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Simple Summary: Despite an intensive research effort in the past few decades, prostate cancer (PC)
remains a top cause of cancer death in men, particularly in the developed world. The major cause of
fatality is the progression of local prostate cancer to metastasis disease. Treatment of patients with
metastatic prostate cancer (mPC) is generally ineffective. Based on the discovery of mPC relying
on androgen for growth, many patients with mPC show an initial response to the standard of care:
androgen deprivation therapy (ADT). However, lethal castration resistant prostate cancers (CRPCs)
commonly develop. It is widely accepted that intervention of metastatic progression of PC is a
critical point of intervention to reduce PC death. Accumulative evidence reveals a role of RKIP
in suppression of PC progression towards mPC. We will review current evidence and discuss the
potential utilization of RKIP in preventing mPC progression.

Abstract: Prostate cancer (PC) is a major cause of cancer death in men. The disease has a great
disparity in prognosis. Although low grade PCs with Gleason scores ≤ 6 are indolent, high-risk
PCs are likely to relapse and metastasize. The standard of care for metastatic PC (mPC) remains
androgen deprivation therapy (ADT). Resistance commonly occurs in the form of castration resistant
PC (CRPC). Despite decades of research efforts, CRPC remains lethal. Understanding of mechanisms
underpinning metastatic progression represents the overarching challenge in PC research. This
progression is regulated by complex mechanisms, including those regulating PC cell proliferation,
epithelial–mesenchymal transition (EMT), and androgen receptor (AR) signaling. Among this PC
metastatic network lies an intriguing suppressor of PC metastasis: the Raf kinase inhibitory protein
(RKIP). Clinically, the RKIP protein is downregulated in PC, and showed further reduction in mPC.
In xenograft mouse models for PC, RKIP inhibits metastasis. In vitro, RKIP reduces PC cell invasion
and sensitizes PC cells to therapeutic treatments. Mechanistically, RKIP suppresses Raf-MEK-ERK
activation and EMT, and modulates extracellular matrix. In return, Snail, NFκB, and the polycomb
protein EZH2 contribute to inhibition of RKIP expression. In this review, we will thoroughly analyze
RKIP’s tumor suppression actions in PC.

Keywords: prostate cancer; metastasis; RKIP; signaling events

1. Introduction

In the developed world, prostate cancer (PC) is the most frequently diagnosed male
malignancy and a major cause of cancer death in men [1]. The disease is initiated from
prostate epithelial cells as high-grade prostatic intra-epithelial neoplasia (HGPIN) lesions
that evolve to invasive prostate adenocarcinoma or PC which can progress to metastasis [2].
PCs are graded based on Gleason scores (GS) or GS-based World Health Organization
(WHO) grading system which categorizes PC into WHO grade group 1–5 [3–5].
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Prostate cancers are characterized with a high degree of disparity in terms of its
prognosis. While tumors with GS ≤ 6 or WHO grade group 1 are generally indolent,
others possess high-risk of progression. Local PCs are managed with watchful waiting
(active surveillance) and curative therapies: radical prostatectomy (RP) or radiation therapy
(RT) [6–9]. Approximately 30% of patients will experience disease relapse or biochemical
recurrence (BCR) based on increases in serum prostate-specific antigen (PSA) [10]. BCR
is defined with elevations of serum PSA > 0.2 ng/mL after RP or > 2 ng/mL above the
nadir following RT [11]. Relapsed tumors elevated risks of metastasis; 24–34% of patients
following BCR will develop metastatic PC (mPC) [12,13].

Built on the androgen-dependence nature of PC discovered in 1940s, current standard
of care for mPCs remains androgen deprivation therapy (ADT) [14,15]. Despite remarkable
initial response in more than 80% of patients with mPC, ADT is essentially a palliative
care as metastatic castration-resistant PCs (mCRPCs) commonly develop [16,17]. Owing
to extensive research efforts, multiple options are available to manage CRPCs, including
taxane-based chemotherapy, anti-androgens targeted therapy involving either abiraterone
or enzalutamide [17–19], and immunotherapy [20,21]. However, these therapies only offer
modest survival benefits [17,22]. From this perspective, interventions targeting early-stage
progressions of BCR and metastasis are more desirable than treating CRPC or mCRPC.

Metastasis contributes to more than 90% of cancer deaths [23,24], and is regulated
by complex networks. Epithelial–mesenchymal transition (EMT) is critical in promoting
metastasis; EMT increases cancer cell’s migratory and invasion capacities, which are essen-
tial properties in facilitating the establishment of cancer cells at the secondary organs from
primary site [25,26]. EMT is a major contributor to cancer stem cells [27], including prostate
cancer stem cells (PCSCs) [28]. PCSCs are a major source of PC metastasis [28]. Other
processes contributing to PC metastasis include cell proliferation regulated by Raf-MEK-
ERK and PI3K-AKT-mTOR pathways [29,30], the EZH2 polycomb protein [31–33], and
NFκB [34,35]. Intriguingly, all these processes are connected to a suppressor of PC metasta-
sis, Raf kinase inhibitor protein (RKIP) (Figure 1) [36,37]. In this review, we will discuss
the evidence supporting RKIP-derived suppression of PC pathogenesis and metastasis;
the associated mechanisms and limitations will be addressed. This review will update the
status of RKIP as a metastasis suppressor of prostate cancer and suggests future directions.
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Figure 1. Factors and pathways that promote PC metastasis and display connections with RKIP.

To provide a comprehensive review, we systemically searched PubMed for literature
under the term: “RKIP AND prostate cancer”. A total of 51 articles were retrieved. Follow-
ing exclusion of retraction-related (n = 2), non-cancer (n = 1) and non-PC-related (n = 8),
non-English (n = 1), non-relevant articles (n = 2), and reviews (n = 10); 27 publications
are discussed.

2. The Molecular Basis for RKIP as a Tumor Suppressor

RKIP (or PEBP1) belongs to the phosphatidylethanolamine-binding protein (PEBP)
family. The protein was initially purified as a soluble basic protein with the molecular mass
of 23 kDa from bovine brain [38]. RKIP/PEBP1 is a highly conserved protein expressed
in mammalians including human [39,40], monkey [41], rat [42], mouse [43], chicken, and
sheep [44]; its homologues were also detected in other organisms [45], including Drosophila
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melanogaster [46], Saccharomyces cerevisiae [47], Toxocara canis [48], Onchocerca volvulus [49],
Plasmodium falciparum (a malarial parasite) [50], as well as flowering plants: Antirrhinum [51]
and Arabidopsis thaliana [52]. The expression of RKIP in such a wide range of species
supports its essential roles in a multitude of critical biological processes.

One of the most well-characterized processes affected by RKIP is its inhibition of Raf1-
mediated activation of the MEK-ERK pathway. RKIP binds to Raf1 and MEK1, and prevents
Raf1 in activating MEK [53]. PKC phosphorylates RKIP at serine 153 (S153), causing its dis-
sociation with Raf1 [54] (Figure 2; Raf1 signaling). In support of this knowledge, RKIP1−/−

mice display elevations in ERK1/2 activation in the suprachiasmatic nucleus (SCN) in
response to light [55]; conversely, in transgenic mice expressing non-phosphorylated form
of RKIP, light-induced ERK1/2 activation was reduced in SCN [55].
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Figure 2. RKIP is a switch in regulating the Raf1-MEK-ERK and GPCR signaling. The dotted
regions shows that RKIP can be phosphorylated at serine 153 (S153) by PKC and reversed to non-
phosphorylated status by unknown factors marked with “??”. At non-phosphorylated status (#1),
RKIP binds Raf1 and inhibits Raf1-MEK-ERK signaling. Non-phosphorylated RKIP does not as-
sociated with GRK2, which enables GRK2 to phosphorylate active GPCR, leading to G proteins to
dissociate from GPCR and thereby inhibiting GPCR signaling. RKIP(S153P) is unable to bind or
dissociate from Raf1 (#2), resulting in activation of the Raf1-MEK-ERK signaling. RKIP(S153P) binds
to GRK2 and prevents GRK2 from uncoupling GPCR from G protein, in turn stabilizes the GPCR-G
protein complex and promotes GPCR signaling.

Phosphorylation of S153 not only results in RKIP dissociation with Raf-1, which el-
evates the actions of the Raf-1-MEK-ERK pathway, but also enhances G protein-coupled
receptor (GPCR) signaling (Figure 2). The G protein-coupled receptor kinase 2 (GRK2)
phosphorylates active GPCRs, causing their decoupling from G proteins and thus attenuat-
ing GPCR signaling [56] (Figure 2). S153 phosphorylated RKIP (RKIP(S153P)) binds GRK2,
which prevents GRK2 from phosphorylating GPCR, stabilizes GPCR-G protein complex,
and thus facilitates GPCR signaling [57] (Figure 2; GPCR signaling). This regulation is
physiologically relevant. Cardiac-specific expression of wild type but not S153 phosphory-
lation deficient mutant (S153A) increases β-adrenergic receptor (βAR), a 7-transmembrane
GPCR involved in cardiac contractility, leading to protect mice from heart failure induced
by chronic pressure overload; conversely, RKIP knockout mice are associated with exacer-
bation of pressure overload-induced heart failure [58,59].

The Raf-MEK-ERK axis is widely involved in oncogenesis [60–62] together with G
protein-coupled receptors [63,64]. RKIP status alterations thus coordinate multifaceted
oncogenic actions, including Raf-MEK-ERK, GPCR, and immune actions. Tumorigen-
esis is intimately connected with immunity [65]. Evidence supports a role of RKIP in
regulating immunoreactions. Binding of IgE to its high affinity receptor FcεRI activates
mast cells, leading to production of proinflammatory cytokines and allergic asthma [66].
RKIP reduces IgE-FcεRI-induced mast cell activation via inhibition of PI3K activation,
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leading to decreases in the production of proinflammatory cytokines [67]. RKIP−/− mice
sensitizes mast cell activation along with activation of the PI3K and AKT [67] (Figure 3A).
Inflammation is tightly associated with cancer initiation and progression [68]. Intriguingly,
in RKIP−/− mice, T cell receptor of CD8+ cells specific to staphylococcal enterotoxin A
is defective in its downstream signaling, leading to a decrease in INF-γ production [69]
(Figure 3B). INF-γ and TNFα produced by CD8+ cytotoxic T lymphocyte (CTL) contribute
to CTL-derived cytotoxicity to cancer cells [70]. RKIP also plays a role in innate immune
response. In RKIP−/− mice, the production of IFN-β, IL-6, and TNFα by macrophage’s
Toll-like receptor 3 (TLR3) in response to polyinosinic:polycytidylic acid are significantly
reduced [71] (Figure 3C). Similarly, vesicular stomatitis virus (VSV) and herpes simplex
virus (HSV) induce type I interferon production to a significantly reduced level in RKIP−/−

mice [72]. In facilitation of these innate immune responses, phosphorylation of RKIP
at S109 is required; the phosphorylation leads to binding of RKIP with TANK-binding
kinase 1 (TBK1), which triggers the aforementioned innate immunity (Figure 3C) [71,72].
Macrophages, type I interferons, IFN-β, and TNFα can suppress cancer, while their impacts
on tumorigenesis can be complex [73–76]. In line with the concept of RKIP contributing to
tumor suppression via modulating immune responses, RKIP inhibits NFκB activation via
downregulating IκB kinase (IKK) [77]; NFκB is a critical transcription factor that regulates
immunity [78,79] and promotes tumorigenesis [80].
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Figure 3. RKIP regulates immune reactions in vivo. The information presented here was based on literature involving
RKIP transgenic mice. (A) Ligation of IgE to FcεRI on mast cell surface leads to upregulation of EZH2 that inhibits RKIP
transcription. The action reduces RKIP-mediated inhibition of PI3K which promotes mast cell activation, leading to the
production of proinflammatory cytokines and other factors, followed by allergic asthma [67]. (B) RKIP facilitates T cell
receptor downstream signaling events, resulting in the production of INF-γ and IL-6 in CD8+ T cells treated with SEA [69].
(C) Polyinosinic:polycytidylic [poly(I:C)] activates TLR3 (Toll-like receptor 3), leading to phosphorylation of RKIP at S109
(S109P) which binds to and activates TBK1 (TANK-binding kinase 1); TBK1 promotes the production INF-γ, TNF-α, and
IL-6 [71]. VSV (vesicular stomatitis virus) and HSV (herpes simplex virus) infections induce phosphorylation of RKIP at
S109 by TBK1, which then binds to TBK1, facilitates TBK1 autophosphorylation, and enhances TBK1 activity which in turn
contributes to INF-γ and TNF-α production [72].

RKIP stabilizes glycogen synthase kinase 3-β (GSK3β) via binding to GSK3β, in turn
preventing GSK3β phosphorylation at T390 by p38 MAPK [81], an event leading to GSK3β
degradation [82]. In comparison to wild type mice, GSK3β expression is significantly
reduced in the prostate epithelial cells of RKIP−/− mice [81], supporting the regulation
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being physiologically relevant. GSK3β possesses tumor suppressing function via inhibiting
the Wnt/β-catenin pathway [83], EMT, and cyclin D1 expression [81].

Accumulative evidence reveals RKIP’s impact in multiple processes towards suppres-
sion of tumorigenesis. Recent development using transgenic RKIP mice supports these
RKIP-associated processes being physiologically relevant.

3. RKIP as a Tumor Suppression of Prostate Cancer (PC)

Consistent with RIKP’s potential role in molecular events relevant to tumor sup-
pression, RKIP downregulations, and RKIP’s associations with cancer progression, RKIP-
derived tumor suppressive activities have been reported in multiple cancer types, includ-
ing urogenital cancers (bladder cancer [84], clear cell renal cell carcinoma [85–87], and
PC [88,89]), breast cancer [90], pancreatic cancer [91], hepatoma [92], non-small cell lung
cancer [93], gastric cancer [94], and others [95].

3.1. RKIP-Mediated Suppression of PC Tumorigenesis and Metastasis
3.1.1. Facilitation of PC Initiation and Metastasis via Downregulation of RKIP at the
Protein Level

The first evidence for RKIP as a metastatic suppressor of PC started with the identifi-
cation of RKIP downregulation in LNCaP cells-derived metastatic C4-2B cells compared
to their parental cells [96]; functionally, downregulation of RKIP elevated metastatic po-
tential of C4-2B cells [88]. Specifically, restoration of RKIP expression in C4-2B cells to
a comparable level in LNCaP cells reduced C4-2B cells’ invasion ability in vitro and the
cells’ ability to produce lung metastasis in an orthotopic PC model without affecting its
ability in forming primary tumors [88]. Downregulation of RKIP at the protein level was
observed following PC progression from low grade (low Gleason score) to high grade and
the downregulation was particularly evident in metastatic PCs (n = 22) [88]. In comparison
to LNCaP cells, C4-2B cells displayed an increase in ERK activation, and inhibition of ERK
activation with PD098059 decreased C4-2B cell invasion capacity in vitro.

Further analysis of RKIP expression in a tissue microarray containing non-tumor
prostate tissues (n = 57), primary PCs (n = 79), and metastatic CRPC (n = 55), RKIP
downregulation was detected in 48% of primary (or local) PCs and 89% of mCRPCs
respectively [89]. RKIP downregulation in primary PCs stratifies the risk of PC recurrence
(biochemical recurrence) following surgery and remains an independent risk factor of
relapse after adjusting for Gleason score, maximal tumor diameter, pathological stage,
surgical margin status, digital rectal examination, PSA, and gland weight [89].

The RKIP downregulations in primary PC compared to non-cancerous prostate tissues
and its further downregulation in mPC vs. primary PC also occurred following PC progres-
sion in TRAMP mice [97]. While systemic knockout of RKIP had minimal impact on mouse
health [98], RKIP deficiency significantly enhanced PC formation and metastasis in TRAMP
mice [97]. Collectively, clinical and transgenic mouse (functional) studies support RKIP’s
action in suppressing PC tumorigenesis and metastasis. However, whether decreases in
PC metastasis in RKIP−/−;TRMAP mice were a direct result of reductions in primary PC
formation requires additional investigations. Major limitations of the above studies include
lack of analyses of RKIP expression at the mRNA level and utilization of more targeted
transgenic model such as prostate-specific RKIP−/− mice.

3.1.2. No Apparent Reduction of RKIP mRNA Expression Following PC Pathogenesis

The number of publications related to RKIP reductions following PC evolution re-
mains limited. This might be in part attributed to the highly heterogenous nature of PC
and challenges in studying RKIP downregulation at the protein level. With advances
in DNA sequencing (Next-generation sequencing), an ever-increasing number of cancer
genetics and gene expression data have been accumulated and made available. Using
TCGA RNA-seq data on prostate tissue (n = 52) and PC samples (n = 497) available from
the UALCAN platform (ualcan.path.uab.edu/home, accessed on 6 October 2021) [99],

ualcan.path.uab.edu/home
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we did not find apparent downregulation of RKIP in PC, high grade PCs, and lymph
node metastasis (Figure 4A–C). Similar observations could be obtained using the GEPIA2
platform [100] with more prostate tissues (n = 152) (Figure 4D). Furthermore, using the
Sawyers microarray dataset [101] within the R2: Genomics Analysis and Visualization plat-
form (http://r2.amc.nl, accessed on 3 December 2021), RKIP mRNA was not significantly
expressed at reduced levels in mPCs compared to primary PCs (Figure 2E). This strongly
suggests the RKIP downregulation observed in PC occurs at least in part at post-mRNA
levels. Future research should explore these mechanisms.
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3.2. Regulation of RKIP Expression in PC Cells
3.2.1. RKIP as a Target of Androgen Receptor (AR)

Androgen signaling plays dominant roles in PC initiation, progression, and CRPC
development [28,102,103]. This knowledge implies a relationship between AR and RKIP,
which is supported by experimental evidence. In immortalized and non-tumorigenic
human prostate epithelial RWPE-1 cells [104], dihydrotestosterone (DHT) upregulated
RKIP transcription which was blocked by antiandrogen bicalutamide [105]. Androgen
response element (ARF), an AR-binding DNA motif, was identified in the RKIP promoter
region between nucleotide −571 and −548. A RKIP promoter fragment (−2206 to −26)
encompassing this region mediated reporter expression in response to DHT in RWPE-1
cells [105]. Castration of C57BL/6 mice significantly reduced RKIP mRNA expression in
prostate, providing a physiological relevance of RKIP as an AR target.

The relationship between AR and RKIP in PC pathogenesis and progression might
be complex. AR signaling is required for prostate development, evident by the lack of
prostate in AR−/− mice [106] and humans with AR mutations being completely insensitive
to androgen [107,108]. In adults, AR function is essential for the maintenance of luminal
secretory epithelial cells [108]. Alterations in AR signaling are the major mechanism

http://r2.amc.nl
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underlying all aspects of PC pathogenesis, including CRPC development [28,102,103,108].
These alterations may lead to changes in AR targets in normal prostate epithelial cells,
prostate cancer, and following PC progression. In this regard, RKIP expression is reversely
correlated with PSA expression, a typical AR target [109], in PCs [110]; serum PSA is the
only clinically used biomarker assessing PC relapse and disease severity [10,111,112]. The
selective expression of PSA over RKIP in PC is consistent with the concept that loss of AR
targets with tumor suppression activities contributes to AR-promoted PC initiation and
progression. This concept is consistent with AR’s complex actions in PC: inhibiting c-Met
and AKT activation (both promoting PC progression) in PC [113–115] and attenuation of
PC3 cell proliferation [116]. It thus would be interesting to determine the impact on PC
by enforcing RKIP as an AR target in PC, for instance placing RKIP under the control of
PSA promoter.

3.2.2. Mutual Regulation of RKIP and the EMT Machinery

As a suppressor of metastasis, RKIP preferentially inhibits LNCaP, C4-2B, and PC-
3M cells invasion but not proliferation in vitro [88,117]. This is not unique in PC cells;
similar observations were also reported in clear cell renal cell carcinoma A498 cells [86].
EMT plays a major role in enhancing cancer cell invasion capacity in vitro and metasta-
sis in vivo [25,26]. In a HEK-293 cells-based study, RKIP downregulates Snail and Slug
expression via stabilization of GSK3β [81]. Both Snail and Slug are major transcription
factors of EMT [118,119]. Snail increases LNCaP cell migration in vitro through facili-
tating degradation of the SPOP tumor suppressor [120]; EMT plays a major role in the
generation of prostate cancer stem cells which contribute to PC metastasis and CRPC
development [17,28]. In accordance with this evidence, Snail inhibits RKIP expression in
metastatic and AR-negative PC3 and DU145 PC cells [121]; this inhibition occurs at the
transcription level through an E-box located in the RKIP promoter [121]. A reverse correla-
tion between Snail and RKIP mRNA expressions was observed in primary PCs [121]. The
connection between Snail and RKIP likely has a functional impact on PC. Downregulation
of Snail sensitized DU145 PC cells to TRAIL- and CDDP (Cisplatin)-induced apoptosis via
upregulation of RKIP and knockdown of RKIP reversed the sensitization [122].

Evidence presented above suggests a mutual inhibition between RKIP and Snail.
While RKIP can downregulate Snail in HEK-499 (a derivative of HEK-293 cells) cells [81],
whether this occurs in PC cells remains to be demonstrated. Nonetheless, RKIP may
inhibits PC cell invasion and migration independent of the core transcriptional factors of
EMT. RKIP inhibits PC-3M cell migration and invasion in vitro via modulating extracellular
matrix by downregulating MMP-2 and MMP-9 (matrix metalloproteinases) [117].

3.2.3. Non-Coding RNA-Mediated Downregulation of RKIP in PC Cells

It is an emerging concept that long non-coding RNAs (lncRNAs) sponge microRNAs
(miRNAs or miRs) and thus facilitate mRNA expression [123,124]. In this regard, miR-543
was reported to downregulate RKIP in PC and thus promote PC cell proliferation and
EMT [125]. In LNCaP and C4-2B cells, downregulation of RKIP and upregulation of miR-
543 occur concurrently in C4-2B cells [125]. The presence of miR-543 target sequence was
detected in the 3′UTR (untranslated region) of RKIP mRNA and expression of miR-543 but
not its negative control reduces RKIP mRNA expression in LNCaP cells, supporting RKIP
as a direct target of miR-543 [125]. Ectopic expression of miR-543 enhances LNCaP cell
proliferation, invasion, and xenograft formation along with evidence of EMT; conversely,
these events were reduced upon knockdown of miR-543 in C4-2B cells [125], supporting a
likely functional impact of miR-543 in inhibition of RKIP. Additionally, a reverse correlation
between miR-543 and RKIP expression was demonstrated in a PC cohort consisting of
n = 28 local tumors and n = 14 metastatic PCs [125].

The same group also reported a regulation between lncRNA XIST and RKIP expres-
sion in PC. Specifically, XIST sustains RKIP expression through binding to miR-23a. In
clinical samples, concurrent downregulation of XIST and RKIP occurs in primary PC vs.
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normal prostate and mPC vs. primary PCs [126]. Ectopic expression of XIST in DU145 cells
increases RKIP expression, decreases cell proliferation, and attenuates xenograft forma-
tion [126]. In a reverse manner, knockdown of XIST in LNCaP cells, which express a
high level of endogenous XIST, downregulates RKIP along with an enhancement in cell
proliferation [126]. In support of this investigation, miR-23c, a close relative of miR-23a,
was suggested to target RKIP [127].

MiRNA likely has many targeted genes or mRNAs; for instance, miR-130b has ap-
proximately 600 target genes [128]. MiRNA thus affects complex network alterations.
In this regard, miR-543 and XIST-miR-23a likely impact PC progression with multiplex
mechanisms in addition to regulating RKIP expression. This inference is supported by
miR-543-derived tumor-promotion in lung cancer [129,130] and tumor-inhibition in colorec-
tal and cervical cancers [131,132]. Even in PC, downregulation of miR-543 was reported
in primary PC with bone metastasis (n = 20) compared to primary PCs without bone
metastasis (n = 15), and in bone mPCs compared to the paired primary PCs; the reported
target of miR-543 in this investigation was endothelial nitric oxidase (eNOS) [133]. In PC3
cells, miR-543 downregulates eNOS and inhibits PC3 migration [133]. On the other hand,
miR-543 can also enhance PC cell oncogenic properties via stimulating the AKT/mTOR
pathway [134] and enhancing prostate cancer stem cell traits [135]. While modulations
of miR-543 [125] and XIST [126] leading to RKIP downregulation were associated with
increases in PC cell proliferation, direct downregulation of RKIP did not affect PC cell
proliferation [88,117]. Collectively, miR-543 and XIST likely impact PC cell oncogenic
properties via multiple targets, including RKIP.

3.3. RKIP-Derived Sensitization of PC Cells to Treatment In Vitro

Accumulative investigations present a consistent message for RKIP as tumor suppres-
sor and/or metastatic suppressor of PC. This concept is further supported by RKIP’s action
in sensitization of PC cells to multiple cytotoxic treatments in vitro.

RKIP contributes to DU145 cell response to TRAIL- and cisplatin-induced apoptosis;
this sensitization was reversed upon inhibition of RKIP expression by Snail [122]. Similarly,
nitric oxide (NO) inhibits EMT in PC3 and DU145 cells via RKIP upregulation and Snail
downregulation. RKIP upregulation in this setting makes a major contribution to EMT
inhibition caused by Snail downregulation [136].

RKIP plays a role in PC cell’s sensitivity to photodynamic therapy (PDT) in response
to NO levels produced during PDT. In PC3 cells treated with PDT, optimized treatment
condition led to the production of a high level of NO, which inhibits NFκB and YY1 (Yin
Yang 1) transcription factor. As a result, RKIP is upregulated and resulted in cytotoxi-
city [137,138]. Sub-optimal PDT treatment produces low levels of NO, a condition that
activates NFκB-mediated YY1 expression. YY1 subsequently inhibits RKIP, contributing to
EMT and the activation of PI3/AKT [137,138]. YY1 promotes PC via EMT development
and contributes to therapy resistance [139]. In addition to the NFκB-YY1-RKIP connection,
high and low NO levels can also modulate EMT and drug resistance in PC3 cells via NFκB-
RKIP-GSK3β-NRF2, where high NO inhibits NFκB, leading to RKIP upregulation, GSK3β
stabilization and NRF2 downregulation along with inhibition of EMT and sensitization to
drug treatment. Low NO produces the opposite actions [140].

Evidence suggests a contribution of RKIP to genotoxic agent 9-nitrocamptothecin
(9NC)-induced apoptosis in PC cells [141]. 9NC triggers DNA damage response and
apoptosis along with RKIP upregulation in DU145 cells but not in 9NC-resistant RC1 cells
which were derived from DU145 cells. Sensitivity of PC cells to 9NC-induced apoptosis was
reduced or increases with RKIP downregulation and overexpression respectively [141]. It
was indicated that NFκB contributed to RKIP expression alteration and RKIP sensitized PC
cells to DNA damage-induced apoptosis [141]. This investigation was supported by a report
that radiation upregulated RKIP in C4-2B cells [142]. RKIP overexpression and knockdown
sensitized and reduced C4-2B cell apoptosis in vitro in response to radiation [142]. In mice
bearing tumors produced by C4-2B cells with RKIP knockdown, radiation was substantially
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less effective in inhibiting tumor growth compared to tumors generated by wild type C4-2B
cells [142]. Collectively, evidence supports RKIP playing a role in PC cell response to
genotoxic treatment. As radiation is clinically used in treating PC, whether RKIP is a major
contributor to the therapy response needs further investigation.

Docetaxel is commonly used in treating CRPC [143,144]. It was observed that in
PC3 cells, a PC cell line that does not require androgen for survival, RKIP overexpression
sensitized the cells to docetaxel-induced inhibition of cell proliferation [145]. While this
report shows a potential for clinical implication, more work is required to further explore
this potential.

4. Utilization of Additional Mechanisms in RKIP-Derived Inhibition of PC

RKIP is involved in numerous signaling events under different settings, including
those of well established: the Raf-MEK-ERK, GPCRs, NFκB, Snail, and GSK3β. Most
of these regulations are physiologically relevant, evident by their occurrence in RKIP
transgenic mice (see Section 2). Except PKC-RKIP(S153P)-GPCR, RKIP clearly utilizes
the above connections in suppressing PC. In addition to these well-established signaling
pathways, RKIP may also explore other processes critical to PC.

4.1. A Potential Interplay between Two PC Metastasis Suppressors: RKIP and Annexin A7

Annexin A7 (ANX7; Annexin VII) is encoded by ANXA7 gene located at 10q22.2
(https://www.genecards.org/cgi-bin/carddisp.pl?gene=ANXA7, accessed on 1 October
2021). ANX7 binds Ca2+ and displays GTPase activity [146,147]. The impact of ANX7 on
tumorigenesis appears to be tumor-type dependent [148]. Nonetheless, evidence supports
ANX7 as a metastatic suppressor of PC. Significant downregulation of ANX7 occurs in
mPC and CRPC [149,150]. ANX7+/− mice (23%) spontaneously develop tumors in multiple
organs, including prostate [151]. Ectopic expression of ANX7 resulted in inhibition of pro-
liferation and cytotoxicity in LNCaP, PC3, and DU145 cells [150,152]. Consistent with this
knowledge, it was recently reported that ANX7 suppresses PC3 cell metastatic properties
via activation of AMPK, resulting in decreasing mTOR and STAT3 actions [153]. Surpris-
ingly, RKIP binds ANX7 and reduces ANX7-mediated PC suppression [153]. This study
indicates that RKIP and ANX7 suppress PC metastasis alone. While this shows an intriguing
interplay, its molecular insights and clinical relevance require further investigations.

4.2. EZH2-Derived Downregulation of RKIP Transcription in PC

EZH2 is the enzymatic subunit of the Polycomb Repressive complex 2 and facilitates
the trimethylation of histone H3 at lysine 27 (H3K27me3) [154], a typical modification
leading to transcriptional suppression [155,156]. This action of EZH2 underlines its pro-
motion of cancer progression and metastasis in multiple tumor types [157–159]. EZH2
upregulation occurs in prostate cancer stem cells (PCSCs) and plays a critical role in
PCSC growth [160]. PCSCs makes major contributions to PC metastasis and CRPC develop-
ment [17,28]. Evidence supports RKIP being a critical target silenced by EZH2 in facilitating
PC metastasis [161]. A reverse pattern of RKIP and EZH2 expression in primary PC and
mPC was observed, which correlated with PC progression (progression free survival) [161].
EZH2 mediates downregulation of RKIP in LNCaP and DU145 cells; this suppression was
resulted via recruiting of EZH2 to the RKIP promoter, a process regulated by Snail [161]. In
view of the major role of EZH2 in promoting PC progression and metastasis, the involve-
ment of RKIP downregulation in these processes supports RKIP as a metastatic suppressor
of PC.

4.3. Immune Alterations Associated with RKIP in PC

Tumorigenesis and cancer progression are intimately linked with immune alter-
ations [65]; tumor-associated immune cells play critical roles in tumor initiation and
progression [162,163]. Recent research using RKIP transgenic mice revealed important
roles of RKIP in adaptive and innate immune reactions in non-cancer settings (see Section 2
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and Figure 3). RKIP involvement in tumorigenesis in the aspect of immune alterations
has not been investigated. In this section, we will explore whether RKIP expression is
associated with immune alterations relevant to PC.

Immune evasion is essential for cancer progression. PD-L1 is an immune checkpoint
protein and plays a major role in PC to escape immune attack [164]. Using TISIDE (an inte-
grated repository portal for tumor-immune system interaction) platform [165], we observed
a significant reverse correlation (Spearman r = −0.503, p < 2.2 × 10−16) between RKIP and
CD274 (PD-L1) expression in PC (n = 498, TCGA PC dataset) (Figure 5). This strong nega-
tive correlation also occurs in bladder cancer, breast cancer, lung adenocarcinoma, rectal
cancer, and thyroid carcinoma (Table 1). Similarly, PD-L2 (PDCD1LG2: programmed cell
death 1 ligand 2) is an immune checkpoint that contributes to immunosuppressive microen-
vironment for cancer [166]; its expression is reversely correlated with RKIP expression in PC
(Spearman r = −0.384, p < 2.2 × 10−16) (Figure 5). Negative correlations between RKIP and
PD-L2 are present in other cancer types (Table 1; note: this is for illustration only and does
not intend to be inclusive, i.e., some cancer types with significant negative correlation are
not included). RKIP expression in PC also shows strong negative correlations with BTLA (B
and T lymphocyte attenuator), CD96, TIGIT (T cell immunoreceptor with immunoglobulin
and ITIM domain), and CSF1R (Figure 5). BTLA, CD96 and TIGIT are immune checkpoints
that play major roles in the formation of tumor-permissive microenvironment [167,168].
CSF1R contribute to cancer-associated immunosuppressive microenvironment via regu-
lating TAM (tumor-associated macrophage) [169]. Furthermore, RKIP expression is also
negatively associated with PD-L1 (Spearman r = −0.28, p = 4.17 × 10−5), PD-L2 (Spearman
r = −0.283, p = 3.489 × 10−5), BTLA (Spearman r = −0.362, p = 4.17 × 10−8), CD96 (Spear-
man r = −0.273, p = 6.431 × 10−5), TIGIT (Spearman r = −0.200, p = 0.003687), and CSF1R
(Spearman r = −0.261, p = 0.0001371) in metastatic PCs (n = 208) in the SU2C dataset [170]
within cBioPortal [171,172]. Collectively, evidence suggests a role of RKIP in facilitating
immune attack on PC cells, which may contribute to its suppression of PC metastasis.
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Table 1. Negative correlations between RKIP and PD-L1 and PD-L2 in cancers a.

Cancer Type Population (n) Spearman r p Value

Bladder uroghelial carcinoma 408 −0.432 b; −0.469 c <2.2 × 10−16; <2.2 × 10−16

Breast cabcer 1100 −0.41; −0.4 <2.2 × 10−16; <2.2 × 10−16

Lung adenocarcinoma 517 −0.428; −0.325 <2.2 × 10−16; 4.47 × 10−14

Rectum adenocarcinoma 167 −0.414; −0.36 3.66 × 10−8; 2.09 × 10−6

Thyroid carcinoma 509 −0.55; −0.415 <2.2 × 10−16; <2.2 × 10−16

a: analyses were performed using TISIDE; b: correlation with PD-L1; c: correlation with PD-L2.

The above notion is also in accordance with a strong negative correlation between
RKIP expression and the Treg (T regulatory) cell population (Figure 5). Treg cells suppress T
cells activation via downregulation of CD80/86 in antigen-presenting dendritic cells [173],
and are a major contributor to immunosuppressive microenvironment.

5. Perspectives

Since the identification of RKIP as a candidate suppressor of PC metastasis by Fu et al.
in 2003 [88], accumulative research reinforces RKIP as a tumor suppressor and metastatic
suppressor not only in PC but also in other cancer types [95]. The notion of RKIP as
suppressor of metastasis is supported by (1) its actions in inhibiting cancer cell migration
and invasion but not proliferation in vitro [86,88,117], (2) its ability in suppressing PC
metastasis in xenograft models [88] and transgenic mice [97], as well as (3) its significant
downregulation in mPC [88].

Downregulation of RIKIP commonly occurs in multiple cancer types including PC,
clear cell renal cell carcinoma, and others [86,88,95]. However, mechanisms leading to
RKIP downregulations in PC and other cancer types remain unclear. Evidence supports the
downregulation happening at the protein level [88] but not at the mRNA level (Figure 4).
While numerous mechanisms (Snail, EZH2, NFκB, YY1) can inhibit RKIP transcription
in PC cells in vitro (see above sections for details), RKIP mRNA expression is not evi-
dently reduced in primary PCs, following increase in PC severity (Gleason score), lymph
node metastases, and distant metastases (Figure 4). The absence of insights on RKIP
downregulations following PC pathogenesis presents a major challenge to further under-
stand RKIP-derived suppression of PC metastasis and the exploration of this knowledge
for clinical applications. For instance, will it be possible to prevent RKIP downregula-
tion to attenuate PC metastasis? In view of RKIP expression in multiple tissues [174], it
may be important to investigate the impact of RKIP on PC using prostate specific trans-
genic mice (knockout and overexpression) together with typical oncogenic signals like
PTEN deficiency.

It remains unclear whether RKIP plays a role in CRPC development. Nonetheless,
this potential should be explored. This possibility is supported by a critical role of RKIP
silencing in EZH2-derived promotion of PC [161]. EZH2 suppresses AR expression, fa-
cilitates the reprogramming of PC to PCSCs, and contributes to AR-independent growth
of PC [175]. Persistant AR signaling is a major mechanism leading to CRPC [17,176,177].
Considering RKIP being an AR target in normal prostate epithelial cells [105], it remains
a possibility that the selective removal of RKIP from the AR target gene list facilitates
CRPC development. With prostate-specific RKIP transgenic mice, RKIP’s involvement in
resistance to ADT should be investigated.

Our brief in silico analysis indicates a role of RKIP in facilitating immune attack on
PC (see Section 4.3.). Despite the lack of literature supporting this scenario, critical roles
of RKIP in immune responses in non-cancer investigations (see Section 2 and Figure 3)
supports our suggestion. Considering the observation for non-apparent reductions of RKIP
mRNA expression in PC (Figure 4), it is an appealing possibility that RKIP facilitates a
non-permissive microenvironment for PC via regulating tumor microenvironment.

An important aspect of RKIP biology relates to its shifting status: S153 phosphory-
lation by PKC can switch its tumor suppressive actions to tumor-stimulation functions
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via activating GPCR [174,178] (Figure 2). This phosphorylation is facilitated by residue
proline 74 (P74) within the ligand-binding pocket of RKIP; both the P74 and the ligand-
binding pocket are conserved within the PEBP family [178–180]. Mutation P74L enhances
RKIP phosphorylation at S153 and increases the activity of Raf1/ERK signaling [179]. The
equivalent mutation has a physiological consequence in tomato plant to switch develop-
ments [181]. It remains a possibility that phosphorylation of RKIP at S153 is inhibited to
preserve its actions in suppressing PC metastasis.

6. Conclusions

The research activities in the past 20 years collectively demonstrated RKIP as a tu-
mor suppressor of PC tumorigenesis and metastasis. This knowledge is supported by
(1) functional evidence derived from in vitro, in vivo (xenograft and transgenic mouse
models), and clinical studies as well as (2) mechanistic pathways contributing to RKIP-
derived suppression of PC. Future research should explore the functionality and underlying
mechanisms for RKIP mediated suppression of PC using more refined transgenic models,
including mice with prostate-specific expression of RKIP and its mutants. The latter may
help to define the regulations relevant to RKIP tumor suppressive actions; this is important,
as RKIP can be switched to promote tumorigenesis following its phosphorylation at S153
(Figure 2). Additionally, mechanisms leading to RKIP downregulation in PC and RKIP’s
involvement in other aspects of PC progression should also be investigated (see Section 5
for details).
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