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Spreading processes associated with slow-spreading ridges are a complex interplay of volcanic accretion
and tectonic dismemberment of the oceanic crust, resulting in an irregular seafloor morphology made
up of blocks created by episodes of intense volcanic activity or tectonic deformation. These blocks
undergo highly variable evolution, such as tilts or dissection by renewed tectonic extension, depending
on their positions with respect to the spreading axis, core complexes, detachment or transform faults.
Here, we use near-seafloor magnetic and bathymetric data and seismic profiles collected over the

TAG Segment of the Mid-Atlantic Ridge to constrain the tectonic evolution of these blocks. Our study
reveals that the presence and evolution of oceanic core complexes play a key role in triggering block
movements. The deep subvertical detachment fault roots on the plate boundary, marked by a thermal
anomaly and transient magma bodies. Thermal and magmatic variations control the structure and
morphology of the seafloor above the subhorizontal detachment surface, occasionally leading to
relocating the detachment.

Unlike fast-spreading centers associated with intense volcanic activity, slow-spreading ridges are characterized
by lower magma flux' and tectonic extension, often accommodated by long-lived detachments faults>=. As a
result, slow-spreading seafloor exposes variably faulted and tilted crustal blocks, dykes, lower oceanic crust and
mantle rocks, comprising oceanic core complexes (OCCs)®’. Due to its importance as a host to massive sulfide
deposits, the slow-spreading TAG Segment (26°N, Mid-Atlantic Ridge, spreading rate 23.2 mm/y) was surveyed
in 2016 during cruise M127 of German R/V Meteor by the Autonomous Underwater Vehicle (AUV) Abyss to
collect high-resolution, near-seafloor magnetic and bathymetric data. Seismic reflection data were also acquired
using airgun shots and a deep-towed multichannel seismic streamer. Hydrothermal massive sulfide mounds usu-
ally form prominent bathymetric features associated with a strong magnetic signature reflecting the geological
setting, and are therefore easy to identify3'°. The magnetic signature of these hydrothermal sites is not always
centered above the features. This mismatch is either interpreted as a consequence of the tectonic tilt of a homo-
geneous underlying block!® or of a composite, heterogeneous geology of the basement. An additional parameter
to be considered is the possible inclination of the hydrothermal conduits. We combine the magnetic response of
hydrothermal mounds at different altitudes above the seafloor with high-resolution bathymetric data to constrain
the geology, tilt and conduit inclination, unveiling the detailed tectonics of the TAG segment (See “Methods”).

Generalities

When the basaltic oceanic crust cools, its magnetic minerals acquire a remanent magnetization aligned with
the ambient geomagnetic field. The resulting magnetic anomaly is generally made of two lobes and is difficult to
interpret. To alleviate this difficulty, the anomaly is reduced to the pole (RTP), where both the magnetization and
geomagnetic field vectors are vertical and the anomaly located above its causative body. Nevertheless, subsequent
tectonic events may tilt crustal blocks, affecting the magnetization vector orientation and therefore the shape of
magnetic anomalies's.

At basalt-hosted hydrothermal systems, high-temperature fluids demagnetize basalt permanently due to the
alteration of titanomagnetite!’-*. Assuming the crustal block hosting the hydrothermal mound is geologically
homogeneous and has not been tilted, the RTP magnetic anomaly is a low centered over the bathymetric features.
For hydrothermal mounds growing on a homogeneous and tilted basaltic block, the RTP magnetic anomaly is no
longer a magnetic low. The correction required to transform this anomaly to a magnetic low provides an indirect
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Figure 1. Bathymetry and interpreted morphology of the study area. (a) Regional, ship-based bathymetry of
the TAG Segment (Mid-Atlantic Ridge 26°N). Red box delineates b. White lines mark the spreading axis.

(b) High-resolution bathymetry acquired by AUV Abyss overlay on regional bathymetry. Black boxes delineate
Supplementary figures. Red lines mark the location of schematic cross-sections A-D shown in Fig. 3, yellow
lines indicate the location of seismic profiles shown in Fig. 4. Annotations point out known hydrothermal sites.
(c) Seafloor morphology deduced from bathymetry and direct observation. Thick black line corresponds to the
spreading axis, thin black lines to major faults and other tectonic elements.

way to approach the underlying block magnetization vector direction. The orientation of hydrothermal conduits
(for instance along faults) is a possible cause of apparent tilt (Supplementary Information). Analyzing magnetic
surveys acquired at different altitudes allows discriminating between these two effects.

Conversely, ultramafic-hosted hydrothermalism produces magnetization®' aligned with the geomagnetic field
due to the formation of abundant magnetite. In this case, any tilt unraveled by the magnetic anomaly analysis
happened subsequently to the hydrothermal mound formation and is therefore very recent.

Active and inactive massive sulfide deposits on the TAG Segment were surveyed by AUV Abyss at altitudes
ranging from 20 to 120 m (Fig. 1, Supplementary Material). In the northern part of the survey area, these data are
complemented by multichannel seismic reflection profiles imaging detachment surfaces. Combined with previ-
ously published data from the TAG Mound?®, our new datasets represent a unique opportunity to constrain the
tectonic history of the segment.

Observations

A recent study based on deep-sea submersible magnetic data collected ~20 m over active basalt-hosted hydrother-
mal site TAG revealed that the associated RTP magnetic anomaly low® " remains dipolar with a minimum located
south of the hydrothermal mound®®. Correcting the RTP anomaly requires a ~50° block tilt with a rotation axis
parallel to the spreading axis, i.e., the tilt occurs in a N120°E direction (counted positive if an initially horizontal
surface dips toward this direction) assuming a vertical hydrothermal conduit'® (Supplementary Information).
The resulting low is located above the site. AUV Abyss acquired magnetic data ~70 m above the TAG Mound.
The RTP magnetic anomaly low associated with TAG is located ~100 m northwest of the mound on this dataset
(Fig. 2). The shift between magnetic lows at ~20 m and ~70 m reflects a ~60° inclined hydrothermal conduit
trending N60°W. Such inclination in turn slightly distorts the anomaly, accounting for 12° of the estimated tilt
(Supplementary Information). The real block tilt is therefore ~38° towards a 120° direction. The 38° block tilt
adequately corrects the magnetic signature of neighboring volcanic mounds on the AUV data (Supplementary
Information). The uncertainty on this value is very low (~5°) because magnetic data from the Alvin were collected
close to the seafloor (~20 m above the highest point of the hydrothermal mound) and the prominence of hydro-
thermal site TAG makes replacing the magnetic anomaly above its causative source straightforward.

Zone Mir??, a massive sulfide mound 2 km ENE of the TAG Mound (Fig. 1), was surveyed by AUV dives at
different altitudes. Unlike TAG, the RTP magnetic anomaly does not require correction to display a magnetic low,
implying the underlying block is not significantly tilted. The magnetic low shifts westwards as the AUV altitude
increases: as for the TAG Mound, data acquired at different altitudes unveil a 60° inclined hydrothermal conduit
trending N60°W (Supplementary Information).

Several inactive hydrothermal mounds lie within a ~200 m deep depression ~2km NNW of Mir (Fig. 1). Magnetic
datasets were collected at three altitudes over these mounds. On the highest resolution data (closest to the seafloor),
each hydrothermal mound is associated with a distinct negative magnetic anomaly (Supplementary Information),
whereas a volcanic edifice nearby displays a typical positive magnetic anomaly. At all AUV altitudes, each anomaly is
centered on its source, suggesting no block tilt and a vertical hydrothermal conduit for all sulfide mounds.

A fourth area, 4km NNE of the TAG Mound, investigated the Shimmering Mound with an AUV dive at 70 m
altitude (Fig. 1 and Supplementary Information). This active hydrothermal mound protrudes above a steep westward
slope. Nearby unfaulted volcanoes indicate that the spreading axis is located at the bottom of a 1 km-long, NNE elon-
gated bathymetric high, hereafter named Shimmering Hill>®. We consider the Shimmering Hill and the Shimmering
hydrothermal site separately, as hydrothermalism at site Shimmering has likely affected its magnetic properties.
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Figure 2. Bathymetry and magnetic anomaly of Shimmering. (A) High-resolution bathymetry, non-RTP
magnetic anomaly (with AUV routes) and RTP magnetic anomaly over Shimmering Hill. (B) High-resolution
bathymetry, non-RTP magnetic anomaly (with AUV routes) and RTP magnetic anomaly over hydrothermal site
Shimmering.

The RTP magnetic anomaly reveals a major positive anomaly Northwest of Shimmering Hill, corresponding
to the Neo-Volcanic Zone (NVZ) (Figs 1c and 2A). Such anomaly most likely results from the fresh and highly
magnetized basalt constituting the seafloor in this area. By contrast, the Shimmering Hill exhibits a negative
magnetic response. This apparent negative anomaly results from a sharp magnetization contrast between the
highly-magnetized basalt downslope and the comparatively less magnetized material of the Hill.

In a first approach, we assume the Hill is made of homogeneous material and try to adjust the magnetiza-
tion vector inclination to get a magnetic anomaly above its causative source, either positive or negative. Given
the orientation and location of the Hill, the most likely tilt orientation is perpendicular to the spreading axis.
Nevertheless, to get a positive magnetic anomaly over the Hill, a —50° magnetization vector inclination is
required, resulting in a 130° tilt in a N120°E direction (Supplementary Information). To get a negative magnetic
anomaly, a ~110° is required, resulting in a back tilt of —37° in a N120°E direction (Supplementary Information).
Such tilts are geologically unrealistic, i.e., the magnetic observations cannot be explained by the tilt of a homoge-
neous block. The Shimmering Hill is therefore made of a heterogeneous basement. The Hill may have undergone
a tectonic tilt, which amount remains impossible to estimate.

Over site Shimmering, the RTP anomaly displays a negative lobe shifted North of the site (Fig. 2B).
Hydrothermal sites are either associated with a negative (basalt-hosted) or positive (ultramafic-hosted) magnetic
anomalies. Here again, we try to estimate the required tilt to ensure a consistent magnetic signature over the site.
The position of site at the southwestern end the Hill, allows tilting in various directions. Using these additional
degrees of freedom, we systematically explored all possible tilts along all possible orientations and found that no
realistic tilt can be obtained (Supplementary Information). These unrealistic tilt values rule out the possibility of
a site overlying a homogeneous basement. Site Shimmering therefore lies on a complex basement, similar to that
of the Shimmering Hill.

Such a complex basement is corroborated by the recovery of greenstone - microgabbro and dolerites - at the
top of Shimmering Hill and suggests that Shimmering Hill is mostly made of deep crust/uppermost mantle rocks.
From its smooth morphology and composite petrology, we propose that the western slope of Shimmering Hill is
the detachment surface of a recently initiated OCC, the top of the Shimmering Hill being the breakaway.
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Figure 3. Schematic cross sections A-D and their location on a 3D bathymetric view of the study area. On
the sections, thick black lines mark the detachment faults and surfaces (dashed: abandoned); thin black lines,
other faults. On the left, at the ridge axis, thin black lines symbolize dykes rising from transient magma bodies
to volcanoes. Red triangles represent known hydrothermal systems projected on the section. Patterns indicate
volcanics (horizontal dotted lines) and debris volcanics (random points).

An older OCC has been recognized ~3 km ESE, where another NNE bathymetric high, the breakaway, over-
looks a smooth, 700 m-long and 1500 m-wide outcropping, corrugated detachment surface (Figs 1 and 3). This
detachment roots westward under a unit showing no volcanic construction but a finely grained surface character-
ized by a lack of relief, minor faults trending either NNE or ESE. The corrugations observed on the detachment
surface extend below this unit and control the ESE faults. This unit is likely an accumulation of rubble dragged
away by the shallow underlying detachment. This explains the weak long-wavelength magnetic anomaly corre-
sponding to this unit (Supplementary Information), as the rubble probably exhibits a random orientation and a
negligible bulk magnetization. Seismic profiles (Fig. 4) image a continuous detachment surface up to the bathy-
metric high of the new detachment breakaway where the event terminates abruptly.

Tectonic Implications

We investigate the tectonics of the TAG area using AUV bathymetry and block tilts derived from magnetic data.
We built four sections, labeled A-D, from the observed morphologies, tectonic elements (faults, detachments),
and block tilts at or near hydrothermal sites. We distinguish four terrains based on their morphology (Fig. 1):
unfaulted volcanics, faulted volcanics, debris volcanics, and detachment surfaces.

The ridge axis and a coherent tilted block located between hydrothermal sites TAG and Mir are character-
ized by unfaulted volcanics. The area next to the axis displays faulted volcanics in the center and South (Fig. 3,
sections A, B, C and D) and a new detachment surface near Shimmering Mound. Eastwards, debris volcanics
characterized by smooth morphology and fine-grained texture are prominent in the center and North (sections
A, B, and C). Further east, outcropping detachment surfaces display the typical corrugations over a gently sloping
detachment surface.
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Figure 4. Seismic sections MCS19, 27 and 02 (see Fig. 1 for location) with interpretation of major reflections.
Red vertical dashed lines indicate cross points of the seismic network. Regional bathymetry (red) is overlain
on the seismic section. Discrepancies indicate the complex tectonic structure imaged in seismic data by strong
side echoes. Green lines indicate the outline of the smooth dipping old detachment, blue lines mimicking the
seafloor mark the steeper new detachment surface.

Detachment surface depth (Figs 3 and 4) is poorly constrained under the debris and faulted volcanics. Seismic
profiling in the Shimmering area provides a depth of ~350 m beneath the debris volcanics. We anticipate that the
detachment surface is deeper under faulted volcanics, with a depth of ~600 m under TAG*-%8, Indeed, Section C
successively displays the different morphologies as the detachment deepens toward the axis.
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Figure 5. Four stages of evolution of the Shimmering Hill area illustrating the demise of the old detachment
and initiation of the new one as a result of magmatic sources relocation.

Two parameters account for the different fracturing of the volcanic material. The first one is the thickness of these
volcanics, with the fault interval maintaining a regular aspect ratio in the resulting blocks. A deep detachment generates
large coherent blocks bound by a few major faults, whereas a shallower one results in a dense network of small faults.
The second parameter is the age of these volcanics, with faulted volcanics near the axis and debris volcanics eastwards
at the foot of the detachment surface. The increasing fracturing of the volcanics with time suggests that earthquakes
generated on the deep detachment fault at the axis affect the material overlying the detachment surface. Corresponding
tremor has progressively broken large blocks apart, later developing a network of smaller faults and ultimately incoher-
ent debris volcanics. In this framework, the various sections may represent different steps of a detachment evolution,
from its birth to its demise (Fig. 3). These two parameters concur in shaping the morphology of the study area.

The major characteristic of a detachment is the asymmetric accretion of new lithosphere at the ridge axis. The
location of the deep, subvertical detachment fault with respect to the hanging wall plate does not change as the
footwall plate is progressively exhumed. The subhorizontal detachment surface affects only the shallow crust.
With the presence of water, hard peridotite alters to soft serpentinite. As the footwall rises, serpentinite deforms
and sags, resulting in the flattening detachment surface that carries away volcanic material formed at the axis. The
amount of volcanic material determines how far from the axis the detachment surface outcrops.

Gentle slopes and corrugations consistently observed to the East of the study area support the presence of a
single detachment in the whole study area. Conversely, the western part displays contrasted morphologies lead-
ing us to distinguish four corridors (Sections A-D) separated by deeper, apparently stable (as suggested by the
absence of tilt) narrow transition zones. As previously suggested, variations in the thickness and age of the vol-
canics accreted to the detachment surface, and therefore the amount of magma produced at the axis, explain these
contrasted morphologies. Ultimately, the magmatic activity is controlled by the thermal influx at the axis.

The subvertical detachment fault roots on the plate boundary, at the lithosphere-asthenosphere boundary, where
the thermal flux is maximal and transient magma bodies may be present. Due to the asymmetry, both the thermal
anomaly and the detachment remain fixed with respect to the hanging wall plate (Sections B-D)?. On Section A,
the magmatic activity has weakened, as testified by the thin debris volcanics and the absence of other volcanics.
Moreover, the area of axial unfaulted volcanics is narrow, suggesting volcanic activity has recently resumed. In the
absence of a strong thermal anomaly, bulk extension became prominent, subvertical conjugate faults (to be later
rotated to the observed subhorizontal reflections) developed on the hanging wall, and the deep detachment fault was
progressively dragged eastwards (Fig. 5). When the thermal anomaly and volcanic activity resumed, the old detach-
ment was no longer properly located and ceased, and the new detachment rooted on the thermal anomaly took over.
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Methods

Initial data processing. For deep-sea magnetic measurements collected by AUV Abyss, a vector magnetom-
eter is rigidly fixed to the frame of the vehicle. Due to the proximity of the magnetometer to the vehicle, raw data
are strongly affected by its magnetic effect. This influence is estimated and removed using a method developed
by Isezaki*® and Honsho et al.*! to resolve the crustal magnetic anomaly. A calibration pattern made up of a suc-
cession of “figures-8” and ascents/descents in the N-S and E-W directions is performed at the beginning of the
dive, when the AUV is far away from both the ship and the seafloor. The data collected during calibration should
amount to the local geomagnetic field predicted by the International Geomagnetic Reference Field** (IGRF).
Any variation from this assumption is seen as a consequence of the magnetic effect of the vehicle. Using this cali-
bration pattern, we estimate the magnetic susceptibility tensor (9 coeflicients) and the remanent magnetization
vector (3 coeflicients) of the AUV and remove its magnetic effect from the data®.

Because the geomagnetic field is generally not vertical, magnetic anomalies are often made of two lobes not
centered above their sources, making them difficult to interpret. Reduction to the Pole is an operator which cor-
rects the inclination and declination of the geomagnetic field and magnetization vectors and relocate the anoma-
lies above their sources, as if they were observed at the geomagnetic pole.

Constraining the source of the magnetic anomalies. The depth of the dominating sources producing
magnetic anomalies varies as a function of the altitude of acquisition. Data collected at a low altitude are charac-
terized by a high amplitude and short-wavelength content corresponding to outcropping or shallow subseafloor
sources. With such data, it is possible to image small dimension structures such as hydrothermal systems. The
wavelength content decreases and the dominating sources deepen with increasing altitudes. Using data collected
at various altitudes above a magnetized source makes possible to constrain its geometry. Two types of AUV dives
were undertaken during the M127 cruise: standard dives at altitudes of 70-120 m above the seafloor for a wide
regional survey (Fig. 1) and specific dives at lower altitude, focusing on hydrothermal targets. Therefore three
datasets collected at various altitudes exist for the Mir and Shinkai/Southern/Rona/New Mounds areas. On the
active TAG Mound, we compare high-resolution magnetic data collected by Deep-Sea Submersible Alvin in 19938
and the German AUV Abyss in 2016.

Reduced-to-the-Pole (RTP) anomalies may still show some deviation with respect to their putative source. We
consider two possible causes for such deviations: either the magnetization vector causing the anomalies (i.e. the
underlying block of a basalt-hosted hydrothermal site or the magnetized stockwork zone of an ultramafic-hosted
site) has been tilted, or the geometry of the source (for instance a hydrothermal conduit) is inclined.

We estimate possible tilt of the magnetization vector on the dataset collected at the lowest altitude, because
very shallow sources dominate and the effect of slanted magnetized bodies is low. In addition, the correlation of
anomalies and bathymetric features is easier on this dataset of highest resolution. We determine the optimum
tilt angle that moves the anomaly above its source!®. The other datasets are corrected using this optimal tilt angle
and the position of the magnetic low on the datasets at different altitudes allow calculating the inclination of the
demagnetized hydrothermal conduit. We use forward modeling to estimate the apparent tilt induced by such
inclined conduit and determine the tectonic tilt>.

Data Availability
Bathymetric data products from AUV dives conducted during RV Meteor cruise M127 are available under:
https://doi.pangaea.de/10.1594/PANGAEA.899415.
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