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Facial nerve trauma often leads to disfiguring facial muscle paralysis. Despite several

promising advancements, facial nerve repair procedures often do not lead to complete

functional recovery. Development of novel repair strategies requires testing in relevant

preclinical models that replicate key clinical features. Several studies have reported

that fusogens, such as polyethylene glycol (PEG), can improve functional recovery by

enabling immediate reconnection of injured axons; however, these findings have yet to

be demonstrated in a large animal model. We first describe a porcine model of facial

nerve injury and repair, including the relevant anatomy, surgical approach, and naive nerve

morphometry. Next, we report positive findings from a proof-of-concept experiment

testing whether a neurorrhaphy performed in conjunction with a PEG solution maintained

electrophysiological nerve conduction at an acute time point in a large animal model. The

buccal branch of the facial nerve was transected and then immediately repaired by direct

anastomosis and PEG application. Immediate electrical conduction was recorded in the

PEG-fused nerves (n = 9/9), whereas no signal was obtained in a control cohort lacking

calcium chelating agent in one step (n = 0/3) and in the no PEG control group (n = 0/5).

Nerve histology revealed putative-fused axons across the repair site, whereas no positive

signal was observed in the controls. Rapid electrophysiological recovery following nerve

fusion in a highly translatable porcine model of nerve injury supports previous studies

suggesting neurorrhaphy supplemented with PEGmay be a promising strategy for severe

nerve injury. While acute PEG-mediated axon conduction is promising, additional work is

necessary to determine if physical axon fusion occurs and the longer-term fate of distal

axon segments as related to functional recovery.

Keywords: swine, facial nerve injuries, peripheral nerve injuries, facial paralysis, axons, nerve repair, polyethylene
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HIGHLIGHTS

- Characterized anatomy, surgical approach, and morphometry
of facial nerve in Yorkshire swine.

- Demonstrated immediate electrophysiological conduction
after direct facial nerve repair following application of
polyethylene glycol (PEG).

- Established platform to optimize future mechanistic studies
investigating fusogen-mediated axon continuity.

- Porcine facial nerve injury model has utility for
the optimization of next-generation neurosurgical
repair strategies.

INTRODUCTION

Facial nerve palsy resulting from facial nerve injury is a
devastating, disfiguring condition, diagnosed in ∼20 in 100,000
patients annually (1). Muscle paralysis may occur from trauma
to the facial nerve and resultant denervation of the facial
muscle (2). Moreover, severe nerve trauma resulting from
major facial injury or tumor resection leads to prolonged
denervation and the subsequent breakdown of the pro-
regenerative environment and motor end plates necessary for
ensuring meaningful recovery (3, 4). After the nerve injury,
transected axons rapidly seal to prevent further damage via
calcium influx and calcium-mediated vesicular formation (5).
After 3–7 days, the disconnected distal axonal segments undergo
fragmentation and eventually myelin clearance (6). Fusogens,
such as polyethylene glycol (PEG), are a promising approach
for nerve repair that are posited to immediately restore axonal
continuity, and thereby preventing Wallerian degeneration
(7–10). After administering calcium-free hypotonic saline to
prevent calcium influx and an antioxidant to prevent free-
radical formation as well as vesicular formation, fusogens can
be applied which may rapidly restore the connection between
the unsealed proximal axons in close opposition to unsealed
distal axons. Therefore, it has been suggested that the successful
execution of the fusogen protocol facilitates the reconnection of
otherwise transected axonal membranes, allowing for immediate
electrophysiological connectivity.

Although PEG fusion is an exciting area in nerve repair,
it remains unclear whether physical axon fusion occurs and
directly impacts the fate of distal axon segments. While several
studies have shown that PEG fusion may enable the immediate
electrophysiological reconnection in rats, further testing in large
animal models is necessary since the extent that neurobiological
mechanisms involved in injury and regeneration are conserved
across species remains unclear (11, 12). Here, we present a proof-
of-concept study demonstrating PEG-mediated nerve fusion
in a porcine facial nerve model. This porcine facial nerve
injury model offers significant utility as a translational pre-
clinical model and may provide an ideal platform for testing of
next-generation surgical techniques and advanced therapies for
nerve repair.

METHODS

All procedures were approved by the University of Pennsylvania’s
Institutional Animal Care and Use Committee (Protocol

#805788) and adhered to the guidelines set forth in the NIH
Public Health Service Policy on Humane Care and Use of
Laboratory Animals (2015).

Surgical Preparation and Operating
Technique
Female Yorkshire pigs (3 months old, 25–35 kg; Animal Biotech
Industries) were used to study the efficacy of nerve fusion
immediately after repair [n = 12 nerves (6 swine) with PEG
application and n= 5 nerves (3 swine) without PEG application].
Anesthesia, preoperative, and postoperative management were
completed as described previously (13). Each animal in the study
received bilateral facial nerve repairs, therefore, unless otherwise
specified, sample size represents the number of nerves per group.

A 4.0 cm incision was made from the mandible toward the
lateral commissure, ∼1 cm inferior and parallel to the zygoma.
The subcutaneous fat and facial tissue were dissected to expose
the trunk of the facial nerve coursing on the masseter muscle.
Smaller nerves innervating the eyelid were cut to isolate the
buccal branch of the facial nerve innervating the upper lip and
snout. After exposure, the facial nerve was irrigated with calcium-
free PlasmaLyte-A supplemented with a calcium chelating agent
(0.5mM egtazic acid; EGTA). The nerve was sharply transected
and bathed with additional calcium-free PlasmaLyte-A.

A tension-less end-to-end nerve repair was completed
using four 8-0 prolene sutures. In this study, we tested
two different PEG application protocols. In the first PEG
protocol, after applying calcium-free Plasmalyte-A + EGTA,
hypotonic 1% methylene blue (MB) solution was diluted in
calcium-free PlasmaLyte-A supplemented with EGTA, which
was applied immediately before tightening the sutures followed
by administration of PEG (molecular weight: 3,350). In the
second PEG protocol, hypotonic 1% MB was diluted in diH2O
without calcium chelating agent (EGTA). Lactated ringer’s
solution was applied to wash away excess PEG. Negative control
nerves were washed with calcium-free PlasmaLyte-A with EGTA
and hypotonic 1% MB diluted in calcium-free Plasmalyte-A
with EGTA before suturing, and lactated ringer’s solution was
then applied similar to the PEG protocols. Electrophysiological
recordings were performed immediately before and after repair
to evaluate acute functional recovery.

Facial Nerve Electrophysiology Recordings
Compound nerve action potentials (CNAPs) were obtained
following proximal nerve stimulation from a distal recording
electrode (amplitude: 0–10mA, duration: 0.1ms, bandpass filter:
10–10,000Hz+ 60Hz notch filter, 1,000× gain). The stimulating
and recording electrodes were positioned 0.5 cm caudal and
rostral to the repair site, respectively. The ground electrode was
inserted into subcutaneous tissue halfway between the electrodes.
CNAP amplitude was measured as the peak-to-peak from the
positive deflection to negative deflection. A binary score for
successful evoked muscle response was recorded by stimulating
the proximal nerve after repair. A 3 × 2 contingency table was
generated for the three cohorts and the two outcomes (successful
or failed evoked response). We were unable to run a traditional
chi-square comparison since the outcome for two of the groups
were zero. Therefore, data were compared using Fisher’s exact
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test between individual groups (Graph Pad Prism Version 8, La
Jolla, California).

Euthanasia, Tissue Processing, Histology,
and Microscopy
Animals were euthanized immediately following the acute
electrophysiological assessment by transcardial perfusion with
heparinized saline followed by 10% neutral-buffered formalin.
Repaired nerves were harvested for morphometric analyses
spanning 5mm proximal and distal to the suture site. Nerves
were fixed in 10% neutral-buffered formalin at 4◦C overnight. For
longitudinal histological assessment of the repair zone, nerves
were placed in 30% sucrose overnight and then subsequently
embedded in optimal cutting media, and frozen in dry
ice/isopentane. The nerve was sectioned longitudinally at a
thickness of 20µm and mounted on glass slides for staining.
Sections were rinsed in PBS (3 × 5min) and blocked for 1 h in
blocking solution (PBS with 4% normal horse serum and 0.3%
Triton X-100). Axons were labeled with mouse anti-SMI31/32
(1:1000, BioLegend Cat# 801601 and BioLegend Cat# 701601)
diluted in blocking solution following overnight incubation at
4◦C. Slides were rinsed in PBS (3 × 5min) and donkey anti-
mouse 488 diluted in blocking solution (1:500) was applied for
2 h at room temperature. Sections were then rinsed in PBS (3
× 5min), mounted with Fluoromount-G R© (Southern Biotech
Cat#0100-01) and coverslipped.

Fluorescent images were obtained with a Nikon A1R confocal
microscope (1,024 × 1,024 pixels) with a 10× air objective or
60× oil objective using Nikon NIS-Elements AR 3.1.0 (Nikon
Instruments, Tokyo, Japan).

RESULTS

Surgical Exposure of the Facial Nerve
Detailed anatomic dissections were carried out in Yorkshire
cadavers to gain an understanding of the peripheral nerve origins,
trajectories, and branching patterns. Based on those findings, we
determined that making a linear incision ∼1 cm inferior and
parallel to the zygoma and extending from the base of the pinna
toward the lateral commissure provided optimal access to the
complete structure of the facial nerve. Subsequent to incision,
the subcutaneous tissue and fascia were dissected to expose the
trunk of the facial nerve coursing on the masseter muscle. The
facial nerve has a large ellipsoidal diameter and branched into the
mandibular nerve, zygomatic nerve, and the buccal nerve. The
mandibular nerve coursed inferiorly toward the jaw, zygomatic
nerve superiorly toward the eyelid, and the buccal nerve rostrally
toward the snout (Figure 1).

Structural Findings in Naive Facial Nerves
Naive facial nerve histological assessment of the axon
morphometry revealed large and small myelinated fibers
organized in a polyfascicular pattern. At the caudal end, the facial
nerve had a denser fascicular structure relative to the total nerve
diameter. As the nerve coursed rostrally, the facial nerve became
flatter and epineurium began to diverge into the individual

branches. The buccal branch was identified as the main branch
innervating the dorsal muscle group (Figure 2).

Electrophysiological Response
Immediately After Facial Nerve
Neurorrhaphy in Presence of PEG
Solutions
Facial nerve neurorrhaphy was completed after following two
different PEG application protocols as well as a negative control
protocol. CNAP electrophysiological assessment was performed
immediately before and after repair. Successful evoked muscle
response was found in 9/9 nerves following neurorrhaphy
after applying PlasmaLyte-A supplemented with EGTA, 1% MB
diluted in PlasmaLyte-A supplemented with EGTA, and PEG
compared to 0/5 nerves in the negative control cohort (p< 0.001)
(Figure 3). Interestingly, there was no evoked response in 0/3
nerves after following a similar protocol if MB was diluted in
diH2O lacking EGTA (p< 0.001 compared to the first PEG fusion
protocol). CNAP waveforms obtained following the first PEG
protocol were qualitatively different than naive traces pre-repair,
whereas no signal was detected in the negative control, suggesting
the electrophysiological activity was physiological rather than
simply current spreading across the suture site.

Histological Findings Immediately After
Facial Nerve Neurorrhaphy in Presence of
PEG Solutions
Whole-mount tissue and longitudinal sections were stained
with SMI31/32 to identify axons. Axons rostral and caudal
to the repair site were readily observed immediately after
neurorrhaphy, as expected (Figure 4). Histological assessment
of the PEG cohort treated with MB diluted in PlasmaLyte-A
with EGTA revealed that no axons were found in the repair
site if there was no immediate electrophysiological recovery
after repair. At high magnification, axons were observed with
clear fascicular alignment between the caudal and rostral nerve
stumps, indicating that careful approximation is likely important.

DISCUSSION

Severe peripheral nerve injuries are surprisingly common
following motor vehicle accidents, sports-related injuries, and
iatrogenic injuries (14–16). Recovery from peripheral nerve
injury can be arduous, with long recovery times and often
poor return of function. Much of this can be attributed to
slow axonal regrowth, long regenerative distances, Wallerian
degeneration, and prolonged denervation leading to muscle
atrophy (6). PEG has been well-described as an artificial fusogen
in quickly reconnecting severed ends of giant invertebrate axons
and rodents (7–10, 17–25). Recent findings in rodent models
have suggested that PEG fusion may mitigate the harmful effects
of prolonged denervation by preventing Wallerian degeneration
and rapidly restoring the electrophysiological connection of
some axons.

In a proof-of-concept study, we tested the feasibility of
neurorrhaphy with PEG fusion protocols in a porcine facial
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FIGURE 1 | Porcine Facial Nerve Anatomy. (A) Drawing denoting relevant facial nerve anatomy. (B) Surgical perspective of the facial nerve and its distal branches

were performed in Yorkshire cadavers. A linear incision was made from the mandible towards the lateral commissure, approximately 1 cm inferior and parallel to the

zygoma. Blunt dissection of the subcutaneous fat and facial exposed the trunk of the facial nerve coursing over the masseter muscle. The facial nerve and its

branches were completely dissected from the surrounding tissue and followed to each muscle end-target. The marginal mandibular branch of the facial nerve

originates from the ventral aspect of the facial nerve, coursing under the mandible to the rostral muscle end target(s) (partially shown here). Approximately 6–7 cm of

the buccal branch was exposed before innervating the muscle end target.

nerve injury model. We found direct facial nerve anastomosis
with PEG fusion protocols immediately enabled a measurable
CNAP across the suture site that resulted in an evoked
snout twitch similar to previous studies. However, acute
electrophysiological conduction alone does not definitively

show immediate axon fusion (i.e., restored continuity). Indeed,
post-mortem immunohistochemistry and microscopic analyses
revealed the presence of axons spanning the defect in the cohort
of animals with successful evoked responses following the PEG
fusion protocol with MB diluted in PlasmaLyte-A with EGTA,
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FIGURE 2 | Cross-Sectional Naïve Facial Nerve Histological Characterization. To characterize the facial nerve fascicular architecture, the facial nerve and its branches

were harvested, fixed, and subsequently blocked every centimeter starting 1 cm before the bifurcation point of the ventral and dorsal segments of the buccal branch.

Cross-sectioned nerves (8µm thick) were stained to identify bundles of axons (SMI31/32, red) and myelin (myelin basic protein, purple). Naïve facial nerve histological

assessment of the axon morphometry revealed large and small myelinated fibers organized in a polyfascicular pattern. The fascicular architecture changed as the

nerve coursed caudal to rostral. At the caudal end, a dense fascicular structure was found relative to the total nerve diameter. During the rostral course of the facial

nerve, the total nerve area flattened and individual branches were formed within separate epineurium. Notably, compared to the caudal end of the facial nerve, the

buccal branch had a relatively sparse fascicular area relative to the total nerve. Abbreviations: FN- Facial nerve, ZB- Zygomatic branch. Scale: 500µm.

suggesting putative fusion at the time of stimulation. Future
studies are necessary that utilize additional techniques such as
tract tracing with tissue clearing and/or electron microscopy
to demonstrate the potential efficacy of actual axonal fusion.
While the present study is limited to an acute time point,
the main goal was to demonstrate whether PEG-mediated
electrophysiological capacity was maintained in a large animal
model of nerve injury. Future work will be required to establish
the longer-term fate of the transected axons; in particular
whether the distal segments undergo Wallerian degeneration
or if a subset that may have fused to proximal segments
are spared.

Several protocols reporting successful PEG fusion have
been previously published. However, the main components

of the protocol are: (1) Transect the nerve in calcium-free
hypotonic saline (e.g., PlasmaLyte-A) to prevent calcium-
mediated vesicular budding; (2) Apply an antioxidant (e.g., MB)
to prevent the free radical formation and keep the axonal ends
open; (3) Closely oppose nerve using sutures; (4) Apply PEG at
the repair site before finishing suturing to allow for fusion of the
open axonal ends; (5) Wash the surgical field thoroughly with
calcium-containing isotonic solution (e.g., lactated ringers) to
seal any unfused axons. Slight modifications have been published,
such as applying hypotonic calcium-free saline with a calcium
chelator (EGTA) and MB diluted in calcium-free saline (20).
One potential advantage of using calcium chelating agent is that
it has been reported to improve the efficiency of PEG fusion
in large myelinated earthworm axons (25). However, successful
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FIGURE 3 | Restoration of axon conduction immediately following PEG-mediated direct facial nerve repair. (A) Intraoperative photo immediately following PEG fusion.

Briefly, the nerve was transected in hypotonic saline, and epineurial sutures were placed to approximate the direct nerve repair. Methylene blue was then applied to the

nerve and enters the injury site, which can be seen in (A). Nerve fusion is achieved by applying PEG to the repair site as the direct repair is completed by tying the

epineurial sutures. (B) Compound nerve action potentials (CNAP) were performed immediately before and after repair. Immediate electrical connectivity with a robust

waveform was noted following successful PEG fusion. No response was observed in control animals lacking PEG application. (C) An evoked muscle response was

seen in 9/9 in the PEG fusion cohort treated with calcium-free PlasmaLyte-A + EGTA, methylene blue in calcium-free PlasmaLyte-A + EGTA, PEG, and then nerve

suture. No evoked response was found in the cohort treated with calcium-free PlasmaLyte-A + EGTA, methylene blue in deionized water, PEG, and then nerve suture

(0/3). Additionally, no response was observed in the negative control cohort lacking PEG application (0/5) (**p < 0.01, ***p < 0.001, n.s. no significance). PEG,

Polyethylene Glycol; PL, Calcium-free PlasmaLyte-A; MB, methylene blue; DiH2O, deionized water; EGTA, Egtazic acid.

PEG fusion has been reported in rodents after transecting the
nerve in calcium-free saline followed by MB diluted in distilled
water (diH2O) (5, 7, 31). In this study, we tested two potential
PEG fusion protocols with slightly different MB dilutions. In the
first protocol, MBwas diluted in calcium-free saline (PlasmaLyte-
A) supplemented with a calcium chelating agent (EGTA). In the
second protocol, MB was diluted in diH2O lacking a calcium
chelator. While immediate electrical connectivity was restored
after completing the PEG fusion protocol with MB diluted in
PlasmaLyte-A supplemented with EGTA, no evoked electrical
response was elicited after completing the protocol with MB
diluted in diH2O lacking EGTA. While it is possible that PEG
fusion in rodents may not require EGTA, our data suggest that
EGTA may be necessary in all steps before PEG application in
a porcine facial nerve injury model. Although the exact reason
remains unknown, we have two potential hypotheses related to
the calcium chelating agent: (1) the porcine facial nerve might
be more sensitive to calcium ions compared to the rat sciatic
nerve and (2) more calcium ions may be present within the
surgical site compared to the rat surgical field. A third hypothesis
might be that the dilutions have different osmolarity, which may
be an important consideration for successful PEG fusion (26).
While we found evidence of successful PEG fusion in a porcine
model using Plasmalyte with EGTA, hypotonic 1%MB diluted in
Plasmalyte with EGTA, followed by PEG application and finally
lactated ringers’ solution, a limitation of this study is the low
sample size. Therefore, future studies with larger sample sizes

should be conducted to determine the mechanisms underlying
this discrepancy, as well as the relevance to surgical repair of
nerves in humans.

Surgical technique is also likely an important factor for
reproducible outcomes in this paradigm. Although we
employed standard microsurgical repair techniques, it is
important to ensure that suturing resulted in proper fascicular
alignment with minimal tension and/or bunching at the
repair site. Indeed, a previous study has reported that
67% of surgeons trained to perform neurorrhaphy achieved
successful “fusion” after practice (with success defined based on
restoring acute electrophysiological conduction and subsequent
behavioral recovery) (10). Thus, ensuing optimal surgical repair
techniques and experience with the PEG protocol are important
considerations when executing nerve fusion experiments.

As innovative neurosurgical repair strategies and advanced
regenerative therapies are further progressed, there will be an
increased need for clinically relevant models to optimize these
strategies prior to clinical implementation. Most preclinical
research in peripheral nerve repair and regeneration has focused
on rodent models (12, 27, 28). Nevertheless, rodent experiments
of peripheral nerve injury do not effectively replicate the major
impediments to recovery encountered in the clinical setting,
such as large diameter nerve injury and long total regenerative
distances to reach distal targets (13, 29). In addition, it is unclear
to what extent rodent nerve regeneration recapitulates human
physiological processes. While rodent models serve a necessary
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FIGURE 4 | Putative axon continuity immediately following direct facial nerve repair. (A) Nerves were sectioned at the repair site longitudinally and stained for axons

(SMI31/32, green). At low magnification, the repair site can be clearly seen as the region lacking axon connectivity between the facial nerve stumps. High

magnification revealed axons spanning the repair site following neurorrhaphy + PEG, whereas no axons were seen in the control nerve (neurorrhaphy without PEG).

purpose of initial proof-of-concept studies, true translational
experiments of peripheral nerve injury and repair call for large
animal models to effectively model human injury responses (11).

The porcine facial nerve model offers several advantages that
may be useful for future studies assessing the long-term efficacy
and functional recovery of PEG fusion. Access to the facial
nerve is straightforward, requiring only minimal dissection. The
anatomy of the nerve is predictable and easy to identify. Damage
to the nerve results in minimal morbidity and can be performed
bilaterally. The facial nerve does not cross a joint, so any nerve
repair experimentation is not at risk of mechanical disruption,
unlike long nerve repairs in the hind limb. The regenerative
distance to the snout is a fraction of the distance in the hind
limb, and can facilitate more rapid results even following long-
gap repairs. Many of the indirect techniques used to assess nerve
regeneration and functional recovery, such as ultrasonography
and electrophysiology, can be performed with greater ease and
access. For direct stimulation, the nerve repair can be easily
re-exposed with minimal morbidity. Conversely, because of the
conserved position of the nerve just under the skin, surface
electrode placement can be carried out with high reliability.
Notably, ∼4–5 cm of nerve can be easily removed, allowing for
testing of long gap nerve repairs with relatively close proximity
to the end target. Previous studies have reported PEG fusion
following short gap autograft repair (20); future studies in large
animals may include testing PEG fusion following long gap
autograft repair.

While our proof-of-concept study demonstrates PEG
fusion may enable early electrophysiological recovery with
potentially corroborating histological evidence of axons within
the graft region, further investigation is necessary to determine
whether PEG fusion following nerve repair in large animals
results in permanently fused axons and/or mitigates Wallerian
degeneration. Although PEG is a commonly utilized compound
with tunable properties that has been shown to be safe in humans
for various applications (30), the impact of high molecular
weight formulation on long-term physiology has yet to be
studied. Therefore, future large animal safety and efficacy
studies should assess whether there are any adverse long-term
effects of PEG application and/or undesirable effects on nerve
function.

CONCLUSION

Several promising strategies have been proposed for the
treatment of severe nerve injury, such as PEG-mediated axon
fusion for acute nerve repair. For most strategies, mechanistic
efficacy testing in large animal models will be advantageous prior
to clinical deployment. Here, we identified a PEG fusion protocol
that enabled the rapid restoration of electrophysiological
connection immediately after neurorrhaphy, with putative axons
bridging the transection site, in a porcine model of facial nerve
injury. The porcine model of facial nerve injury presented here
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is suitable for testing novel nerve repair strategies by adequately
representing major challenges experienced in the clinical setting.
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