donors (Fig. 2), lipid vesicles from
adult brain and galactocerebrosides were all incapable of inducing PLN reaction
(Table 5). Therefore, PLN enlargement cannot be attributed to a mere adjuvant
effect of plasma membrane preparations.

MBP and myelin-associated glycoprotein are potent autoantigens in the nervous
system and are both associated with myelin (Bernard and Carnegie 1975; Braun et
al. 1982). The possibility that a contamination of B, with these proteins was
responsible for PLN reactivity could be completely excluded because injection of an
amount of MBP or myelin corresponding to that of B, injected without CFA (which,
usually has to be present for in vivo immunization (Pettinelli and McFarlin 1981)
failed to produce significant PLN enlargement (Table 5). In addition, B, from
15-day-old mice was as effective as B, from adult mice, although myelinization is
only just beginning at 15 days (Schonbach et al. 1968) rendering the contamination
of our preparation with myelin rather unlikely.

Interestingly, the first appearance of the potential to induce PLN reactivity (in B,
from 15-day-old mice) coincides with the establishment of the blood-brain barrier.
During postnatal development the barrier is gradually formed and is almost com-
pleted between days 10 and 15 (Bradbury 1980). Once the barrier is established
various brain cell populations can differentiate in seclusion from the immune
system. Consequently, lymphoid cells cannot acquire tolerance to these self-antigens,
and may recognize these antigens as foreign under appropriate immunological
conditions.

B,-induced PLN enlargement was mediated by T cell-associated lymphocyte
proliferation (Fig. 3). The kinetics of this reactivity (Table 4) exhibited characteris-
tics of a host-versus-graft reaction (HVGR) (Koréakova and Hascova 1974). HVGRs
are mediated by the immune responsiveness of T cells from a homozygous recipient
against allogeneic determinants encoded by the major histocompatibility complex
(MHC) of the injected F, cells. T cell responses against foreign antigens, such as
haptens or minor transplantation antigens require the recognition of the antigen in
association with autologous class [ or class II MHC antigens (Zinkernagl and
Doherty 1974). The HVGR type of PLN reactivity to adult brain cells, or to fraction
B, suggests a similar mechanism. Antigens derived from cortical brain may be
degraded, processed and presented by autologous macrophages to T cells, which
recognize the antigen in association with self-MHC structures.

In summary, to our knowledge this is the first report providing evidence that
immune reactivity to brain cell surface antigens can be induced in syngeneic mice in
the absence of any adjuvant. The antigenicity of this material is first detectable at a
time point during murine development at which the blood-brain barrier is completed
in most parts of the CNS.
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