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Dynamically prognosticating patients with
hepatocellular carcinoma through survival paths
mapping based on time-series data
Lujun Shen1,2, Qi Zeng3, Pi Guo4, Jingjun Huang5, Chaofeng Li2,6, Tao Pan7, Boyang Chang1,2, Nan Wu8,

Lewei Yang3, Qifeng Chen1,2, Tao Huang1,2, Wang Li1,2 & Peihong Wu1,2

Patients with hepatocellular carcinoma (HCC) always require routine surveillance and

repeated treatment, which leads to accumulation of huge amount of clinical data. A predictive

model utilizes the time-series data to facilitate dynamic prognosis prediction and treatment

planning is warranted. Here we introduced an analytical approach, which converts the time-

series data into a cascading survival map, in which each survival path bifurcates at fixed time

interval depending on selected prognostic features by the Cox-based feature selection. We

apply this approach in an intermediate-scale database of patients with BCLC stage B HCC and

get a survival map consisting of 13 different survival paths, which is demonstrated to have

superior or equal value than conventional staging systems in dynamic prognosis prediction

from 3 to 12 months after initial diagnosis in derivation, internal testing, and multicentric

testing cohorts. This methodology/model could facilitate dynamic prognosis prediction and

treatment planning for patients with HCC in the future.
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Hepatocellular carcinoma (HCC) is the sixth most common
cancer and the third leading cause of cancer-related death
worldwide1, characterized by multicentric origins, high

risk of intrahepatic recurrence, and poor prognosis2. For most
patients with intermediate-stage HCC, comprehensive treatments
using transarterial chemoembolization (TACE), ablative thera-
pies, surgery, or their combinations were widely adopted; besides,
frequent disease surveillance and re-treatment are needed3–6. The
current dynamic prognostication systems, including hepatoma
arterial-embolization prognostic score and assessment for re-
treatment with TACE (ART) score were designed specifically for
patients receiving arterial-embolization therapies7,8. A novel
prognostication system that suitable for HCC patients receiving
comprehensive treatments and facilitate dynamic treatment
planning is desirable.

During the process of ongoing surveillance and treatment, the
time-series clinical data rapidly accumulate. The data generated
from HCC patients are multimodal, frequently obtained at reg-
ular interval, and whose impact may not be same in patients’ life
course9,10. Understanding these data may delineate the biological
behaviors of HCC and help guide dynamic management11.

In the past decade, extensive studies had been conducted to
understand the value of the time-series clinical data. Several
studies have been reported that the joint models can describe the
change in the prognostic value of a single variable measured over
time12,13, while these models do not support multiple dynamic
variables, which limit its clinical application. In the field of
machine learning, the methodologies of temporal abstractions14

and hidden Markov models15 had been utilized for classifying
patients with longitudinal data by building splitting trajectories;
these models supported multiple variables and achieved better
performance compared to modeling just using cross-sectional
data. However, these models are considered opaque since internal
structure and learned parameters are difficult for interpretation.
Moreover, pure pursuit of the precision in prognosis prediction it
not that important as an ideal predictive system should also
provide clues in treatment planning2.

Patients with HCC are regularly followed up every 1–3 months
during the treatment, every 3 months during the first year after
complete remission, and later every 3–6 months2. Therefore, in
this study, we converted the time-series data of patients with
Barcelona clinic liver cancer (BCLC) stage B HCC into data of
time slices with constant interval of 3 months, and used a process
of “Cox-based feature selection” to select key prognostic features
to build the first cascading survival map. The survival paths
established present superior or equal ability in dynamic prognosis
prediction than the conventional staging systems from the time
frame of 3–12 months after diagnosis. Based on the map, we
identify three paths of long-term survival; three chance nodes
with progressive disease but high chance (>80%) to have
improved survival after surgery/ablation; one incurable node with
progressive disease, poor median overall survival (OS), and no
transferred path. The methodology of survival path mapping can
be utilized to facilitate dynamic prognosis prediction and treat-
ment planning for patients with HCC in the future.

Results
The baseline characteristic of the patients. The derivation
cohort consisted of 979 HCC patients with a median age of 55
(range 15–86) years, the internal testing cohort consisted of 627
HCC patients with a median age of 56 (range 20–89), and the
multicenter testing cohort consisted of 414 patients with a
median age of 52 (range 19–80). The multicenter testing cohort
had a higher proportion of female and young patients than the
derivation cohort; there were no significant differences in hepa-
titis B virus infection, serum alpha-fetoprotein (AFP) level, Child-
Pugh class, tumor size, or number of lesions between the two
testing cohorts and derivation cohort (Table 1).

The survival paths built by derivation cohort. Using 3 months
as the interval of each time slice, the first 2 years’ dataset of
derivation cohort was converted into the data of nine time slices,
which includes 979, 822, 513, 390, 336, 294, 246, 221, and 202

Table 1 Baseline characteristics of derivation, validation, and testing cohort at initial diagnosis

Variable Derivation cohort
no. (%)

Internal testing
cohort no. (%)

P value Multicenter testing
cohort no. (%)

P value

Age (years) 0.441 <0.001
≤50 370 (37.8) 249 (39.7) 199 (48.1)
>50 609 (62.2) 378 (60.3) 215 (51.9)

Gender 0.113 0.043
Male 889 (90.8) 554 (88.4) 361 (87.2)
Female 90 (9.2) 73 (11.6) 53 (12.8)

HBV infection 0.086 0.813
No 33 (3.4) 32 (5.1) 15 (3.6)
Yes 946 (96.6) 595 (94.9) 399 (96.4)

AFP (IU/ml) 0.493 0.314
<25 318 (32.5) 214 (34.1) 146 (35.3)
≥25 661 (67.5) 413 (65.9) 268 (64.7)

Child-Pugh class 0.815 0.602
A 841 (85.9) 536 (85.5) 360 (87.0)
B 138 (14.1) 91 (14.5) 54 (13.0)

Tumor size (cm) 0.727 0.939
Mean ± SD 7.20 ± 3.57 7.07 ± 3.48 7.12 ± 3.51
≤5 329 (33.6) 216 (34.4) 140 (33.8)
>5 650 (66.4) 411 (65.6) 274 (66.2)

Number of lesions 0.428 0.956
≤3 391 (39.9) 238 (38.0) 166 (40.1)
>3 588 (60.1) 389 (62.0) 248 (59.9)

All values are presented as numbers of patients followed by percentages in the parentheses. P values were calculated by comparing categorical variables between testing cohorts and derivation cohort
with chi-square test
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cases with effective data, respectively; the significance value α was
set at 0.006. After completing all the processing cycle of the
derivation cohort, the data from time slice 1–9 were divided into
2, 4, 7, 10, 12, 12, 10, 10, and 7 subclasses, respectively; subclasses
with <6 cases were excluded from the mapping to reduce the risk
of model overfitting. By connecting the class with its derivative
classes, a total of 13 survival paths were constructed, which were
illustrated in different colors (Fig. 1).

In this model of survival path, every bifurcation point is called
a node, and each node integrates the information of previous
nodes to facilitate prognosis prediction.

Prognostic value of survival path in derivation cohort. In the
derivation cohort, the prognostic power between the survival path
system, BCLC staging system, AJCC staging system, and ART
score system was compared at all nine time slices (Table 2). The
survival path system had superior or non-inferior c-index in
predicting OS than BCLC staging system, AJCC staging system,
and ART score system from time slice No.3 to time slice No.9. At
time slice No.2, the AJCC staging system had superior c-index
than survival path system, while no significant difference in c-
index between the survival path system and BCLC staging system
was found. It was interesting to note that the survival differences
between stage B and stage C in BCLC staging system, as well as
the differences between stage IIIa, stage IIIb, and stage IVb in
AJCC staging system, diminished to insignificance starting at

time slice No.5; by contrast, the survival path system presented
superior performance in dynamically discrimination the OS of
HCC patients (Fig. 2).

Validation of the survival path system in testing cohorts.
Generally, the survival curves in the internal testing cohort and
multicenter testing cohort fit well with the curves in the deriva-
tion cohort (Fig. 3). In the internal testing cohort, the survival
path system showed superior and non-inferior prognostic value
than the BCLC staging system and AJCC staging system from
time slice No.3 to time slice No.5. The advantages of the survival
path system diminished starting at time slice No.6. The results in
the multicenter testing cohort confirmed the advantages of the
survival path system over other two staging systems from time
slice No.3 to time slice No.5 (Table 3). The significance of each
path bifurcation was also evaluated in the testing cohorts
(Table 4). A P value < 0.05 could be achieved in all the bifurcation
with enough (≥6) cases in each of the following comparator
nodes, which demonstrated the stability of the survival path
system we built.

Long-term survival based on the survival paths system. Of the
13 paths constructed, 3 paths lead to long-term survival
(>60 months), including No.1, No.2, and No.8. The No.1 and
No.2 paths reached long-term survival when no viable lesions was
achieved. However, disease progression could occur at any time
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Fig. 1 The survival path system constructed for BCLC stage B HCC patients. Using the selected features identified at each time slice, the population was
divided into cascades of subgroups, which was further visualized by two-dimensional graph, with the time slices on x-axis and median OS time on y-axis. A
total of 13 different paths were constructed
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slice in a small proportion of patients even they are on the paths
of long-term survival. For the No.8 path, due to the limitation of
our sample size, the key factors related to long-term survival fail
to be identified.

Treatment and the path transfer. Of all the nodes in the survival
path system, five nodes went down from bifurcated nodes in the
previous time slice and bifurcated in the following time slice.
These nodes had unfavorable prognosis and the survival path
system might provide guidance. Surgery and ablative therapies
are considered aggressive management and therefore we descri-
bed the proportion of patients receiving surgery/ablation in these
nodes (Table 5). The surgery/ablation rates in S(p= 3, ts= 2), S(p= 5,

ts= 3), S(p= 8, ts= 4), S(p= 2, ts= 1), and S(p= 4, ts= 2) were 23.3%,
24.5%, 31.4%, 25.2%, and 13.2%, respectively; candidates who
received surgery/ablation had rates of 83.3%, 84.6%, 81.3%, 71.2%
and 56.7% going to the upper node in the next time slice,
respectively. We define a node meets both following conditions:
(1) median OS time of its upper bifurcated node had 10 months
higher than that of the lower bifurcated node; (2) more than 80%
patients receiving surgery/ablation went to the upper bifurcated
node, as a chance node; then the S(p= 3, ts= 2), S(p= 5, ts= 3), and
S(p= 8, ts= 4) are candidate nodes.

Incurable disease based on the survival paths system. Of all the
paths in this map, two paths (No.10 and No.13) only have one
valid node after bifurcation. We define a node without following
valid node after bifurcation and had a median OS time less than
5 months as an incurable node, then S(p=10, ts=4) is the incurable
node.

Discussion
In this work, we developed an analytical model to dynamically
trace the prognosis of cancer patients with BCLC stage B HCC.
Time slice was employed for data conversion and Cox-based
feature selection for constructing the cascade structure of survival
path. The survival path model showed superior or non-inferior

prognostic value than the conventional BCLC and AJCC staging
system from time slice No.3 to time slice No.5, which were
confirmed in internal and multicenter testing cohorts. These
results suggest that this tool is valuable in dynamic prognosis
prediction and treatment planning for patients with intermediate-
stage HCC during the time frame of 3–12 months after diagnosis.

Currently, studies on developing re-staging systems for
malignant tumors were always hindered by the lack of effective
methods in utilizing with time-series data, and by the fact that
different treatments could lead to different re-staging strategies,
which restrict the generalization of established models16–18. In
HCC, the BCLC staging system is most widely used for staging
and re-staging during clinical practice. This classification uses
variables related to tumor stage, liver functional status, physical
status, and cancer-related symptoms, and has been validated as
the best staging system for treatment guidance2. However, the
provided information of BCLC staging system was not enough to
support dynamic prognosis prediction and real-time treatment
planning, as reflected by our results that the survival differences
between Stage B and Stage C subgroups gradually decreased over
time. Hence we proposed to create a more precise system. The
survival path we built for intermediate-stage HCC integrated the
time-series information of variables utilized in BCLC classifica-
tions, variables on image change after treatment19, and variables
on important serum markers20,21; although only one selected
feature was utilized for node subdivision at each time slice, the
model constructed showed superior or non-inferior prognostic
value than the BCLC staging system at all time slices in the
derivation cohort, indicating that this methodology had great
potential.

In the testing cohorts, we observed that the c-index of survival
path system decreased at time slice No.6 and the advantages of
the survival path system compared to BCLC and AJCC staging
systems diminished starting at time slice No.6. Moreover, the c-
index of BCLC staging system was significantly higher than the
survival path system in the internal testing cohort at time slice
No.6. These phenomena may be caused by the fact that no more
path bifurcations were made since time slice No.6 due to the

Table 2 Comparison of c-index between the survival path system, BCLC staging system, AJCC staging system, and ART score at
each time slice in the derivation cohort

Time
slice

Number of cases
(modeling/all)a

Survival path system BCLC staging system AJCC staging system ART class

Number
of nodes

c-Index (95%
CI)

Number of
classes

c-Index (95%
CI)

Number of
classes

c-Index (95%
CI)

Number of
classes

c-Index (95%
CI)

No.1 979/979 2 0.624
(0.623–0.625)

1 — 2 0.602
(0.601–0.603)

1 —

No.2 822/822 4 0.695
(0.693–0.697)

5 0.696
(0.694–0.698)

6 0.702c

(0.702–0.704)
2 0.528b

(0.526–0.530)
No.3 506/513 7 0.733

(0.730–0.736)
4 0.725b

(0.722–0.728)
6 0.733

(0.730–0.736)
2 0.536b

(0.533–0.539)
No.4 374/390 10 0.760

(0.756–0.764)
4 0.724b

(0.720–0.728)
6 0.727b

(0.723–0.731)
2 0.572b

(0.568–0.576)
No.5 307/336 12 0.768

(0.763–0.773)
4 0.731b

(0.726–0.736)
6 0.737b

(0.731–0.743)
2 0.589b

(0.584–0.594)
No.6 245/294 12 0.771

(0.764–0.778)
5 0.749b

(0.742–0.756)
6 0.757b

(0.750–0.764)
2 0.535b

(0.528–0.542)
No.7 199/246 10 0.792

(0.783–0.801)
4 0.764b

(0.755–0.773)
6 0.766b

(0.756–0.776)
2 0.563b

(0.554–0.572)
No.8 167/221 10 0.811

(0.799–0.823)
4 0.773b

(0.762–0.784)
6 0.769b

(0.757–781)
2 0.541b

(0.530–0.550)
No.9 128/202 7 0.830

(0.816–0.844)
4 0.769b

(0.752–0.786)
6 0.802

(0.785–0.819)
2 0.549b

(0.531–0.567)

aNodes of survival path system with less than six cases were excluded from the computing of c-index. Therefore, the number of cases in modeling is less than the number of all cases with effective data
bThe c-index of the interested system was lower than survival path system, with P < 0.006
cThe c-index of the interested system was higher than the survival path system, with P < 0.006
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restriction of the sample size, which impaired the ability of sur-
vival path system in utilizing the latest information of patients. It
is conceivable that the predictive value of this system could fur-
ther be enhanced if we can utilize a big clinical database of
thousands of cases, as more refined paths can be constructed and
the data in distant time slices can be well analyzed.

The survival path model we established can also guide treat-
ment planning for intermediate-stage HCC. In the management
of patients on the paths going up, we need to closely pay attention
to the key variables that could transfer the patient to unfavorable
paths in the following time slices. For example, for patient in
S(p= 1, ts= 2), it is recommended to control the disease with ≤1
viable lesion or 2–3 lesions with maximal tumor size <30 mm by
the end of time slice No.3. Complete remission, AFP < 400 ng/ml,
and Child-Pugh score A are required to maintain the patient on
the No.1 path. In dealing of patients with progressive disease,
aggressive treatments like surgery or ablative therapies could be
utilized for those in chance nodes, while palliative treatments
were recommended for patients in incurable nodes.

The survival paths we constructed for stage B HCC was an
initial attempt, and efforts could be made in several aspects to

further improve this model/methodology. The first aspect is to
use learning algorithms to explore the best cutoff for individual
variable and optimizing the process of feature selection, including
random forest22, k-nearest neighbor23, and neural networks24;
bootstrap validation could be utilized alongside to ensure quality
control and reduce the risk of overfitting. The second aspect is to
develop algorithms for node fusion, which may enhance our
utilization of the database and give us an insight into the biolo-
gical behavior of cancer. The third aspect is to develop methods in
dealing with irregular time series. Converting the time-series data
into time slices of 3 months will result in some missing data,
therefore, a learning algorithm that dynamically design the
interval of time slice in specific node based on the characteristics
of data is needed to maximally utilize the data.

In conclusion, the survival path model constructed in this
study offers a superior method for dynamic prognostication for
HCC patients during the time frame of 3–12 months after diag-
nosis, compared with the current BCLC staging system. The
methodology utilized in this study also pioneers as an effective
tool in processing the clinical big data of cancer patients in the
future.
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Fig. 2 Kaplan–Meier plots in the derivation cohort. Kaplan–Meier plots showed OS divided by the survival path system, BCLC staging system, AJCC staging
system, and ART score, respectively, at time slice No.1 (a), time slice No.3 (b), time slice No.5 (c), and time slice No.7 (d) in the derivation cohort
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Methods
Patients and variables of interest. Between January 2007 and May 2012, 5005
consecutive patients with newly diagnosed HCC at Sun Yat-sen University Cancer
Center (SYSUCC) were retrospectively reviewed to develop the derivation cohort.
Between June 2012 and December 2015, an independent consecutive series of 3843
HCC patients treated at SYSUCC were reviewed to develop the internal testing
cohort. Besides, between January 2010 and December 2016, 843 patients from Fifth
Affiliated Hospital of Sun Yat-sen University, 415 patients from the Third Affili-
ated Hospital of Sun Yat-sen University, and 437 patients from the Second Hos-
pital of Guangzhou Medical University were reviewed to develop the multicenter
testing cohort. The inclusion criteria were as follows: (1) clinically diagnosed with
BCLC stage B HCC; (2) complete data of any of the following at initial diagnosis:
computed tomography (CT) or magnetic resonance imaging (MRI) of the
abdominal region, radiography or CT of the chest, routine bloodwork test, bio-
chemical routine test, serum AFP level, and coagulation indices; and (3) without
history of other malignancies. A total of 979, 627, and 414 patients were included in
the derivation cohort, internal testing cohort, and multicenter testing cohort,
respectively.

The Department of Clinical Research of Sun Yat-sen University Cancer Center
approved the study protocol (2017-FXY-129). The Hospital Ethics Committee of

the four medical centers approved this study, which waived the need for written
informed consent based on the retrospective nature of the study.

Most patients (1852/2020, 91.7%) in the above-mentioned medical centers
received TACE as their first-line treatment; 135 (6.7%) patients received surgical
resection as initial treatment and 33 (1.6%) patients refused to received treatment.
The subsequent therapies after TACE, which constituted of ablative therapies,
surgical resection, targeted therapies, or palliative chemotherapy, were adopted
based on the decision of the multidisciplinary teams, including hepatologists,
radiologists, and interventional radiologists. Patients were followed up monthly
during the period of initial treatment, subsequently at every 2–3 months for the
first 2 years if complete remission was achieved. The frequency gradually decreased
to every 3–6 months after 2 years’ remission.

Time-series data on serum tumor markers, biochemical and hematological
indices, medical imaging, and associated changes (CT and/or MRI) of each patient
were collected. Based on past literatures on staging systems and laboratory tests2,25,
a total of nine variables were designed, covering imaging results, laboratory tests,
and performance status; all the variables were dichotomized (Table 6).

Transformation of datasets for analysis. To analyze the data, the time-series
data were grouped into data at standard time slices. For every patient, the zero
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Fig. 3 Kaplan–Meier plots in the validation cohorts. Kaplan–Meier plots showed OS divided by the survival path system in the internal testing cohort and
multicenter testing cohort, respectively, at time slice No.1 (a, b), time slice No.3 (c, d), and time slice No.5 (e, f). Note: nodes of paths with <6 cases in the
testing cohorts were regarded unstable and not included in the analysis
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Table 3 Comparison of c-index between the survival path system, BCLC staging system, and AJCC staging system in the internal
testing cohort and multicenter testing cohort

Time
slice

Number (modeling/
all)

Survival path system BCLC staging system AJCC staging system

Number of
nodes

c-Index (95% CI) Number of
classes

c-Index (95% CI) Number of
classes

c-Index (95% CI)

Internal testing cohort

No.1 627/627 2 0.634
(0.632–0.636)

1 — 6 0.634 (0.632–0.636)

No.2 562/562 4 0.695
(0.692–0.698)

5 0.724a (0.721–0.727) 6 0.733a

(0.730–0.736)
No.3 367/367 8 0.747

(0.722–0.752)
4 0.729b

(0.725–0.733)
6 0.737b (0.732–0.742)

No.4 271/277 10 0.774
(0.766–0.782)

4 0.751b (0.743–0.759) 6 0.737b

(0.729–0.745)
No.5 210/222 11 0.764

(0.755–0.773)
4 0.760 (0.749–0.771) 6 0.728b (0.712–0.739)

No.6 171/181 11 0.756
(0.743–0.769)

5 0.785a (0.755–0.775) 6 0.746 (0.732–0.760)

No.7 125/148 8 0.820
(0.803–0.837)

4 0.817 (0.801–0.833) 6 0.824 (0.808–0.840)

Multicenter testing cohort

No.1 414/414 2 0.631 (0.628–0.634) 1 — 3 0.602b

(0.599–0.605)
No.2 359/359 4 0.689

(0.685–0.693)
4 0.698a

(0.694–0.702)
6 0.715a (0.711–0.719)

No.3 233/234 7 0.725 (0.718–0.732) 4 0.715 (0.709–0.721) 6 0.720 (0.714–0.726)
No.4 181/189 8 0.790

(0.781–0.799)
4 0.752b

(0.742–0.762)
6 0.759b

(0.749–0.769)
No.5 131/149 7 0.778 (0.765–0.791) 4 0.757b

(0.745–0.769)
6 0.754b

(0.743–0.765)
No.6 113/128 7 0.769

(0.750–0.788)
4 0.714b (0.695–0.733) 6 0.734 (0.716–0.752)

aThe c-index of the interested system was higher than the survival path system, with P < 0.006
bThe c-index of the interested system was lower than the survival path system, with P < 0.006

Table 4 Hazard ratio and significance of upper node versus lower node at each path bifurcation in the derivation, internal
testing, and multicenter testing cohorts

Bifurcation node Derivation cohort Internal testing cohort Multicenter testing cohort

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

S(all; ts= 1) 2.33 (1.97–2.75) <0.001 2.58 (2.00–3.32) <0.001 2.34 (1.80–3.05) <0.001
S(p= 1, ts= 1) 3.70 (2.78–4.93) <0.001 3.69 (2.40–5.69) <0.001 2.79 (0.171–4.53) <0.001
S(p= 1, ts= 2) 3.50 (2.26–5.43) <0.001 2.52 (1.29–4.91) 0.007 5.95 (2.98–11.91) <0.001
S(p= 1, ts= 3) 5.25 (2.97–9.31) <0.001 4.02 (1.57–10.31) 0.004 12.27 (4.53–33.26) <0.001
S(p= 1, ts= 4) 5.08 (2.24–11.53) <0.001 6.35 (1.51–26.75) 0.012 — —b

S(p= 2, ts= 1) 2.73 (2.04–3.66) <0.001 3.31 (2.06–5.32) <0.001 2.47 (1.64–3.73) <0.001
S(p= 2, ts= 2) 6.45 (3.29–12.62) <0.001 7.16 (2.00–25.60) 0.002 6.12 (2.69–13.94) <0.001
S(p= 3, ts= 3) 5.61 (2.05–15.34) <0.001 — 0.052a — —b

S(p= 4, ts= 2) 4.26 (2.35–7.72) <0.001 3.83 (1.84–7.98) <0.001 3.48 (1.33–9.11) 0.011
S(p= 5, ts= 3) 10.35 (3.17–33.82) <0.001 — —b — —b

S(p= 5, ts= 4) 6.89 (1.47–32.14) 0.005 — —b — —b

S(p= 8, ts= 4) 4.45 (1.67–11.85) 0.003 3.67 (1.03–8.71) 0.048 — —b

p: path, ts: time slice
aNo deaths were recorded in one node and Kaplan–Meier Method with log rank test was utilized
bSample size in one node of the two comparators was <6

Table 5 The correlation between surgery/ablation and path transfer in KEY nodes

Nodes, n With surgery/ablation Without surgery/ablation P value

Go up (n, %) Go down (n, %) Died/NS (n, %) Go up (n, %) Go down (n, %) Died/NS (n, %)

S(p= 3, ts= 2) 20 (83.3) 2 (8.3) 2 (8.3) 37 (46.8) 2 (2.5) 40 (50.6) <0.001
S(p= 5, ts= 3) 11 (84.6) 1 (7.7) 1 (7.7) 20 (50.0) 5 (12.5) 15 (37.5) 0.072a

S(p= 8, ts= 4) 13 (81.3) 2 (12.5) 1 (6.3) 16 (45.7) 12 (34.3) 7 (20.0) 0.070a

S(p= 2, ts= 1) 79 (71.2) 24 (21.6) 8 (7.2) 50 (15.2) 203 (61.5) 77 (23.3) <0.001
S(p= 4, ts= 2) 17 (56.7) 7 (23.3) 6 (20.0) 28 (14.2) 38 (19.3) 131 (66.5) <0.001

p: path, ts: time slice, NS: no surveillance
aFisher’s exact test
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point was set at the time of diagnosis of HCC. An interval of 3 months was utilized
and the time ranges (in months) of −1~0, 0.5~3, 3.1~6, 6.1~9, 9.1~12, 12.1~15,
15.1~18, 18.1~21, and 21.1~24 were transformed into 9 consecutive time slices. For
variables measured more than once in each time slice, the newest values were
selected to be associated with the time slice. The time slice with complete data of
the nine variables was defined as slice with complete data. If the data in one time
slice were incomplete or unavailable, but the follow-up suggested the patient was
still alive, the data in this slice and subsequent slices were regarded as point with no
surveillance. If the patient died or lost follow-up, the data in the following time slice
were regarded as nonexistent (Fig. 4a).

The primary outcome was OS. For data in the first slice, OS was defined as time
from diagnosis to death by any causes. For subsequent time slices, OS was defined
as time from image examination of that time slice to death by any causes.

Feature selection and construction of survival path. Step 1: We start with using
the data at first time slice of the derivation cohort, which is denoted S(all; ts= 1)

(Fig. 4b). Univariate analysis with Kaplan–Meier (KM) method was utilized to

identify candidate variables (X1, X2, …, Xp). In constructing the survival path, each
feature selection process at a specific time slice was considered as an independent
experiment. To control the false discovery rate, suppose we have m time slices, the
preselected significance level for feature selection in each path was calculated by the
formula below26:

α

m
ð1Þ

Step 2: Judgment: The sample size required for the Cox proportional hazard
regression model with multiple covariates was calculated27. If the sample size is
larger than the calculated one, the data would proceed to feature selection. Less
than calculated sample size will stop any future feature selection process and the
group will remain the current classification.

Step 3: Feature selection: All the significant variables detected using the KM
method were put into the Cox proportional hazard regression model, which

Table 6 Variables and methods of dichotomization for construction of the survival paths

Categories and variables Methods of dichotomization

Laboratory tests

Serum AFP level (IU/ml) <200 vs. ≥200; <400 vs. ≥400
Child-Pugh class Class B/C vs. class A; class C vs. class A/B

Imaging examination

Diameter of main lesion (mm) ≤50 vs. >50; ≤70 vs. >70; ≤100 vs. >100
Number and size of hepatic lesions ≤1 lesion/2–3 lesions, D≤ 30mm vs. >3 lesions/2–3 lesions, D > 30mm; <4 lesions vs. ≥4 lesions
Vascular invasion With vs. without
Distant metastasis With vs. without
Vascular invasion/N1/M1 With vs. without
Change of lesions With viable lesion vs. without viable lesion

Performance status 0–2 vs. >2

Initial admission

a

b

–1 0

No.1 No.2

S(all; ts = 1)

- Death or lost
of follow-up

Extract
data of
No.1
time
slice

Feature
selection

Selected
feature X

Stay current
classification

Find?Identify
candidate
variables

Enough
sample
size?

Yes
Yes

No
No

(The whole population)

Processing cycle (PC) for data of No.1 time slice

Exceed cutoff of q

Below the cutoff of q

Start

The whole
population

S(+q ; ts = 1)

S(–q ; ts = 1)

S(all; ts = 1)

No.3 No.4 No.5 No.6 No.7 No.8 No.9

3 6 9 12 15 18 21 24 Time (months)

Time slices

PC for No.2 time slice

PC for No.2 time slice

PC for No.2 time slice

Death/lost follow-up

Collected data

Slice with complete data

Slice with no surveillance data

Slice not available

Fig. 4 Flowchart of study design. The time-series data of HCC patients were converted into data of time slices with constant time interval. Time slices in
each case with complete data were enrolled for further analysis (a). Data in the first time slice of the whole population would initially undergo the
processing cycle (PC) for feature selection and subgroup subdivision. Then data of the next time slice in each subdivided subgroup sequentially undergo
PC; the analytical cycles continue until the completion of the last time slice (b)
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assumes the hazard as follows,

hðtÞ ¼ h0ðtÞexp
Xp

j¼1

βjxj

 !

ð2Þ

where (x1, x2,…, xp) is a vector of p predictor variables, and β1, β2,…, βp are the
corresponding regression coefficients, which are the weights given to each variable
by the model. The original model included all the candidate variables and was
presented as follows:

Y ¼ β0 þ β1X1 þ ¼ þ βr�1Xr�1 þ ε ð3Þ

The backward elimination (BE) procedure was carried out, with the following p
tests, H0j : βj ¼ 0; j ¼ 1; 2; ¼ ; p, the lowest partial F-test value Fl corresponding to
H0l : βl ¼ 0 is compared with the preselected significance values F0. If Fl < F0, then
Fl can be deleted and the new original model is:

Y ¼ β0 þ β1X1 þ ¼ þ βl�1Xl�1 þ βlþ1Xlþ1 þ ¼ þ βr�1Xr�1 þ ε ð4Þ

Then, a stepwise BE procedure was continued, until all Fl > F0, and the model is
what we choose. The importance of each variable in the fixed Cox model can be
obtained as follows:

Γq ¼ �2log Lh=Lh�q

� �
ð5Þ

where Lh refers to the likelihood of the fixed model and Lh− q refers to the
likelihood of model after elimination of the variable Xq. The variable eliminated
from the model with the maximal change of −2log likelihood was selected.

Step 4: Based on the selected dichotomized variable Xq, the cohort S(all; ts= 1) can
be divided into two subgroups S(−q; ts= 1) and S(+q; ts= 1). The data of the two
subgroups at the next time slice, i.e., the S(−q; ts= 2) and S(+q; ts= 2) will repeat steps
1–3, respectively (Fig. 4b). If there is no variable selected, the cohort stays the
current classification and the data in next time slice will repeat step 1–3.

Step 5: Graphic representation: The survival path was constructed and
visualized using two-dimensional graph, with the time slices on x-axis and median
OS time on y-axis.

Statistical analysis. Pearson χ2 test was used to compare categorical variables
between groups. To compare the efficacy in dynamic prognosis prediction between
the survival path method and conventional staging systems, the measurement of c-
index in each time slice was computed and compared using Z test method. All
analyses were performed using SPSS version 20.0 (IBM Corporation, USA) and R
version 3.3.2 (The R Foundation for Statistical Computing, 2016).

Data availability. All the relevant raw data that support the findings of this study
have been deposited in the Dryad Digital Repository (https://datadryad.org//)
datasets (doi:10.5061/dryad.pd44k8r). In addition, the authenticity of this data has
also been validated by uploading the critical raw data onto the Research Data
Deposit public platform (www.researchdata.org.cn), with the approval RDD
number as RDDA2018000603.
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