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Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with
low-frequency, high-amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are remi-
niscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery; how-
ever, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient
increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5ms opti-
cal activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200ms silencing of Archeorhodopsin T-expressing py-
ramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous
NREM SW in freely moving mice. Importantly, we found that single optogenetically evoked SW (SWopto) in the peri-infarct
zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sen-
sorimotor stroke lesion site compared with spontaneous recovery and control conditions, while motor strength remained
unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated
with local axonal sprouting as revealed by the increase of anatomic presynaptic and postsynaptic markers in the peri-infarct
zone and corresponding contralesional areas to cortical circuit reorganization during stroke recovery. These results support a
role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically relevant frame-
work for rehabilitation strategies using neuromodulation during sleep.
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Significance Statement

Brain stroke is one of the leading causes of death and major disabilities in the elderly worldwide. A better understanding of
the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of re-
habilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically induced
sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for poststroke intervention that pro-
motes neuroplasticity and facilitates sensorimotor recovery.

Introduction
Stroke is an acute brain injury caused by a sudden decrease in
cerebral blood flow, followed by local inflammation (Huang et
al., 2006), excitotoxicity (Lai et al., 2014), and cell death (Small et
al., 1999). Changes in neuronal excitability after stroke are
thought to promote long-term plasticity in surviving neurons
that contributes to the reorganization of cortical maps and to the
underlying level of axonal sprouting supporting brain functions
(Carmichael, 2012; van Meer et al., 2012; Silasi and Murphy,
2014), as observed in rodents (Nudo, 1997; Murphy and Corbett,
2009; Carmichael et al., 2017) and humans (Khedr et al., 2005;
Lindenberg et al., 2010). To date, pharmacological treatments
and noninvasive brain neuromodulation techniques hold prom-
ise in improving plasticity and functional recovery both in ani-
mal models (Zhang et al., 2007; Yoon et al., 2012) and in humans
(Robinson et al., 2008; Ameli et al., 2009; Talelli et al., 2012), yet
the underlying mechanisms remain uncler.
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Poststroke hyperexcitability of surviving neurons contributes
to the transient low-frequency (;1 Hz, 200-500ms in duration),
high-amplitude, rhythmic waves (also coined “bistable state”),
originating in the peri-infarct zone and propagating to contrale-
sional brain areas. This distinctive 1 Hz slow and synchronous
neural activity in the peri-infarct zone shares similarities with
slow waves (SWs) typically recorded during non-rapid eye move-
ment (NREM) sleep in rodents and humans. Indeed, SWs reflect
bistable states of thalamocortical neuron populations, described
as a switch between UP states, where depolarized membrane
potentials are accompanied by high spiking activity, and DOWN
states during which cells are hyperpolarized, and show low spik-
ing activities in cats (Steriade et al., 1993), rodents (Vyazovskiy et
al., 2009a,b; Zucca et al., 2017), nonhuman primates (Xu et al.,
2019), and humans (Csercsa et al., 2010). These SWs were
hypothesized to guide axonal sprouting and circuit rewiring
through the formation of new connections after brain lesions
(Carmichael and Chesselet, 2002) facilitating recovery; however,
this has not been directly demonstrated.

Extensive experimental evidence suggests a fundamental role
for intact sleep, and SW in particular, in enhancing brain plastic-
ity during spontaneous sleep (Timofeev and Chauvette, 2017;
Tononi and Cirelli, 2020) and stroke recovery (Duss et al., 2017).
The detrimental effects of sleep disturbances (Kaneko et al.,
2003; Baglioni et al., 2016) and the beneficial effect of pharmaco-
logical NREM sleep enhancement after stroke support the hy-
pothesis that SWs contribute to brain plasticity underlying
poststroke functional and cognitive recovery both in animal
models (Gao et al., 2008; Hodor et al., 2014) and patients (Vock
et al., 2002; Siccoli et al., 2008; Sarasso et al., 2014).

Here, we used an optogenetic approach inspired by global
and local SW changes after stroke to rescue SW-like activity in
freely moving mice. Optogenetic activation of pyramidal neurons
in the peri-infarct zone during NREM sleep improved fine motor
movements compared with experimental control conditions. In
contrast, optogenetically evoked SW (SWopto) during wakeful-
ness had no effect. Importantly, SWopto evoked recovery after
stroke was associated with axonal sprouting in the peri-infarct
zone and corresponding contralesional areas.

Materials and Methods
Animals
C57BL/6JRj male mice (https://www.janvier-labs.com/en/fiche_produit/
c57bl-6jrj_mouse/; 5-6weeks old, 23-30 g) were used in the study.
Animals were individually housed in custom-designed polycarbonate
cages (300 mm � 170 mm) under controlled conditions (regular circa-
dian cycle of 12:12 h light:dark; light on at either 4:00 A.M. or 8:00 P.M.
according to experimental design; constant temperature 226 1°C and
humidity 30%-50%). Throughout the experiment, animals were freely
moving with ad libitum food and water. Animals were kept in groups of
2-5 per IVC cage before instrumentation and after viral injection sur-
gery. Following implantation, mice were all housed individually.
Animals were tethered, allowed to adapt to the EEG/EMG and optic
stimulation cables in their home cage for at least 5-7 d, and remained
plugged for the duration of the experiment. Animals were detached
from all tethers for 4 d following stroke or sham surgery and for the du-
ration of behavioral testing. Animals were randomly assigned to eight
experimental groups: Channelrhodopsin (ChR2)-transfected animals
subjected to stroke (ChR2stroke), ChR2-transfected animals subjected to
stroke and optogenetically stimulated mainly during wakefulness
(ChR2stroke_wake), Archaerhodopsin (ArchT)-transfected animals sub-
jected to stroke (ArchTstroke), mCherry-transfected animals subjected to
stroke (mCherrystroke), mCherry-transfected animals subjected to sham
surgery (mCherrysham), Naive, Sham, and Stroke. Animals that displayed
baseline asymmetry in limb usage or did not show a drop in cerebral

blood flow by ;80% during middle cerebral artery occlusion (MCAo)
surgery were excluded from further experimental tests. Viral injections
were performed when animals were 5-6weeks of age, instrumentation at
8weeks of age, and stroke/sham surgery at 10weeks of age. Between sur-
geries and before being tethered, animals were allowed to recover undis-
turbed for at least 7 d. Naive mice did not undergo any surgical
procedures. An additional set of heterozygous Tg(VGAT-Cre) mice
(5-6weeks old, 23-30 g) was used for an optogenetic screening of SW-
like oscillations inducing protocols. All animals were treated according
to animal care laws, and experimental procedures were approved by
local authorities (Veterinary Office, Canton of Bern, Switzerland; license
numbers BE 113/13 and BE 41/17).

Viral targeting
For a detailed description of the surgical procedure, refer to Herrera et
al. (2016). Briefly, 5- to 6-week-old animals were anesthetized with iso-
flurane (4.0% induction; 1.0%-1.5% maintenance). Body temperature
was constantly monitored and kept at physiological range using a rectal
thermoprobe and feedback-controlled heating system. Animals were
fixed in a digital stereotaxic frame, and analgesia was administered sub-
cutaneously (meloxicam, 5mg/kg). Animals were randomly assigned to
receive 0.6ml of recombinant AAV carrying CaMKII-hChR2 (H134)-
EYFP (activation), CaMKIIa-eArchT3.0-EYFP (silencing), or CaMKIIa-
mCherry (control), respectively. Plasmids were stereotactically injected
(0.1ml/min infusion rate) through a 28 G needle (Plastic One), con-
nected by a tubing to a 10ml Hamilton syringe in an infusion pump
(model 1200, Harvard Apparatus). Injections were performed within the
left (prospective ipsilateral) primary somatosensory forelimb cortex
(iS1FL, AP: �0.10 mm; ML: �2.00 mm; DV: �0.7 mm). Animals were
given 7 d of recovery before instrumentation surgery. Tg(VGAT:Cre)
mice underwent identical surgical procedures as WT animals, randomly
assigned to receive 0.6ml of recombinant AVV carrying Ef1a-DIO-
ChR2-EYFP (activation), Ef1a-DIO-ArchT-EYFP (silencing), or Ef1a-
DIO-EYFP (control), respectively. All plasmids were obtained from the
University of North Carolina Vector Core Facility. Mice belonging to
Sham, Stroke and Naive groups did not received any AAV injection.

Instrumentation
Animals were chronically implanted with a unilateral optic fiber
(200mm in diameter) within the iS1FL (AP:�0.10 mm; ML: �2.00 mm;
DV: �0.5 mm) and an EEG/EMG connector. As previously reported
(Gent et al., 2018), animals received analgesia (meloxicam, 5mg/kg),
were anesthetized with isoflurane, and anchored to a stereotaxic frame.
Five stainless-steel EEG electrode screws were inserted through each ani-
mal’s skull: two screws over the frontal cortices (AP: 2 mm; ML:
62 mm), two screws over the posterior cortices (AP: �4 mm; ML:
62 mm), and one screw over the olfactory bulb as ground. For the stim-
ulation recordings, the EEG signals from the frontal and posterior chan-
nels were referenced to each other directly, leaving only two EEG traces,
one per hemisphere. Finally, two bare-ended EMG wires were sutured to
the neck muscles to record postural tone. A subset of animals was addi-
tionally implanted with four tetrodes to record local field potentials
(LFPs) and single-unit activity during optogenetic stimulation, as well as
EEG/EMG signals. Tetrodes were constructed by twisting four tungsten
wires together (10mm in diameter, CFW0010954, California Fine Wire)
and briefly heating them to favor the bond coating of each wire to
another. Tetrodes were lowered within the iS1FL (AP: �0.10 mm; ML:
�2.00 mm; DV: �0.5 mm), the ipsilateral primary motor cortex (iM1,
AP: 1.10 mm; ML: �1.5 mm; DV: �1.20 mm), the contralateral S1FL
(cS1FL, AP: �0.10 mm; ML: 2.00 mm; DV: �0.5 mm), and the contra-
lateral M1 (cM1, AP: 1.10 mm; ML: 1.5 mm; DV: �1.20 mm) respec-
tively. The tetrode positioned in iS1FL was glued to the optic fiber,
where the tip of the tetrode extended for ;0.2 mm beyond the end of
the fiber (optrode). Optic fibers and implants were permanently secured
to the skull with C&B Metabond (Patterson Dental) and methacrylate
cement (Paladur). Animals were monitored postoperatively and left to
recover undisturbed for at least 7 d. Animals were then plugged to the
EEG/EMG/optic stimulation and tetrode tethers (Neuralynx headstage).
Black nail polish was applied at the connection point between optic fiber
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and patch cord to limit laser light spreading during optogenetic stimula-
tions. The implantation procedure for animals belonging to Sham and
Stroke groups did not include either optic fiber or tetrode placement.

Transient focal cerebral ischemic stroke
Mice underwent MCAo via intraluminal filament model (Doeppner et
al., 2010) at ;10weeks of age. To begin, mice were anesthetized with
isoflurane as previously described and placed in a prone position.
Physiologic temperature was maintained as mentioned above. The left
common carotid artery (CCA) was dissected from the surrounding con-
nective tissue. A monofilament suture (7-0 silicon rubber-coated, coat-
ing length 5-6 mm, Doccol) was inserted in the CCA and introduced
into the lumen of the MCA. The monofilament was left in place for
45min to induce both striatal and cortical infarct and consequently
withdrawn to allow the reperfusion of the territory targeted by the MCA.
Cerebral blood flow was constantly monitored by a Laser Doppler probe
(Moor Instrument, VMS-LDF2) glued to the skull above the MCA
region. Ischemic stroke induction was considered successful when the
cerebral blood flow showed an;80% reduction from baseline values, as
well as reperfusion of the MCA territory. Following surgery, mice were
daily checked for pain and weight loss, received mashed, watered food,
subcutaneous analgesia, and 0.9% saline. Animals belonging to the
Naive group did not undergo stroke or sham surgery. No filament was
inserted into the MCA during sham surgery. Following MCAo, 40% of
animals assigned to the Stroke group and 33% of all animals allocated to
optogenetic stimulations did not survive the postoperation phase.

Optogenetic stimulation
Lasers (Laserglow Technologies) attached to the unilateral fiber via patch
cord (Thorlabs) were triggered through TTL with a pulse stimulator
(Master-9, AMPI), this latter controlled by a function generator (Agilent
Technologies, 33220A 20MHz Function/Arbitrary waveform Generator)
to induce random pulse sequences. Animals received daily 2 h of ran-
domly distributed single laser light pulses (interpulses interval 3-30 s),
from poststroke day 5 until day 15. The random distribution of light
pulses was selected to avoid hypersynchrony and entrainment of oscilla-
tory activities which, per se, might influence the observed parameters.
The optogenetic stimulation was semichronic: light pulses were distrib-
uted across sleep and wake states without simultaneous behavioral scor-
ing by the experimenter and consequent state specific stimulation.
Indeed, daily and chronic stimulation (11 d) of several animals (experi-
mental and control were run in parallel) is not suited for a single experi-
menter. The specific time allocated for optogenetic intervention was
therefore selected according to the natural distribution of the majority of
NREM sleep and wakefulness episodes throughout the 12 h light:dark
cycle of the animals. Two stimulation protocols were used: ChR2-
expressing animals received 5ms blue light pulses (473 nm wavelength),
ArchT-expressing mice were stimulated with 200ms green light pulses
(532 nm wavelength), and mCherry-expressing animals were randomly
subjected to either 200 or 5ms light pulses. To assess whether the effect of
SWopto on functional recovery was specific to brain activity occurring
during sleep, in a separate group of animals (ChR2stroke_wake), optogenetic
stimulations were also delivered during the first part of the dark phase,
when animals were mostly awake. Based on pre-instrumentation testing of
both optic fiber and patch cord outputs, light power was set at 20-25 mW.

Data acquisition
EEG and EMG signals were amplified (model 3500, AM System) and
digitized at 512Hz (NIDAQ 6363, National Instruments) using a sleep
recording software (MATLAB written software, DaqReverse). A 24 h
baseline of spontaneous sleep-wake behavior was recorded for all ani-
mals. Stroke and Sham animals were recorded for 24 h at postsurgery
days 1, 3, 5, and 10. All optogenetic stimulations took place between 9:00
A.M. and 2:00 P.M., with light on at 4:00 A.M. for ChR2stroke,
ArchTstroke, mCherrystroke, and mCherrysham. Since ChR2stroke and
ArchTstroke animals showed similar functional outcomes on neuronal
manipulation during sleep, an additional ChR2-transfected set of ani-
mals received SWopto during animals’ active phase (between 9:00 A.M.
and 2:00 P.M., lights on at 8:00 P.M., ChR2stroke_wake), from poststroke

day 5 until day 15. Animals’ spontaneous sleep was recorded for 18 h at
poststroke day 5, 6, 8, 12, and 14, respectively. LFPs and EEG/EMG sig-
nals were amplified and digitized at 32 kHz (Cheetah 5 acquisition soft-
ware, Neuralynx; https://neuralynx.com/software/cheetah-5.0-legacy).

Behavioral tests
All animals were trained in four behavioral tests and engaged in daily
training sessions for 3 consecutive days. Behavioral baselines were
acquired before stroke/sham surgery. Functional outcomes were verified
at poststroke days 4, 7, 10, and 15. All behavioral tests were conducted at
least 3 h apart from optogenetic stimulations and during animals’ active
phase (between 5:00 P.M. and 8:00 P.M.). Test sessions were recorded
with a picamera (Raspberry Pi) and scored in slow motion (VideoPad
software; https://www.nchsoftware.com/videopad/index.html).

Balance beam test. To assess motor balance and coordination
(Brooks and Dunnett, 2009), a round wooden beam (12 mm in diameter,
80 cm long) was positioned at an angle so that one end of the beam was
60 cm elevated from the working table. At the beam’s elevated end, the
animal’s home cage served as motivation to complete the task. Soft fabric
placed beneath the beam avoided possible falling injuries. The number
of “paw faults” (forelimb or hindlimb slipping off the beam) were
counted during a maximal testing time of 60 s. Each animal underwent
three trials per time point and means were calculated.

Tight rope test. To measure grip strength and endurance (Balkaya et
al., 2013), animals were suspended on a fine rope (60 cm above the work-
ing table) between two platforms (80 cm apart from one another). Mice
were positioned at the middle point of the rope exclusively with their
forepaws. The average time needed to reach one of the two platforms
was calculated between two trials. The maximum testing time was 60 s.

Corner turn test. To evaluate the presence of unilateral abnormalities
(Park et al., 2014), mice where placed in between two vertical boards
forming a 30° angle. Animals’ left- or right-turn decision was recorded
for a total of 10 trials per testing session. Laterality index was calculated
as (number of left turns – number of right turns)/10.

Ladder walking rig test. The test was chosen to measure paw accurate
placement (Cummings et al., 2007). The apparatus consisted of a ladder
(80 cm long), suspended between two platforms (60 cm above the work-
ing table) with randomly spaced rungs. Paw faults were recorded as ani-
mals walked to reach the home cage at one end of the ladder. Mice
performances were scored in slow motion and the mean of three trials
calculated. The position of the rungs was randomly changed across trials
to avoid learning.

Signal processing
As previously described (Jego et al., 2013), electrophysiological data were
manually scored in 5 s epochs and analyzed using SlipAnalysis (custom-
written MATLAB program). Briefly, three vigilance states were identi-
fied based on EEG/EMG frequency and amplitude. Wakefulness was
determined by low-amplitude EEG and high-activity EMG signals;
NREM sleep as high-amplitude and low-frequency EEG (0.5-4Hz)
paired with reduced EMG activity; REM was characterized by theta
rhythm (6-9Hz) EEG and flat EMG. Microarousals were defined and
scored as cortical fast rhythm and EMG bursts of at least 1 s. Sleep/wake-
fulness scoring was based on the visual characteristics of the contralateral
EEG traces specifically. Electrophysiological analysis was completed
using customMATLAB scripts.

Automatic single SW detection
Individual SWs were detected during NREM sleep epochs during the
first 7 h of the lights ON period in MATLAB using the SWA-MATLAB
toolbox (Mensen et al., 2016), with detection parameters adjusted to
rodents from settings described by Panagiotou et al. (2017). Briefly, in a
first pass of the data, the negative envelope across the four EEG channels
was calculated, filtered between 0.5 and 4Hz (Chebyshev Type II filter
design), and consecutive zero-crossings were detected. If the duration
between successive downward (negative going) zero-crossing and
upward zero-crossing was between 100 ms and 1 s, then the peak nega-
tive amplitude was examined and was required to be at least 3 deviations
from the median amplitude of all negative peaks in the recording. The
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amplitude threshold eliminates the potential individual differences of
electrode reference type, distance to those references, and electrode
depth that would affect the record amplitude. In a second pass, the activ-
ity over all four channels was examined for each SW detected on the
negative envelope to obtain individual channel data.

Single-unit analysis
We performed spike detection and sorting as described previously (Gent
et al., 2018). Briefly, we first extracted multiunit activity from bandpass
filtered signals (600-4000Hz, fourth-order elliptic filter, 0.1 dB passband
ripple, �40dB stopband attenuation), by applying a detection threshold
of 7.5� the median of the absolute values of the filtered signal. We then
extracted wavelet coefficients from the detected multiunit activity using
a four-level discrete wavelet transform (Harr wavelet, “wavedec,”
MATLAB), and subsequently sorted the coefficients using the superpar-
amagnetic clustering. We visually inspected the sorted units and
excluded the clusters with a symmetric shape or an average firing rate
,0.2Hz from our analyses.

Optogenetic response analysis
We assessed the optogenetic response analysis for each vigilance state
separately. For unit activity, we calculated mean firing rates during opto-
genetic perturbations by averaging firing rates across trials using a nono-
verlapping moving window of 5ms. For LFP analysis, we averaged raw
LFP signals across trials of each vigilance state.

Infarct volume evaluation and immunohistochemistry
Animals were killed at poststroke day 15 with 15mg pentobarbital intra-
peritoneal injection (Esconarkon ad us. vet., Streuli Pharma) and trans-
cardially perfused with 1� PBS followed by 4% formalin. Brains were
postfixed overnight, cryoprotected in 30% sucrose (24-48 h at 4°C), fro-
zen in 2-methyl-butane on dry ice and cut into 40mm sections. Every
third slice was mounted onto a glass slide, dried at room temperature,
rehydrated, and processed for Nissl staining. Briefly, sections were
immersed in Cresyl Violet (Klüver Barrera, Bio-Optica), washed in dis-
tilled water and dehydrated in graded alcohols, cleared in xylene (Sigma
Millipore), and mounted (Eukitt mounting medium, Bio-Optica) on
microscope slides. Stroke edges were delineated per section using ImageJ
software (https://imagej.nih.gov/ij/). The damaged area was measured in
each brain slice and multiplied by the distance between brain sections.
Stroke volume relative to the whole brain was calculated as follows:
((volume of contralesional hemisphere – volume of ipsilesional hemi-
sphere)/2 � volume of contralesional hemisphere) � 100) (Lin et al.,
1993). Fluorescent immunohistochemical staining was performed with
free-floating brain sections. Brain slices were washed in PBS-Triton
(PBS-T) and incubated in blocking solution (1 h at room temperature;
PBS-T with 4% of BSA, Sigma Life Science). Free-floating slices from
ChR2- and ArchT-expressing animals were incubated in a primary anti-
body to GFP (chicken IgY fraction anti-GFP, 1:5000, catalog #A10262,
RRID:AB_2534023, Invitrogen) in blocking solution (24-48 h at 4°C).
Following repeated washes in PBS-T, sections were incubated with the
secondary antibody (1:500, catalog #ab96947, RRID:AB_10681017,
Abcam) in PBS-T (1 h at room temperature). Sections were then washed
in PBS-T, mounted, and covered on microscope slides.

Axonal sprouting quantification
Four brains per experimental group were randomly chosen for axonal
sprouting evaluation. Brains were fixed, frozen, and cut as previously
described. Several 40mm sections per brain were selected (approxi-
mately, from bregma 1.10 mm to bregma �0.70 mm) and stained for
Vglut1, PSD-95, and DAPI. Floating sections were washed in PBS and
blocked in PBS with 0.5% Triton X-100 and 10% normal donkey serum
(Jackson ImmunoResearch Laboratories, code 017-000-121) (2 h at
room temperature). Sections were then incubated with the following pri-
mary antibodies: chicken IgY fraction anti-GFP (ChR2stroke and
ArchTstroke, catalog #A10262, RRID:AB_2534023, Invitrogen), rabbit
anti-Vglut1 (ChR2stroke, ArchTstroke, mCherry-expressing animals, 1:1000,
catalog #135303, RRID:AB_887875, SYSY), goat anti-PSD-95 (ChR2stroke,
ArchTstroke, mCherry-expressing animals, 1:500, catalog #ab12093, RRID:

AB_298846, Abcam), and mCherry, respectively (mCherry-expressing
animals, 1:1000, catalog #M11217, RRID:AB_2536611, Invitrogen) in PBS
containing 3% normal donkey serum and 0.5% Triton X-100 solution
(overnight at 4°C). Brain slices were repeatedly washed in PBS and incu-
bated with appropriate secondary antibodies (1:500, AlexaFluor-488
Ab96947, Abcam; all others 1:1000, Invitrogen) in PBS containing 3% nor-
mal donkey serum and 0.5% Triton X-100 solution (2 h at room tempera-
ture). A negative control (no addition of primary antibody) was
conducted to confirm the antibody selectivity. Sections were further
stained for DAPI (1:500 in PBS, 10min), washed in PBS, mounted on
microscope slides, and covered. Photomicrographs were acquired with
Olympus Fluoview 1000-BX61 confocal microscope (Olympus, Tokyo)
fitted with 60� oil-immersion objective (4� zoom, 0.5mm step size).
Three fields of interest (52.172mm � 52.172mm) within iS1FL and
cS1FLwere imaged in three sections per animal. Imaris software
(Microscopy Image Analysis Software, Bitplane, https://imaris.oxinst.
com/) was used to reconstruct the 3D view of the z stacks and to evaluate
presynaptic and postsynaptic compartments’ density and volume.
Briefly, background subtraction, image smoothing via Gaussian filtering,
and channel intensity adjustment were applied and maintained identical
for all the acquired confocal images. A preliminary stack selection was
conducted to localize pucta distributed within two consecutive stacks. A
puncta diameter threshold was specified at 0.6mm and when this value
was exceeded, puncta were separated on visual confirmation by the
experimenter.

Statistical analysis
For the analyses of the 24 h recordings of stroke and sham animals, a
two-level analysis was performed using linear mixed models: a first-level
analysis on each animal and recording day, including temporal predic-
tors of recording time, time since last wake epoch to estimate the
homeostatic effect on individual SW characteristics across the lights on
period, as well as the potential differences between the ipsilateral and
contralateral hemisphere. At the second level, the parameter estimates
from the first-level data for each animal for each day were used to exam-
ine the overall effects of stroke over the course of 10d after stroke.

The potential effects of days, stroke, and stimulation group on sleep
parameters and behavioral outcomes were tested using linear mixed
models. Sleep and behavioral values from day 0 were assigned as a base-
line predictor, while those from day 4 were used as prestimulation base-
line. Main effects and interactions were tested for significance using the
log-likelihood ratio test between the full model and the model without
the specific factor in question. The effects between the stimulation
groups were examined by post hoc t tests within the linear mixed model.
As an exploratory analysis, macro and micro sleep parameters during
the stimulation time were included as a potential predictor of behavioral
outcome: percentage of NREM, number of micro-arousals, NREM-to-
wake transition ratio, wave incidence, wave amplitude, wave duration,
and positive and negative slope.

For the presynaptic and postsynaptic markers assessment, statistical
comparisons were determined with Student’s t test, one-way ANOVA,
where corrections for multiple comparisons were conducted using
Bonferroni correction, if not otherwise indicated (Prism 6 GraphPad;
https://www.graphpad.com/scientific-software/prism/). Data are pre-
sented as mean 6 SEM, and levels of statistical significance were set at
threshold p, 0.05 unless otherwise indicated. Sample sizes were defined
based on previous studies (Gao et al., 2008; Jego et al., 2013; Herrera et
al., 2016). For each experiment, sample numbers are indicated in the
corresponding figure legends. Animals that did not perform behavioral
testing were excluded from the analysis as well as mice that lost EEG/
EMG signals during longitudinal measurements. Data distribution was
tested for normality using the Lilliefors test on the residuals from each
linear mixed model calculated and found to be normally distributed.
Experiments were not conducted in blinded fashion.

Results
Stroke alters sleep architecture and SW profile
SW-like oscillations are frequently observed in peri-infarct zone
during NREM sleep and wakefulness (Yokoyama et al., 1996;
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Murri et al., 1998; Fernández-Bouzas et al., 2002). To refine the
characterization of brain activity after stroke, including SW fea-
tures, we first quantified the changes of sleep-wake architecture
and sleep quality from animals subjected to MCAo and sham
surgeries (Fig. 1A,B). Animals were chronically implanted with
EEG/EMG electrodes for longitudinal sleep recordings before,
and at 1, 3, 5, and 10d after MCAo (see Materials and Methods;
Fig. 1C). To control for multiple comparisons between the eight
sleep metrics, the significance threshold was reduced to p ,
0.0063 (i.e., 0.05/8; Bonferroni correction). MCAo resulted in an
initial increase of NREM sleep duration with group differences
dampening over the days recorded (Fig. 1E; Day� Stroke interac-
tion: LR(1) = 7.977, p=0.0047). Significant main effects of stroke
were found for total wake duration (Fig. 1D; LR(2) = 22.385,
p, 0.0001) and wake bout duration (LR(2) = 34.502, p, 0.0001),

but this general effect was not significantly different over the days
after correction (Day � Stroke interaction: LR(1) = 4.328, p =
0.0375). No significant results were observed for REM sleep total
duration (Fig. 1F). We further explored the potential effect of
stroke size within the MCAo group on all sleep architecture meas-
ures, but found no main effects or interaction effects with the day
of recording (all p values. 0.0063).

NREM sleep instability, describing the ratio between the ani-
mals’ capacity of remaining asleep compared with waking up,
showed that stroke animals were significantly more likely to
wake up (Fig. 1J; LR(2) = 14.918, p=0.0006).

The number of microarousals, scored as single epoch of
1 s (minimum) increased EMG signal within a NREM sleep
episode, did not differ between Stroke and Sham (Fig. 1K;
LR(2) = 4.651, p = 0.0977).
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Figure 1. Stroke alters sleep architecture. A, Schematic of the Circle of Willis (CW) with highlighted CCA, Internal Carotid Artery (ICA), and MCA, involved in MCAo procedure and filament
placement. B, Coronal sections (40mm) of a representative mouse 15 d after MCAo. Nissl staining. C, Schematic representation of EEG and EMG electrodes placements relative to stroke.
Twenty-four hour recordings of animals’ sleep-wake cycles were performed before stroke (Baseline) and again at poststroke days 1, 3, 5, and 10 in Stroke (n= 11) and Sham (n= 9) animals.
D, Percentage changes of wakefulness, NREM sleep (E), and REM sleep (F) total durations from each animal’s baseline values. G, Comparison between bout durations of wakefulness, NREM
sleep (H), and REM sleep (I). J, Ratio between NREM continuous episodes and transitions to wake. K, Total number of microarousals in 24 h recordings. L, Percentage of epochs spent in wake
or sleep states for Stroke (blue table) and Sham (gray table) groups, respectively. Linear mixed model of eight matrices: Wake duration changes; NREM duration changes; REM duration changes;
Wake bout duration; NREM bout duration; REM bout duration; NREM stability; and Microarousals. Data are mean6 SEM. *p, 0.0063.
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To assess SW features and changes after MCAo stroke, ani-
mals were prepared for simultaneous recordings of EEG/EMG,
LFPs, or single-unit/multiunit activities in iS1FL, cS1FL, iM1,
and cM1 layer V (for illustration, see Materials and Methods;
Fig. 2B). Clear periods of neuronal quiescence corresponding to

cortical DOWN states confirmed the selectivity of our SW detec-
tion method (for detection criteria, see Materials and Methods;
Fig. 2A–D). Indeed, perilesional tetrode recordings of unit activ-
ity in S1FL showed suppression, and subsequent increase, in neu-
ronal activity (Fig. 2D, top), validating the average unit firing
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rate observed during the detected SW (Fig. 2D, bottom). Both
local and global SW occurred across all recorded neocortical
areas (Fig. 2A), consistent with previous reports in rodents and
humans (Huber et al., 2004; Vyazovskiy et al., 2011). If individual
waves are detected across the 24 h period, we observed a signifi-
cant reduction of ipsilateral SW amplitude by�13.26 7.3% after
stroke compared with sham controls that persisted for up to 10d
after stroke (Fig. 2F; day 10: �15.46 6.4%; F(2,70) = 13.82,
p, 0.0001; two-way ANOVA, followed by Bonferroni post hoc
test). These findings are consistent with hemispheric stroke in
rodents and human subjects (Ahmed et al., 2011; Poryazova et
al., 2015). Moreover, the SW-positive slope was reduced within
the ipsilateral area of Stroke animals (Fig. 2G; F(2,76) = 13.02,
p, 0.0001), whereas the negative slope increased (Fig. 2H;
F(2,76) = 15.89, p, 0.0001). No significant changes were found in
the number of detected SWs (Fig. 2I; F(2,87) = 0.693, p=0.503) or
their duration (Fig. 2J; F(82,83) = 0.744, p=0.478; two-way
ANOVA, followed by Tukey post hoc test). When exploring for a
homeostatic effect, we did not find differences in amplitude
between Stroke and Sham for ipsilateral and contralateral EEG
traces (LR(2) = 0.940, p=0.625) nor for time of night (LR(2) = 3.791,
p=0.150).

SWopto revealed a critical window of intervention after stroke
Here, we aimed at identifying the effect of SWopto on the recov-
ery of motor function following MCAo stroke in mice. Thus,
we genetically targeted the expression of opsins to pyramidal
neurons in layer V of the neocortex, given their implication in
the generation of slow oscillations (Beltramo et al., 2013;
McCormick et al., 2015). To achieve this, we stereotactically
injected AAV2 viruses carrying ChR2, ArchT, or mCherry gene
cassettes under CaMKII promoter in iS1FL (Fig. 3A,B) before
animals were chronically implanted with EEG/EMG electrodes,
tetrodes in cS1FL, iM1, and cM1 cortices (layer V), and a single
optrode in iS1FL (see above and Materials and Methods; Fig.
3A). We first optimized the frequency and duration of optoge-
netic stimulations to mimic NREM sleep SW in both WT and
VGAT-Cre transgenic mice to modulate excitatory or inhibitory
neurons in iS1FL with 5Hz, 1ms light pulses (activation proto-
col), or 100, 200, or 500ms single pulses (silencing protocol)
(Fig. 4). We found that 5ms optogenetic activation of iS1FL
ChR2-expressing pyramidal neurons induced a short UP-like
state, followed by a DOWN-like state, indistinguishable from
spontaneous NREM sleep SW (Fig. 3C–E). Similar SWopto wave-
form profiles were obtained on 200ms optogenetic silencing of
iS1FL ArchT-expressing pyramidal neurons (Fig. 3F,I). In the
latter condition, the duration of the optogenetic silencing of
iS1FL ArchT-expressing pyramidal neurons corresponded to the
average duration of spontaneous NREM sleep DOWN states
(Fig. 2C; duration: 205.26 4.4ms; Fig. 3H). Offline analysis con-
firmed that SWopto duration, negative amplitude, and slope were
indistinguishable from naturally occurring NREM sleep SW
from the same animal (Fig. 3E,I). SWopto propagated to contra-
lateral recording sites, where SWopto of variable amplitudes was
recorded in EEG, LFP, and single-activity traces (Figs. 3D,H, 5).
No changes in EEG features were observed in control conditions
(Fig. 3J–L).

To determine the optimal window for optogenetic interven-
tion after MCAo, we evaluated the effect of this stimulation pa-
rameters on the survival rates of stroke animals. Strikingly, we
observed that ChR2stroke animals had lower survival rate than
ArchTstroke, and mCherrystroke mice when the optogenetic
manipulation started on poststroke day 1 (single 5 or 200ms

light pulses, at 473 or 532 nm, respectively, randomly distributed
over 2 h, daily; Fig. 6A; x 2

(2) = 7.941, p= 0.018; ChR2
stroke: 30%

survival; ArchTstroke: 75% survival; mCherrystroke: 77.7% survival;
Log-rank Mantel-Cox test) compared with day 5 (Fig. 6B;
x 2

(4) = 6.383, p= 0.172; ChR2stroke: 60% survival; ArchTstroke:
70% survival; mCherrystroke: 70% survival; mCherrysham: 100%
survival; Naive: 100% survival; Log-rank Mantel-Cox test). These
findings are consistent with an increased excitotoxicity after
stroke (Nudo, 2006; Allman et al., 2016); hence, all our optoge-
netic experiments started on day 5.

SWopto during sleep improves functional recovery
We next tested whether sleep-specific SWopto improves func-
tional recovery after MCAo in mice. The expression of ChR2,
ArchT, and mCherry was genetically targeted to iS1FL pyramidal
neurons as described above (Fig. 3A), before animals were
chronically implanted with a unilateral optic fiber on iS1FL and
EEG/EMG electrodes for simultaneous optogenetic control and
polysomnographic recordings in freely moving mice (Fig. 7A;
see Materials and Methods). Sparse SWopto were randomly dis-
tributed during sleep starting 5 d after stroke until day 15 (single
5 or 200ms light pulses, at 473 nm or 532nm, respectively,
randomly distributed over 2 h, daily; n = ;300 optical stimuli;
Fig. 7B,C).

Evaluation of the animals’ fine motor movements, coordina-
tion, strength, and asymmetry at poststroke day 4 (Fig. 7B)
showed severe behavioral deficits in all animals subjected to
MCAo. Indeed, on poststroke day 4, stroke-induced animals
were no longer able to finely coordinate their grasping move-
ments (Fig. 7D; LR(1) = 27.498, p, 0.0001; Fig. 7F; LR(1) =
32.205, p, 0.0001). As expected, no behavioral impairments
were found in mCherrysham and Naive animals (Fig. 7D and Fig.
7F, respectively, p. 0.05).

In the ladder walking rig test (Fig. 7D), a significant interac-
tion between the stimulation group and days was found (LR
(5) = 11.976, p=0.035). Post hoc analysis revealed that the
ArchTstroke group recovered at a faster pace than ChR2stroke_wake

(t(101) = 2.842, p= 0.005). Generally, all mice improved across
days (LR(6) = 28.235, p, 0.001). Main effects of stimulation
group were also found (LR(10)= 42.949, p, 0.001). ChR2stroke

and ChR2stroke_wake were significantly different frommCherrystroke

(t(101) = �2.430, p=0.017; t(101) = �3.137, p=0.002). For the
beam balance (Fig. 7F), we found a significant interaction
effect of stimulation group and day (LR(5) = 14.171, p = 0.015).
mCherrystroke did not show a significant improvement across
days (t(152) = �1.671, p = 0.097). However, compared with
mCherrystroke, Archtstroke mice showed significantly more improve-
ment over the course of days (t(110) = �2.866, p=0.005). ChR2stroke

mice also significantly improved across days after stroke (t(152) =
�4168, p, 0.001), but this improvement was less than the
ArchTstroke group (t(110) = �2.285, p=0.024) and on par with the
mCherrystroke group (t(110) =0.580, p=0.563). Comparisons of ani-
mal improvement between poststroke day 4 and 15 confirmed the
functional recovery of ChR2stroke (Fig. 7E; t(14) =3.46, p=0.007; Fig.
7G; t(18) =2.372, p=0.029) and ArchTstroke (Fig. 7E; t(14) =3.083,
p=0.008; Fig. 7G; t(18) =3.895 p=0.002; one-way ANOVA), com-
pared with mCherrystroke control. In contrast, optogenetic interven-
tion after stroke did not lead to any improvement of motor
endurance, strength (Fig. 7H), or asymmetry (Fig. 7I).

SWopto increases axonal sprouting
Stroke triggers a cascade of molecular and cellular changes,
including synaptogenesis, neurogenesis, and axonal sprouting in

Facchin et al. · SlowWaves Promote Functional Stroke Recovery J. Neurosci., November 4, 2020 • 40(45):8637–8651 • 8643



Negative amplitude [uV]
-500 -400 -300 -200 -100 0

p = 0.1796

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Slope [uV/s]

0
0.1

0.2

0.3
p = 0.4093 

D

Vo
lta

ge
 [u

V]

Time [ms]
-200 0

0

200 400 600
-300
-200

100

-100

200
300 iEEG

cEEG

A

Bregma -0.10

E

R
el

at
iv

e 
n 

of
 S

W

SW duration [ms]
0 100 200 300 400 500

0
0.04
0.08
0.12
0.16

p = 0.7142 
Spontaneous SW SWopto

0
0.04
0.08
0.12
0.16

CaMKIIa-mCherry
20 um200 um

Time [ms]

Vo
lta

ge
 [u

V]

iEEG
cEEG

-200 0 200 400 600
-300
-200
-100

0
100
200
300

iEEG

cEEG

EMG

mCherrystroke 5ms light pulse

iEEG

cEEG

EMG

mCherrystroke 200 ms light pulse

Vo
lta

ge
 [u

V]

-200 0 200 400 600
-300
-200
-100

0
100
200
300

-200 0 200 400 600
-300
-200
-100

0
100
200
300

CaMKIIa-ArchT3.0-EYFP
20 um

F

J LK

H

ArchTstroke 200 ms light pulse

iEEG

cEEG

EMG
2 s 100 uV

G

2 s 100 uV2 s 100 uV

0

20

40

60

80Tr
ia

l n
um

be
r

0

50

100

150

200

M
ea

n 
sp

ik
e 

ra
te

/s
ec

0 200 400-100 100 300

NREM

-500

0

500

1000
Wake

Vo
lta

ge
 [u

V]

C

0

50

100

150

200

0

10

20

30

40

0

5

10

15

20

-100 0 100 200 300 400
0

10

20

30

-100 0 100 200 300 400
Time [ms]

REM

EMGs

cEEGiEEG

ground

iS1FL

optrode

-500 -400 -300 -200 -100 0

p = 0.8679

0
0.04
0.08
0.12
0.16

Negative amplitude [uV]

iEEG
cEEG

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Slope [uV/s]

0
0.1

0.2

0.3

CaMKII-hChR2(H134)-EYFP

B

20 um200 um

I
II/IIIIV

V
VIaVIb

I
II/IIIIV

V
VIaVIb

I
II/IIIIV

V
VIaVIb

200 um

Time [ms]

I

R
el

at
iv

e 
n 

of
 S

W

SW duration [ms]
0 100 200 300 400 500

0
0.04
0.08
0.12
0.16

p = 0.4833 
Spontaneous SW SWopto

p = 1.2812

C
hR

2
EY

FP

W
PR

E

C
am

KI
I

IT
R

PA IT
R
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peri-infarct zone and remote connected circuits (Nudo, 1997;
Carmichael et al., 2017).

To quantify the anatomic changes induced by chronic
SWopto, we quantified the expression of presynaptic Vglut1 and
postsynaptic PSD-95 proteins as a direct measurement of axonal
sprouting in cortical layers V (Liu et al., 2007; Sun et al., 2017)
and connected circuits in layers II (Binzegger et al., 2004;
Adesnik and Naka, 2018) (Fig. 8A). Puncta density quantifica-
tion in both iS1FL and cS1FL cortices revealed significantly
higher Vglut1 protein levels in ipsilateral layer II (Fig. 8B;
F(3,19) = 10.49, p=0.0003), and layer V (Fig. 8C; F(3,18) = 16.02,
p. 0.0001; one-way ANOVA) from ChR2stroke and ArchTstroke

animals compared with mCherry controls. Consistently, analysis
of Vglut1-positive puncta volume distribution revealed a signifi-
cant increase of smaller, newly formed puncta within ipsilateral
layer V of both ArchTstroke and ChR2stroke compared with
mCherrystroke animals (Fig. 8E; F(2,2111) = 75.13, p, 0.0001). This
was also true for ex novo Vglut1 puncta in postsynaptic sites of
layer II from ChR2stroke animals (Fig. 8D; mCherrystroke vs
ChR2stroke t(2070) = 4.181, p, 0.0001), but not ArchTstroke ani-
mals (mCherrystroke vs ArchTstroke t(2070) = 3.015, p= 0.0078,
ChR2stroke vs ArchTstroke t(2070) = 0.903, p. 0.999; one-way
ANOVA, followed by Bonferroni correction).

These presynaptic changes were concomitant to a significant
decrease of postsynaptic PSD-95 protein expression in iS1FL
layer II of both ChR2- and ArchT-expressing animals compared
with control group (Fig. 8F; F(3,23) = 8.609, p=0.0005; one-way
ANOVA), with no differences in layer V (Fig. 8G; F(3,24) = 1.095,
p=0.370; one-way ANOVA). PSD-95-positive puncta volume
was significantly larger in iS1FL layer II (Fig. 8H; F(2,625) = 85,
p, 0.0001) and layer V from ChR2stroke animals compared with

mCherrystroke or ArchTstroke (Fig. 8I; F(2,2111) = 75.13), p,
0.0001; one-way ANOVA).

Discussion
Stroke is a debilitating neurological disorder, and one of the
worldwide leading causes of adult disability and death in the
aging population. A better understanding of the complex patho-
physiological mechanisms underlying the stroke event, and the
following brain plasticity warrants the improvement of existing
strategies and the development of alternative therapies for stroke
recovery (Feigin et al., 2017).

Here, we showed that MCAo induced an ipsilateral reduction
of spontaneous SW amplitude, associated with sleep fragmenta-
tion and increased NREM sleep after stroke onset (Giubilei et al.,
1992; Vock et al., 2002; Baumann et al., 2006; Hermann et al.,
2008). Our results further indicate that sleep-specific optogenetic
neuromodulation of brain activity after stroke had no effects on
the sleep-wake cycle architecture, but it improved fine skilled
motor movements compared with wakefulness interventions.
These manipulations were accompanied by axonal sprouting of
local and connected circuits, suggesting a direct role for SW in
promoting anatomic and functional plasticity of neural circuit
during sleep (Carmichael and Chesselet, 2002; Aeschbach et al.,
2008; Tononi and Cirelli, 2014). Collectively, these findings
emphasize a role for NREM sleep SW as a window of interven-
tion during stroke recovery, and a possible mechanism underly-
ing the improvement of rehabilitative strategies using repetitive
transcranial magnetic stimulation (Kim et al., 2006; Brodie et al.,
2014) and transcranial direct current stimulation (Boggio et al.,
2006; Lindenberg et al., 2010).

Spontaneous sleep SWs are associated with neuroplastic
changes (Tononi and Cirelli, 2006; Puentes-Mestril and Aton,
2017), inflammatory and immunologic adaptative response
(Irwin and Cole, 2011), protective functions during infection
(Irwin, 2019), and metabolic clearance (Xie et al., 2013). Clinical
studies reported significant improvement in stroke rehabilitation
on noninvasive brain stimulation during sleep (Niimi et al.,
2019) and SW enhancement (Ebajemito et al., 2016). We used
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physiologically relevant stimulation protocols to avoid neuronal
hypersynchrony, unnatural firing activities, and circuit adapta-
tion by using single optogenetic stimuli randomly distributed
across sleep in freely moving animals. These sparse optogenetics
interventions induced SWopto without perturbing sleep-wake
cycle architecture. Our strategy contrasts from other studies that
use long-lasting hypersynchronous optogenetic activation inde-
pendently of the animal behavior, sleep-wake states, or delivered

during anesthesia (Cheng et al., 2014; Lu et al., 2017; Shah et al.,
2017; Tennant et al., 2017). Our findings show that sparse
SWopto delivered during sleep improved behavioral outcomes,
whereas SWopto during wakefulness did not. An explanation for
this striking difference is that low-frequency, high-amplitude
waves during wakefulness represent dysfunctional waves,
typical of pathologic conditions that are often associated with
functional abnormalities, including deafferentiated or lesioned
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thalamocortical circuits (Steriade et al., 1993; Butz et al., 2004).
These results further emphasize the importance of sleep as a
window for optimal modulation of brain activity that potenti-
ates the effect of SWopto on brain plasticity and behavioral out-
comes (see below).

Alteration of sleep-wake cycle and SW
Our findings revealed that stroke injury induces a dramatic
increase in NREM sleep on the day following stroke. This effect
is accompanied by transient perturbation of the circadian sleep
distribution across the light/dark cycle. Although the causes of
these transient changes remain unclear, they may result from a
functional adaptation to the strong fragmentation of both
NREM sleep and wakefulness.

Our experimental results are consistent with the sleep frag-
mentation, the increase in NREM sleep Stages 1 and 2, and the
decreased REM sleep observed during the first days following
stroke in human (Giubilei et al., 1992; Vock et al., 2002). Sleep
fragmentation may result from a lack of consolidated synchrony
of neuronal activity among thalamocortical circuitries, as sug-
gested by the decreased amplitude and positive slope of sponta-
neous SW after stroke observed in our study. These SW profiles
are indicative of low spiking synchrony of thalamic and cortical
neurons (Huber et al., 2004; Vyazovskiy et al., 2009a), which
may facilitate arousal on wake-promoting inputs of subcortical
origins (Adamantidis et al., 2007; Carter et al., 2010; Herrera et
al., 2016; Gent et al., 2018). Whether the SWs remaining after
stroke are generated by a similar mechanism and support similar
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cortical functions, as the naturalistic SW recorded from an intact
brain remains to be examined in light of the different cells types
potentially implicated in SW generation (Gerashchenko et al.,
2008; Cardin et al., 2009; Stroh et al., 2013; Jackson et al., 2016;
Niethard et al., 2016). An important characteristic of spontaneous
sleep SWs is their propagation pattern across the brain cortex,
originating at anterior regions and traveling to posterior directions
(Massimini et al., 2004; Gent et al., 2018). Investigating SWs’ trav-
eling changes across the ipsilateral hemisphere and the peri-infarct
zone specifically represents an interesting additional aspect to
explore in future work. The experimental preparation of the pres-
ent study (single EEG trace per hemisphere) limited further SW
analysis in this direction.

SWopto promotes behavioral recovery after stroke
Chronic SWopto over 11d after stroke facilitated spontaneous func-
tional recovery, while earlier interventions exacerbated brain injury
and decreased the survival rate of the animals, possibly because of
excessive glutamate release (Lai et al., 2014), leading to increased
excitotoxicity (Nudo, 2006; Allman et al., 2016). This window of
spontaneous recovery is limited to a month in rodents, and 3
months in humans, during which molecular and structural changes
potentiate the responsiveness to rehabilitative treatments (Murphy
and Corbett, 2009; Ng et al., 2015) and emphasize a crucial inter-
vention timeframe (Dromerick et al., 2009). Although poststroke
excitotoxicity might be an accurate explanation for the detrimental
effect observed in animals’ survival, additional studies are required
to further scrutinize markers of excitotoxicity (e.g., levels of gluta-
mate, NMDA receptors, AMPA receptors, and their activation, cas-
pases, ROS) in combination with optogenetic intervention at several
time points following stroke.

An interesting finding in our study is that SWopto had no direct
effects on sleep architecture, but induced a delayed increase of sleep
duration. This result is in agreement with studies showing pro-
longed NREM sleep on activation of somatostatin interneurons
(Funk et al., 2017) and, to a lesser extent, pyramidal neurons
(Rodriguez et al., 2016) in the neocortex. Noteworthy, increased
NREM sleep following SWopto intervention was present only within
the first 2 d of stimulation (data not shown), presumably because of
the brain recovery processes or the adaptation of the sleep-promot-
ing circuits to the SWopto, or both. Although we cannot rule out a
possible role of this transient NREM sleep increase on the sensori-
motor improvement of the animals, it is unlikely that these early
and transient changes are responsible for the motor improvements
observed at the end of the experiment.

SW, plasticity, and axonal sprouting
In our experiments, sensorimotor improvement after stroke was
achieved either by chronic optogenetic activation, or silencing of
iS1FL pyramidal neurons in freely moving mice, supporting an
essential role for UP-DOWN states in brain plasticity, rather
than neuronal activation or silencing alone (Puentes-Mestril and
Aton, 2017). These bistable states during NREM sleep (here,
mainly SWopto) are associated with synaptic plasticity in local cir-
cuits and their postsynaptic targets, as observed by the beneficial
effect of sleep low-frequency stimulation of motor or somatosen-
sory cortical circuits on perceptual learning (Miyamoto et al.,
2016), or the formation of new dendritic spines in motor cortex
(layer V) pyramidal neurons in mice (Yang et al., 2014).
Furthermore, our results are in agreement with the finding that
experimental disruption of cortical SW following learning impairs
consolidation of visuomotor learning in humans (Landsness et al.,
2009).

The early stages of stroke recovery are classically attributed to
brain edema resorption and penumbra reperfusion, while later
stages are associated with structural reorganization through axo-
nal sprouting, synaptogenesis, and neurogenesis (Nudo, 2006).
Here, both ChR2- and, to a lesser extent, ArchT-induced SWopto

promoted an increase of presynaptic and postsynaptic markers in
S1FL layers V and II, respectively. Decreased PSD-95 density after
SWopto is consistent with similar findings on repetitive transcra-
nial magnetic stimulation stimulation in rodents (Etiévant et al.,
2015) that correlate with improved functional outcomes in non-
human primates treated with PSD-95 inhibitors (Cook et al.,
2012). Larger PSD-95 puncta were found within both layers II
and V of ChR2stroke animals, suggestive of a stabilization of the
functional synapse (Cane et al., 2014). Thus, SWopto enhance UP/
DOWN state network synchronization (Gent et al., 2018), and
facilitate the formation of new synapses, which are not restricted
to targeted cortical circuits (i.e., pyramidal neurons in the peri-
infarct zone), but also anatomically connected circuits located in
ipsilateral and contralateral hemispheres (Liu et al., 2009; Cui et
al., 2013). Noteworthy, brain activity in other cortical and sub-
cortical networks, and other sleep oscillations, including spindles,
participate in synaptic plasticity during NREM sleep (Rosanova
and Ulrich, 2005; Chauvette et al., 2012) and may contribute to
the ameliorated behavioral outcome reported here.

Collectively, our findings support a role for NREM sleep SWs
in neuronal circuit plasticity and provide a clinically relevant
framework for developing sparse, noninvasive neuromodulation,
including acoustic brain stimulations (Ngo et al., 2013), extended
transcranial magnetic stimulation or extended transcranial direct
current stimulation (Ebajemito et al., 2016; Niimi et al., 2019) for
optimal recovery after brain injury.
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