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Skin cutaneous melanoma (SKCM) is the major cause of death for skin cancer patients,

its high metastasis often leads to poor prognosis of patients with malignant melanoma.

However, the molecular mechanisms underlying metastatic melanoma remain to be

elucidated. In this study we aim to identify and validate prognostic biomarkers associated

with metastatic melanoma. We first construct a co-expression network using large-scale

public gene expression profiles from GEO, from which candidate genes are screened

out using weighted gene co-expression network analysis (WGCNA). A total of eight

modules are established via the average linkage hierarchical clustering, and 111 hub

genes are identified from the clinically significant modules. Next, two other datasets from

GEO and TCGA are used for further screening of biomarker genes related to prognosis

of metastatic melanoma, and identified 11 key genes via survival analysis. We find that

IL10RA has the highest correlation with clinically important modules among all identified

biomarker genes. Further in vitro biochemical experiments, including CCK8 assays,

wound-healing assays and transwell assays, have verified that IL10RA can significantly

inhibit the proliferation, migration and invasion of melanoma cells. Furthermore, gene set

enrichment analysis shows that PI3K-AKT signaling pathway is significantly enriched in

metastatic melanoma with highly expressed IL10RA, indicating that IL10RA mediates in

metastatic melanoma via PI3K-AKT pathway.

Keywords: skin cutaneous melanoma (SKCM), metastatic melanoma, WGCNA, IL10RA, survival analysis,

prognostic biomarker

1. INTRODUCTION

In the past few decades, the incidence of skin cutaneous melanoma (SKCM) has gone up faster
than any other solid tumors (Eggermont et al., 2014). In 2018, the estimated number of new cases
of SKCM was 287,723, among which 60,712 died (Bray et al., 2018). Widespread metastases to the
skin, subcutaneous, lymphatic system, lung and other non-pulmonary visceral are implicated in
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poor patient survival, which is the major obstacle to improve
prognosis (Balch et al., 2009). The median survival time with
metastatic melanoma is only 6–9months and the 5-years survival
rate is under 5% with traditional therapies (Agarwala, 2009).
Therefore, the comprehensive understanding of melanoma
progression and the molecular mechanism underlying the
growth and metastasis of melanoma are of great significance.

Biomarkers for diagnosis and prognosis of cutaneous
melanoma have drawn intensive attentions from academic and
industrial communities in recent years, and many studies have
identified plenty of effective biomarkers and therapeutic targets
in metastatic melanoma. For example, increasing concentrations
of serum S100 calcium-binding protein B (S100B), lactate
dehydrogenase (LDH), melanoma-inhibiting activity (MIA),
YKL40 and tumor-associated antigen 90 immune complex
(TA90IC) are all strongly associated with overall survival,
suggesting their function as prognostic factor in late-stage
malignant melanoma (Gogas et al., 2009). Linked by a network
of overlapping functions in melanoma progression, melanoma
cell adhesion molecule (MCAM), galectin-3 (Gal-3), chondroitin
sulfate proteoglycan 4 (CSPG4), matrix metalloproteinase 2
(MMP-2), and paired box 3 (PAX-3) potentially act as biomarkers
and targets in melanoma metastasis (Dye et al., 2013). Hofmann
et al. (2011) found the serum MIA level was closely related
to the status of lymph nodes in the affected basin of stage
III melanoma patients. However, the underlying mechanism of
metastatic melanoma is still unclear.

The high-throughput sequencing technique has open a
new door to the study of clinical outcomes and pathological
mechanism of various cancers. However, traditional differential
expression analysis is not efficient to uncover the interconnection
among genes with similar biological functions. Weighted gene
co-expression network analysis (WGCNA) has been proposed
to address high-dimensional data, especially for the free-scale
gene coexpression networks based on the likelihood of expression
profile between genes (Tang et al., 2018). A set of genes that
are highly correlated will be grouped into a module and the
module could be associated with different clinical traits (Giulietti
et al., 2016). WGCNA (Langfelder and Horvath, 2008) has been
successfully applied to evaluate the associations between gene
modules and clinical features. For example, Wang et al. (2020)
used WGCNA to identify human T cell lymphotropic virus-1
(HTLV-1) infection and mTOR signaling pathway, as well as the
AKT1 and MAPK14 genes that might serve as biomarkers and
targets for precise diagnosis and treatment of ischemic stroke.
In addition, hub genes can be identified based on the correlation
between the genes and the module eigengenes (MEs).

In this work, we conducted WGCNA on the GEO dataset
GSE22153 to identify prognostic biomarker genes of cutaneous
melanoma. There are eight gene modules established via the
average linkage hierarchical clustering and 111 candidate genes
identified in the clinically significant modules. Subsequently,
two other RNA-seq datasets together with clinical information
of metastatic melanoma from GEO and TCGA datasets were
used for further screening for hub genes related to prognosis.
As a result, 11 hub genes that are significantly correlated
with prognosis in both datasets were identified via survival

analysis. Especially, the interleukin 10 receptor subunit alpha
(IL10RA) shows the highest correlation with clinically important
modules. We have conducted further in-vitro biochemical
experiments, including CCK8 assays, wound-healing assays and
transwell assays, and verified that IL10RA can significantly
inhibit the proliferation, migration and invasion of melanoma
cells. Furthermore, gene set enrichment analysis revealed
that PI3K-AKT signaling pathway is significantly enriched in
metastatic melanoma with highly expressed IL10RA, indicating
its significance as potential biomarkers.

2. MATERIALS AND METHODS

2.1. Data Resource and Pre-processing
The gene expression profiles are downloaded from the Gene
ExpressionOmnibus (GEO) database (Edgar et al., 2002) and The
Cancer Genome Atlas (TCGA) database (Tomczak et al., 2015).
From GEO, we retrieve two datasets GSE22153 and GSE22154,
which includes 57 metastatic melanoma samples associated with
four molecular subtypes (high-immune response, pigmentation,
normal-like and proliferative) and 22 metastatic melanoma
samples with clinical information, respectively. Also, we get 367
metastatic melanoma samples with clinical information from
TCGA. The GSE22153 dataset is used to runWGCNA to identify
candidate hub genes, while the GEO GSE22154 and TCGA data
are used to perform survival analysis for further screening of
prognostic genes.

2.2. Construction of Gene Coexpression
Network
We construct a gene co-expression network using the WGCNA
package (Horvath and Dong, 2008; Mason et al., 2009). First, we
calculate the Pearson correlation coefficient (PCC) for all paired
genes. Second, an adjacency matrix is constructed using a power
function as below 1:

Aij = |pij|
β (1)

in which Aij is the adjacency element between gene i and gene
j, pij represents the PCC between gene i and gene j, and β is a
soft thresholding parameter that could stress strong correlations
between genes and penalize weak correlations. In this study,
the power of β is set to 4 (scale free R2 = 0.9) to ensure a
scale-free network.

Next, the adjacency matrix is transformed into topological
overlap matrix (TOM) so that the genes with similar expression
profiles are clustered into modules using the average-linkage
hierarchical clustering method. Of note, the minimum base
number of each gene network module is set to 30 in this study.
As shown in Equation (2) (Langfelder and Horvath, 2008), the
element of TOM can be calculated as

TOMij =

∑N
k=1 Aik · Akj + Aij

min
(

Ci,Cj

)

+ 1− Aij
(2)

in which Aij refers to the beta power of the correlation coefficient
between gene i and gene j, Aik and Akj are similar variables.
The numerator of this formula refers to the sum of indirect
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correlation and direct correlation between gene i and gene j.
Ci =

∑

k Aik and Cj =
∑

k Ajk means the connectivity of gene
i and gene j, respectively.

2.3. Discovery of Important Network
Modules
The correlation between modules and clinical subtypes is
calculated according to the feature vector of each network
module. Module eigengenes actually formulate the expression
patterns of the all genes within a given module into a single
characteristic expression profile. Module eigengenes can be
regarded as the first principal component of the gene module.
The correlation between each gene in these modules and each
subtype (high-immune response, pigmentation, normal-like and
proliferative) is quantified by gene significance (GS) value.
Accordingly, module significance (MS) of a certain module is
defined as the averaged GS values of all genes included in it.
Modules are ranked according to the MS score, and the top
two modules are considered as key modules relevant to clinical
outcomes for further analysis.

2.4. Identification of Candidate Biomarkers
Hub genes in the coexpression network are a class of genes that
have high connectivity within a networkmodule and significantly
correlated with biological function (Chen et al., 2017). In this
study, the connectivity of genes is measured by absolute value
of the module membership (MM) score, which represents the
PCC between certain gene and module eigengene. Besides, we
measure the absolute value of gene significance (GS) score, which
represents the correlation between the genes in these modules
and each type of phenotype (Yang et al., 2018). We screen
candidate genes using the cut-off criteria |MM| ≥ 0.8 and
|GS| ≥ 0.2, because such genes are biologically meaningful.
The |MM| ≥ 0.8 indicates that the gene is strongly related to
module, and |GS| ≥ 0.2 requires that the gene expression profile
is also closely related to phenotpical subtype. Finally, the degree
of connectivity of each gene is the sum of the edge attributes
of the genes connected to it. The higher the connectivity, the
stronger the biological function of the gene. We select the top
30 hub genes to cover most genes that reach the MM and GS
thresholds in each module.

2.5. Co-expression Network Analysis and
Functional Enrichment Analysis
Based on the protein-protein interactions (PPIs) derived from
STRING (Szklarczyk et al., 2016), we construct PPI networks of
candidate biomarker genes in each clinically significant module.
The PPI networks are visualized using Cytoscape. Besides, Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis are performed
using the R package clusterProfiler (Yu et al., 2012).

2.6. Determination of Biomarker Genes
Significant to Survival
Based on the GEO GSE22154 and TCGA datasets, Kaplan-
Meier survival analysis (Györffy et al., 2010) is performed
to explore the relationship between the expression level of

candidate biomarker genes and the survival days of metastatic
melanoma patients (Lánczky et al., 2016). The GEO GSE22154
and TCGA datasets include 22 and 367 metastatic melanoma
samples, respectively. Because they come from different data
source, we run survival analysis independently on these two
datasets, as the sample sizes of both datasets are enough for
statistical significance. The log rank p values and the hazard
ratio are calculated. The genes with statistical significance
(p < 0.05) to prognosis in both datasets are determined as
the biomarkers related to survival, on which further in-vitro
biochemical experiments are conducted.

2.7. In-vitro Biochemical Validation of
Biomarker Gene
Human malignant melanoma cell line (A375) and mouse skin
melanoma cell line (B16-F10) are purchased from Chinese
Academy of Sciences Cell Bank (Shanghai, China). Cell
proliferation is measured using cell counting kit-8 (CCK-8).
A375 and B16-F10 cells are transfected with si-IL10RA or si-
Control in 6-well plates. After 24 h, the cells are seeded into
96-well plates and cultured for 24, 48, 72, and 96 h, respectively.
The absorbance at 450 nm is measured to determine the cell
viability. Cell migration ability is measured using wound-healing
assays, where cells seed in a 6-well plate. Until the cell confluence
reaches 95%, a scratch wound is generated using a sterile 200
µL pipette tip. Next, the scratches are photographed at 0 h and
24 h. Cell invasion ability is measured by transwell assays using
the transwell chambers, which are pre-coated with Matrigel.
The lower chamber is added to DMEM with 20% FBS, and
melanoma cells in serum-free medium are placed in the upper
chamber. The cells invaded into the lower chamber is fixed in
4% paraformaldehyde after incubation for 24 h and stained with
crystal violet.

2.8. Gene Set Enrichment Analysis
A total of 367 metastatic melanoma samples in TCGA
are divided into high-expression and low-expression groups
according to the median expression levels of hub gene. To
study the potential mechanisms of metastatic melanoma, GSEA
between the two groups is performed using the Java GSEA
implementation (Subramanian et al., 2005), where FDR < 0.05
is set as the cut-off criteria.

3. RESULTS

3.1. Parameter Optimization and
Determination of Network Modules
The expression profiles of 57 samples covering four molecular
subtypes were included in the coexpression analysis. We
processed 12,633 gene expression profiles using variance analysis
on the GSE22153 dataset. The top quartile threshold (top 25%), a
frequently used selection criterion, is used to select most variant
genes. As a result, 3,658 unique genes with highest variances were
screened out for further WGCNA analysis. To ensure that the
network was a scale-free network, we ran empirical analysis to
choose an optimal parameter β . As shown in Figure 1, both the
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FIGURE 1 | Determination of soft-thresholding power in WGCNA analysis. (A) Analysis of the scale-free fit index for various soft-thresholding powers β. (B) Analysis of

the mean connectivity for various soft-thresholding powers.

FIGURE 2 | Dendrogram of all differentially expressed genes clustered based

on a dissimilarity measure (1-TOM).

scale-free topology model fit index (R2) and mean connectivity
reach steady status when β is equal to 4.

A total of eight modules were identified via average linkage
hierarchical clustering and each module is represented in
different color, as illustrated in Figure 2. To explore the
correlation between module eigengenes and clinical traits, we
plot a heat map shown in Figure 3. Each column in Figure 3

displayed the correlation and corresponding p-value. Red color
represents positive correlations and green color represents
negative ones. The darker the color, the stronger the correlation
coefficient. We found that each clinical subtype is closely related
to certain module, namely, the expression profiles of a set of
genes significantly characterize each subtype. For example, we
can find from Figure 3 that the high-immune response subtype
is most relevant and positively correlated with the blue module.
Its correlation coefficient is 0.69 and the p-value is 3e-06.
Furthermore, the specific GS value across the modules in each
subtype is shown in Supplementary Figure 1, we found that

FIGURE 3 | Heatmap of the correlation between module eigengenes and

clinical traits of metastatic melanoma.

four module eigengenes, colored in blue, yellow, brown, and
turquoise, have the highest correlation with the subtypes high-
immune response, pigmentation, normal-like and proliferative,
respectively. Accordingly, they were selected as the clinically
significant modules for further analysis.
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FIGURE 4 | Scatter plots of the degree and P-value of Cox regression in dataset. The x-axis indicates the degree of regression, the y-axis indicates the gene

significance. Each circle represents a gene. (A) A scatterplot of gene significance for highimmune response versus module membership in the blue module. (B) A

scatterplot of gene significance for pigmentation versus module membership in the yellow module. (C) A scatterplot of gene significance for normal-like versus module

membership in the brown module. (D) A scatterplot of gene significance for proliferative versus module membership in the turquoise module.

3.2. Candidate Genes Significantly
Associated With Metastatic Melanoma
Based on the aforementioned cut-off criteria |MM| ≥ 0.8 and
|GS| ≥ 0.2, we subsequently sorted the genes according to their
connectivity to select candidate biomarker genes, as shown in
Figure 4. Note that only 21 genes are screened out in the yellow
module, and then all of them are selected as candidate genes.
For other three modules, top 30 genes that have high functional
significance in these clinical modules are selected. In total, we
obtained 111 candidate genes. Based on the PPI interactions
derived from STRING, a PPI network covering these candidate
genes in each module was constructed by Cytoscape, as shown in
Figure 5.

To uncover the role of candidate genes in the pathogenesis
of melanoma, GO and KEGG enrichment analysis were
carried out. The GO analysis results revealed that the

candidate biomarker genes in the biological process group
were mainly enriched in epidermis development, neutrophil
degranulation and keratinization. The molecular function group
were mainly enriched in phosphotyrosine residue binding and
Rho guanyl-nucleotide exchange factor activity. The genes
in the cellular component group were significantly enriched
in cell-cell junction and tertiary granule. Furthermore, our
KEGG analysis demonstrated that candidate genes were mainly
enriched in leukocyte transendothelial migration and tyrosine
metabolism (see Supplementary Figure 2 for more detail). Our
pathway enrichment analysis results showed that candidate
genes are mainly related to the growth and structure of
the skin. The malfunction of these genes may result in
melanoma metastasis, as reported that Rho guanine-nucleotide
exchange factor is necessary for effective melanoma metastasis
(Lindsay et al., 2011).
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FIGURE 5 | The network of hub genes in the (A) blue module, (B) yellow module, (C) brown module, and (D) turquoise module. Nodes represent genes and node

size indicates weighted degree score.

3.3. Biomarkers Are Predictive of
Prognosis of Metastatic Melanoma
We subsequently conducted overall survival analysis on other
two independent datasets from GEO and TCGA. The patients
are stratified into high-level and low-level groups according
to the median expression of the 111 candidate genes to
further screen the prognostic genes. As shown in Figure 6, the
expression profiles of 11 biomarker genes, including IL10RA,
AOAH, CD48, IL32, CORO1A, GPR132, ITGAL, LCK, LCP1,
RCSD1, and TBC1D10C, are significantly associated with
overall survival of patients with metastatic melanoma on GEO
GSE22154 dataset. The survival analysis results on TCGA
dataset is shown in Supplementary Figure 3. Among these
genes, several have been reported to be associated with the
prognosis of SKCM. For example, the expression of IL-32γ
and IL-32β is associated with increased cancer cell death in
melanoma (Sloot et al., 2018). It has been reported that high

expression of GPR132 resulted in cell cycle arrest and reduced
oncogene transformation potential (Klatt et al., 2020). A few
other studies also demonstrated that cutaneous melanomas
from the immune transcriptomic subgroup that correlates with
pathological lymphocytic infiltration also express elevated levels
of LCK protein, which are associated with improved patient
survival (Akbani et al., 2015). Niethammer et al. (2001) found
that the obviously up-regulation in expression of CD48 and B7.1
on antigen-presenting cells provided further evidence for the
effectiveness of the targeted Interleukin 2 therapy enhancing the
immune response induced by an autologous oral DNA vaccine
against murine melanoma. In addition, some of biomarker genes
have been reported to be related to tumor development and
tumor microenvironment. For example, Passon et al. found
that in papillary thyroid carcinoma frequent deletion variants
were detected in the 6q25.2 region containing the OPMR1 and
IPCEF1 genes, and the 7q14.2 region containing the AOAH and
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FIGURE 6 | Survival analysis of 11 hub genes in metastatic melanoma in GEO GSE22154 dataset. Note that the red curves represent the samples with a highly

expressed gene and the blue curves represent samples with a lowly expressed gene. (A) Overall survival (OS) of AOAH. (B) OS of CD48. (C) OS of CORO1A. (D) OS

of GPR132. (E) OS of IL10RA. (F) OS of IL32. (G) OS of ITGAL. (H) OS of LCK. (I) OS of LCP1. (J) OS of RCSD1. (K) OS of TBC1D10C.

ELMO1 genes. Besides, according to the risk classification of
the American Joint Committee on Cancer stage and American
Thyroid Association (ATA), deletion variants are more frequent
in lower risk sample (Passon et al., 2015). Also, CORO1A is
another important new member in integrin biology and plays
key function in trafficking of polymorphonuclear neutrophils
(PMNs) during innate immunity (Pick et al., 2017). The
down regulation of ABL2, ITGAL, and SEMA4D in patients
with increased mortality is indicative of a down-regulation of
innate and acquired immunity (Ross et al., 2012). In fact, it
has been reported that RCSD1-ABL1-positive B lymphoblastic
leukemia is sensitive to tyrosine kinase inhibitors (Frech et al.,
2017). The overexpression of LCP1 is correlated with increased
infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages,
neutrophils and dendritic cells (Wang et al., 2008). TBC1D10C

inhibits the Ras/MAPK signaling pathway and is a negative
feedback inhibitor of the calcineurin signaling pathway (Pan
et al., 2007). Overall, these genes play an important role in
tumorigenesis, and we further conducted in vitro experiments
to verify that the role of IL10RA gene in the prognosis of
metastatic melanoma.

3.4. IL10RA Low Expression Associated to
Poor Prognosis of Multiple Cancers
The module membership scores of the 11 candidate genes
are listed in Table 1, from which we find that IL10RA
achieves the highest score and thus selected as a biomarker
gene for subsequent validation. The IL10RA gene encodes a
protein that is a subunit of the interleukin-10 receptor. This
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TABLE 1 | The module membership scores of 11 screened biomarker genes.

Gene Module

membership

score

Description

IL10RA 0.971951725 Interleukin 10 receptor subunit alpha

CORO1A 0.954216393 Coronin 1A

ITGAL 0.950900031 Integrin subunit alpha L

LCP1 0.938553955 Lymphocyte cytosolic protein 1

RCSD1 0.93327131 RCSD domain containing 1

IL32 0.932559944 Interleukin 32

GPR132 0.925335767 G protein-coupled receptor 132

TBC1D10C 0.924839442 TBC1 domain family member 10C

CD48 0.919333672 CD48 molecule

AOAH 0.905119134 Acyloxyacyl hydrolase

LCK 0.874869931 LCK proto-oncogene, Src family tyrosine kinase

receptor is reported to promote survival of progenitor myeloid
cells through the insulin receptor substrate-2/PI 3-kinase/AKT
pathway (Zhou et al., 2001).

In fact, previous studies have reported the differential
expression of IL10RA in tumors and non-tumor diseases.
For example, IL10 deficient patients develop severe infantile-
onset inflammatory bowel disease (IBD) (Shouval et al., 2017).
Expression of IL10RA within the leukocyte population (CD45+

cells) was obviously lower in metastases than in both gliomas
and meningiomas (Zadka et al., 2017). Li et al. found that
macrophages but not Th17 cells expressed IL10RA on the
cell surface, and lung Th17 cells respond poorly to IL10
stimulation but macrophages switch phenotype in response to
IL10 stimulation. They also demonstrated that IL10-treated
macrophages inhibited CD4+ T cell IL17 production and further
suppresses lung tumorigenesis (Li et al., 2018). Other studies
also demonstrated that programmed death-1 high tumor antigen
(TA)-specific CD8+ T cells present in metastatic melanoma
upregulate IL10R. IL10 acts directly on IL10R+ TA-specific
CD8+ T cells to impede their expansion. IL-10 blockade adds
to PD-1 blockade to further strengthen the expansion and
functions of TA-specific CD8+ T cells, because TA-specific CD8+

T cells up-regulate IL10R upon PD-1 blockade (Sun et al.,
2015). Moreover, it has been reported that the IL10RA Ser138Gly
variant showed a weak association with the risk of all lymphoma
combined (odds ratio [OR], 0.81; 95% CI, 0.65–1.02), mainly
driven by the 50% risk reduction for Hodgkin’s lymphoma
(HL) (Nieters et al., 2006). These results indicate that IL10RA
is an important biomarker for the prognosis of multiple type
of cancers.

3.5. IL10RA Inhibits the Proliferation,
Migration, and Invasion of Melanoma Cells
We further conducted in-vitro experiments to validate the
function of IL10RA in inhibiting the proliferation, migration
and invasion of melanoma cells. The CCK8 assays showed
that melanoma cells with lower IL10RA expression exhibited
stronger proliferation ability compared to that in control
groups, as shown in Figure 7. For A375 cells, the intervention

efficacy compared to control group at each time point is
statistically significant. We observed the similar results on
B16-F10 cells.

We next tested whether IL10RA can affect the migration of
melanoma cells. After 24 h, A375 and B16-F10 cells transfected
with si-IL10RA migrated to the middle were much larger than
the control group, as shown in Figure 8 (p < 0.001). Therefore,
wound healing assays demonstrated that knockdown of IL10RA
can promote the migration of melanoma cells compared to
control groups. In addition, in order to prove the effect of
IL10RA on cell invasion ability, we also conducted the transwell
experiments. After incubated at 37◦C for 24 h, the number of
A375 and B16-F10 cells transfected with si-IL10RA from the
upper chamber to the lower chamber was larger that of the
control group, which indicates that invasion of melanoma cells
are promoted by IL10RA downregulation, as shown in Figure 9

(p < 0.001).

3.6. IL10RA Potentially Mediates in
Metastatic Melanoma via PI3K-AKT
Pathway
GSEA was conducted to explore further potential biological
functions of IL10RA in metastatic melanoma. Based on the
cut-off criteria, PI3K-AKT signaling pathway was enriched in
metastatic melanoma samples with highly expressed IL10RA,
as shown in Figure 10. Note that a multitude of researches
have reported the role of PI3K-AKT in melanoma. For instance,
activation of PI3K-AKT signaling appears to play a fatal role
in brain metastases that stem from melanoma (Chen et al.,
2014). Li et al. (2019) demonstrated that Ras-PI3K-AKT could
promote cells proliferation and migration in uveal melanoma
cells by downregulation of H3K56ac expression. Chang et al.
(2020) found knockdown of the expression of AURKB could
suppress cell growth and induced apoptosis in melanoma, which
was mediated by inhibition of BRAF/MEK/ERKs and PI3K-
AKT signaling pathways. Importantly, they also found that HI-
511, a dual-target inhibitor against both AURKB and BRAF
V600E, suppresses both drug-sensitive and -resistant melanoma
development by inducing apoptosis and mediating the inhibition
of the BRAF/MEK/ERKs and PI3K-AKT signaling pathways. It
is reported that high expression of HSP90 and PI3K/AKT/mTOR
pathway components in melanoma tumors and this expression
correlates with poor survival in melanoma patients (Calero et al.,
2017). These studies indicate that the activation of the PI3K-AKT
signaling pathway has an significant correlation with the poor
prognosis of melanoma.

It has been reported that IL-10 effectively immunoregulates
the antigen-presenting cell (APC) function of dendritic
cells (DCs) through suppression of the PI3K-AKT
pathway (Bhattacharyya et al., 2004). Anti-inflammatory
cytokine IL10 reduced S100A8 and 100A9 protein levels
mediated via PI3K-AKT signaling in mononuclear cells of
essential thrombocythemia (ET) (Diklić et al., 2020). PI3K/AKT
signaling activation and EBV lytic induction responded to IL-10
knockdown (Gao et al., 2019). In addition, Mu et al. (2020) found
that the PI3K agonist impaired the tolerance of Kupffer cells
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FIGURE 7 | The effect of IL10RA on cell proliferation in vitro using CCK8 assays after downregulating IL10RA in A375 (A) and B16-F10 (B) cells. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001.

FIGURE 8 | Cell migration abilities were assessed by wound-healing assays after downregulating IL10RA in A375 and B16-F10 cells. ∗∗∗P < 0.001.

FIGURE 9 | Cell invasion abilities were assessed by transwell assays after downregulating IL10RA in A375 and B16-F10 cells. ∗∗∗P < 0.001.

(KCs) to endotoxin and increased the phosphorylation levels
of NF-κB in KCs, while the secretion of IL10 was significantly
decreased. It can be concluded that IL10RA and PI3K-AKT
pathway interact and influence each other. Extensive previous
studies have shown that activation of PI3K-AKT pathway is
associated with poor prognosis of melanoma. Therefore, we
speculate that IL10RA may inhibit the metastasis of melanoma
by regulating the PI3K-AKT signaling pathway, which we plan
to do further exploration to verify the mediation of IL10RA in
PI3K-AKT pathway.

4. CONCLUSION AND DISCUSSION

Melanoma accounts for a small proportion of all skin cancer cases
but is the major cause of skin cancer-related deaths (Chuchu
et al., 2018). In contrast to the steady or declining trends for
other cancer types, the incidence of melanoma continues to
rise up during the past 40 years (Siegel et al., 2014). Metastatic
melanoma is the most aggressive form of skin cancer and
advanced patients have limited treatment and poor prognosis,
because transfer to distant sites and the internal organs is almost
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FIGURE 10 | Gene set enrichment analysis (GSEA). The gene set of “PI3K-AKT signaling” was enriched in TCGA dataset with IL10RA highly expressed.

always incurable (Finn et al., 2012). Therefore, there is an urgent
demand to explore the molecule mechanisms involved in the
development and progression of metastatic melanoma.Weighted
gene co-expression network analysis (WGCNA) has been proved
to be an effectivemethod to detect co-expressedmodules and hub
genes. In this study, we constructed a gene co-expression network
based on WGCNA and identified 11 biomarker genes that were
closely associated with prognosis. Among these biomarker genes,
IL10RA shows highest correlation with clinically important
module. Furthermore, our in vitro biochemical experiments
verified that IL10RA is a strong biomarker for the prognosis of
metastatic melanoma.

There are some reports regarding that IL10RA is not
conducive to disease development. Aberrant IL10RA expression
in melanoma creates autocrine circuitry involving endogenous
IL10, which disrupts basal STAT3 phosphorylation and dampens
the induction of anti-inflammatory signals, such as IL6, and
slightly increases the resistance of A375 cells to apoptosis,
thus showing that receptor absence is a critical mechanism
for preventing this autocrine loop, enabling effective paracrine
communication and controlling the cellular response (Kang et al.,
2013). Béguelin et al. also found that gene expression of IL10,
IL10RA, and IL10RB were remarkably overexpressed in diffuse
large B-cell lymphomas (DLBCLs) which were dependent on
IL10-STAT3 signaling and blocking the IL10R killed DLBCL cell
lines through cell cycle arrest and induction of apoptosis due
to the interruption of IL10-JAK-STAT signaling. Besides, they
also demonstrated that the effect of IL10R inhibition derived
from interruption of IL10-IL10R auto-stimulatory loop, for

that anti-IL10R treatment led to the downregulation of IL10
secretion (Beguelin et al., 2015). Isabella et al. found higher
levels of IL10RA is accompanied by a corresponding decrease
in miR-15a, miR-185, and miR-211 in melanoma samples.
IL10RA was a target of these miRNAs, and inhibition of them
obviously promotes the proliferation in the melanoma cell lines,
and this effect will be suppressed by specific knockdown of
IL10RA (Venza et al., 2015). In this study, we demonstrated that
high IL10RA expression is correlated with positive prognosis
of metastatic malignant melanoma. In addition, our in vitro
experiments proved that knockdown of IL10RA promotes
the proliferation, migration and invasion of melanoma cells.
Therefore, the role of IL10RA in metastatic malignant melanoma
requires further verification in our future works.
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Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer genome
atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19:A68.
doi: 10.5114/wo.2014.47136

Venza, I., Visalli, M., Beninati, C., Benfatto, S., Teti, D., and Venza, M.
(2015). IL-10Rα expression is post-transcriptionally regulated by miR-
15a, miR-185, and miR-211 in melanoma. BMC Med. Genomics 8:81.
doi: 10.1186/s12920-015-0156-3

Wang, L., Pino-Lagos, K., de Vries, V. C., Guleria, I., Sayegh, M. H., and Noelle,
R. J. (2008). Programmed death 1 ligand signaling regulates the generation of
adaptive Foxp3+ CD4+ regulatory T cells. Proc. Natl. Acad. Sci. U.S.A. 105,
9331–9336. doi: 10.1073/pnas.0710441105

Wang, M., Wang, L., Pu, L., Li, K., Feng, T., Zheng, P., et al. (2020).
LncRNAs related key pathways and genes in ischemic stroke by weighted
gene co-expression network analysis (WGCNA). Genomics 112, 2302–2308.
doi: 10.1016/j.ygeno.2020.01.001

Yang, Q., Wang, R., Wei, B., Peng, C., Wang, L., Hu, G., et al. (2018).
Candidate biomarkers and molecular mechanism investigation for
glioblastoma multiforme utilizing wgcna. BioMed Res. Int. 2018:4246703.
doi: 10.1155/2018/4246703

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). Clusterprofiler: an R package
for comparing biological themes among gene clusters. Omics 16, 284–287.
doi: 10.1089/omi.2011.0118

Zadka, L., Kram, P., Koscinski, J., Jankowski, R., Kaczmarek, M., Piatek, K.,
et al. (2017). Association between interleukin-10 receptors and the CD45-
immunophenotype of central nervous system tumors: a preliminary study.
Anticancer Res. 37, 5777–5783. doi: 10.21873/anticanres.12019

Zhou, J.-H., Broussard, S. R., Strle, K., Freund, G. G., Johnson, R. W., Dantzer,
R., et al. (2001). IL-10 inhibits apoptosis of promyeloid cells by activating
insulin receptor substrate-2 and phosphatidylinositol 3-kinase. J. Immunol.

167, 4436–4442. doi: 10.4049/jimmunol.167.8.4436

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cheng, Li, Zhang, Sun, Fan, Luo and Liu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 January 2021 | Volume 8 | Article 630790

https://doi.org/10.1038/nature05476
https://doi.org/10.1007/s12020-015-0592-z
https://doi.org/10.1182/blood-2016-11-749622
https://doi.org/10.1016/S1470-2045(12)70263-2
https://doi.org/10.1097/MIB.0000000000001270
https://doi.org/10.3322/caac.21208
https://doi.org/10.1016/j.smim.2018.03.004
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1158/0008-5472.CAN-14-3016
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.3389/fonc.2018.00374
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1186/s12920-015-0156-3
https://doi.org/10.1073/pnas.0710441105
https://doi.org/10.1016/j.ygeno.2020.01.001
https://doi.org/10.1155/2018/4246703
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.21873/anticanres.12019
https://doi.org/10.4049/jimmunol.167.8.4436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles

	Identification of IL10RA by Weighted Correlation Network Analysis and in vitro Validation of Its Association With Prognosis of Metastatic Melanoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Resource and Pre-processing
	2.2. Construction of Gene Coexpression Network
	2.3. Discovery of Important Network Modules
	2.4. Identification of Candidate Biomarkers
	2.5. Co-expression Network Analysis and Functional Enrichment Analysis
	2.6. Determination of Biomarker Genes Significant to Survival
	2.7. In-vitro Biochemical Validation of Biomarker Gene
	2.8. Gene Set Enrichment Analysis

	3. Results
	3.1. Parameter Optimization and Determination of Network Modules
	3.2. Candidate Genes Significantly Associated With Metastatic Melanoma
	3.3. Biomarkers Are Predictive of Prognosis of Metastatic Melanoma
	3.4. IL10RA Low Expression Associated to Poor Prognosis of Multiple Cancers
	3.5. IL10RA Inhibits the Proliferation, Migration, and Invasion of Melanoma Cells
	3.6. IL10RA Potentially Mediates in Metastatic Melanoma via PI3K-AKT Pathway

	4. Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


