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Translational Relevance

• Derangement of lipid metabolism is a hallmark of MAFLD pathogenesis; however, these changes have 
not been explored in MAFLD-associated HCC. We identified a circulating 21 metabolite signature that 
accurately predicts for the presence of HCC in patients with MAFLD. Once validated, this signature 
could be used as a screening tool for the identification of HCC in patients with MAFLD.
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Abstract
Introduction:  The burden of metabolic (dysfunction) associ-
ated fatty liver disease (MAFLD) is rising mirrored by an in-
crease in hepatocellular cancer (HCC). MAFLD and its sequel-
ae are characterized by perturbations in lipid handling, in-

flammation, and mitochondrial damage. The profile of 
circulating lipid and small molecule metabolites with the de-
velopment of HCC is poorly characterized in MAFLD and 
could be used in future studies as a biomarker for HCC.   
Methods:  We assessed the profile of 273 lipid and small mol-
ecule metabolites by ultra-performance liquid chromatogra-
phy coupled to high-resolution mass spectrometry in serum 
from patients with MAFLD (n = 113) and MAFLD-associated 
HCC (n = 144) from six different centers. Regression models 
were used to identify a predictive model of HCC.   Results:  
Twenty lipid species and one metabolite, reflecting changes 
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in mitochondrial function and sphingolipid metabolism, 
were associated with the presence of cancer on a back-
ground of MAFLD with high accuracy (AUC 0.789, 95% CI: 
0.721–0.858), which was enhanced with the addition of cir-
rhosis to the model (AUC 0.855, 95% CI: 0.793–0.917). In par-
ticular, the presence of these metabolites was associated 
with cirrhosis in the MAFLD subgroup (p < 0.001). When con-
sidering the HCC cohort alone, the metabolic signature was 
an independent predictor of overall survival (HR 1.42, 95% 
CI: 1.09–1.83, p < 0.01).   Conclusion:  These exploratory find-
ings reveal a metabolic signature in serum which is capable 
of accurately detecting the presence of HCC on a back-
ground of MAFLD. This unique serum signature will be taken 
forward for further investigation of diagnostic performance 
as biomarker of early stage HCC in patients with MAFLD in 
the future. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Primary liver cancer is the fourth most common cause 
of cancer-related death worldwide, and unlike other can-
cer types, mortality rates continue to rise [1]. The vast 
majority of deaths are caused by hepatocellular cancer 
(HCC) associated with chronic liver disease (CLD). Cur-
rently, the commonest causes of CLD worldwide are hep-
atitis B virus, hepatitis C virus, and alcohol-related liver 
disease; however, metabolic (dysfunction) associated fat-
ty liver disease (MAFLD)-related HCC incidence is rap-
idly rising in parallel with the global epidemic of obesity, 
type 2 diabetes, and the metabolic syndrome and is poised 
to overtake viral hepatitis as the lead cause of HCC world-
wide [2]. In the USA, Europe, and Australasia, MAFLD 
currently accounts for approximately 8–14% of HCC cas-
es, and though prevalence of MAFLD-related HCC is 
lower in Asian countries at present, a similar exponential 
trajectory is expected as rates of metabolic syndrome in-
crease in Asia, in parallel with the dual burden of CLD 
from MAFLD and viral hepatitis [3].

MAFLD is characterized by excessive hepatic fat accu-
mulation (>5%) histologically on liver biopsy, or by imag-
ing, associated with overweight/obesity, type 2 diabetes, 
or metabolic dysregulation [4]. Metabolic steatohepatitis, 
part of the spectrum of MAFLD, is characterized by ste-
atosis with concomitant inflammation and hepatocyte 
ballooning, and is associated with greater risk of adverse 
outcomes including cirrhosis and HCC [5]. MAFLD is an 
independent risk factor for the development of HCC with 
an estimated incidence of 0.44 per 1,000 persons/year; 

however, the relative risk of HCC increases to 5.29 per 
1,000 persons/year for patients with evidence of steato-
hepatitis [6]. Although a significant number of MAFLD-
associated HCC occur in the absence of cirrhosis [7], 
when cirrhosis is present the annual rate of HCC is esti-
mated as high as 12.8% [8]. Despite the societal burden of 
MAFLD, radiologic surveillance for HCC in patients 
without cirrhosis is not recommended due to limitations 
visualizing the liver due to body habitus, limited cost-ef-
fectiveness, and the increased risk; nonliver-related mor-
tality may mitigate surveillance-related survival benefits 
[9].

There is increasing evidence illustrating the relation-
ship between inflammation, lipotoxicity, and lipid signal-
ing in MAFLD. In particular, several lipid mediators such 
as diacylglycerols, oxysterols, free fatty acids, and ce-
ramide (CER) are associated with lipotoxicity driving 
progression toward steatohepatitis [10]. While the focus 
of earlier studies was on the role of free fatty acid [11, 12], 
perturbations in lipid metabolism in MAFLD are increas-
ingly being appreciated both within tumors and in the 
circulation [13, 14]. MAFLD is fundamentally a disease 
characterized by excess storage of toxic lipids and their 
metabolism, and while there have been a number of stud-
ies investigating the impact of changes in lipid profile on 
progression to steatohepatitis, there has been no study 
that considers changes in lipidomics in patients that de-
velop HCC on a background of MAFLD. Using a cohort 
analysis approach, we undertook an unsupervised, ex-
ploratory metabolic phenotyping analysis (including 
both lipidomics and metabolomics) to determine wheth-
er MAFLD-associated HCC is associated with a distinct 
metabolic signature that could be used in future work as 
a biomarker of HCC. We also investigated if the presence 
of a distinct signature is prognostic for survival in patients 
with MAFLD-associated HCC.

Methods

Subjects
Patients were recruited from six different international centers; 

Imperial College NHS Healthcare Trust (ICHNT) (UK) (N = 155), 
Newcastle Upon Tyne NHS Foundation Trust (UK) (N = 61), 
Westmead Hospital, Sydney (Australia) (N = 28), Mt Sinai Hospi-
tal, New York, NY, USA (N = 7), and University of Bologna, Italy 
(N = 6). Serum samples from 113 patients with MAFLD and 144 
patients with MAFLD-associated HCC were used in this study. 
MAFLD samples were collected from two different ICHNT sites: 
St Mary’s Hospital (N = 76) and Hammersmith Hospital (N = 37). 
MAFLD was defined at each center by either MRI imaging findings 
or liver biopsy where the presence of >5% liver steatosis was taken 
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as being diagnostic of MAFLD. In the St Mary’s cohort, 36 patients 
were diagnosed with MAFLD on liver biopsy and the remainder 
by imaging. All MAFLD patients from Hammersmith Hospital 
were defined by imaging. Diurnal timing of sample collection was 
not observed or recorded. All patients with HCC were treatment 
naïve. The Institutional Review Board in each participating insti-
tution approved the study protocol (Sydney West Area Health Ser-
vice, the University of Sydney, Human Research Ethics Committee 
[5522], Health Research Authority [17/NE/0127], Sheffield Hu-
man Research Ethics Committee [17/YH/0015], London Brent Re-
search Ethics Committee [14/LO/0645]). Written informed con-
sent was obtained from all patients recruited in this study in ac-
cordance with the Declaration of Helsinki and Good Clinical 
Practice guidelines.

Clinical variables were retrieved including patient demograph-
ics, body mass index (BMI), history of diabetes, hypertension, or 
hypercholesterolaemia. Fasting HBA1C, serum cholesterol, tri-
glyceride, high-density lipoprotein (HDL), low-density lipopro-
teins, and baseline liver tests were identified, and Child-Pugh-Tur-
cotte (CPT) score was determined. Metabolic syndrome was de-
fined according to WHO 1999 criteria [15]. For patients with 
HCC, information regarding presence of cirrhosis, number of tu-
mors, size of tumors, presence of portal vein thrombosis (PVT), 
and Barcelona Clinic Liver Cancer (BCLC) staging score was also 
collected.

Patient and Public Involvement
Patients and public were not involved in the design or conduct 

of the study.

Metabolic Profiling Methods
Samples (N = 257) were prepared and run by ultra-perfor-

mance liquid chromatography mass spectrometry using previous-
ly published analytical and quality control (QC) procedures [16, 
17]. Analysis was undertaken in a run-order designed to be or-
thogonal to key subject metadata with potential study outcome-
related significance. For QC assessment and data preprocessing, a 
pooled QC sample was prepared by mixing equal parts of each 
study sample and a dilution series was created from the pooled QC 
sample (10 × 100%, 5 × 80%, 3 × 60%, 3 × 40%, 5 × 20%, 10 × 1%). 
Samples were subjected to reversed-phase chromatography (RPC) 
tailored for the separation of neutral and complex lipids and hy-
drophilic interaction liquid chromatography (HILIC) for the sep-
aration of small polar metabolites. In brief, 50 μL aliquots (RPC) 
and 25 μL (HILIC) were taken from each sample and the pooled 
QC and diluted 1:1 and 1:3 vol/vol with ultrapure water for RPC 
and HILIC analysis, respectively. Protein was removed by addition 
of organic solvent (diluted sample/isopropanol in 1:4 vol/vol ratio 
for lipid RPC profiling and diluted sample/acetonitrile in 1:3 vol/
vol ratio for HILIC profiling). Mixtures of method-specific chem-
ical standards were added (at dilution stage for HILIC and protein 
precipitation stage for RPC) in order to monitor data quality dur-
ing acquisition. Analyses were performed on ACQUITY UPLC 
instruments (Waters Corp., Milford, MA, USA) coupled to Xevo 
G2-S TOF mass spectrometers (Waters Corp., Manchester, UK) 
via a Z-spray electrospray ionization source operating in either 
positive or negative ion modes to produce lipid-positive (lipid 
RPC+) and lipid-negative (lipid RPC−) and HILIC-positive (HIL-
IC+) datasets. Sub-aliquots of a pooled QC sample were inter-
leaved every 10 study samples throughout the analysis, and a set of 

dilution series samples were acquired at the start and end of the 
experiment. Raw data were converted to the mzML open source 
format, and signals below an absolute intensity threshold of 100 
counts were removed using the MSConvert tool in ProteoWizard 
[18]. Targeted feature extraction was performed using peakPan-
theR, an R package for targeted integration of chemical signals 
from LC-MS datasets [19]. Using peakPantheR, for each LC-MS 
dataset, empirical retention time and theoretical m/z values from 
an in-house database of metabolite/lipid annotations were inte-
grated, to yield complimentary datasets of known, pre-assigned 
metabolites. All datasets were preprocessed using the nPYc-Tool-
box [20], including elimination of potential run-order effects and 
feature filtering. Only features measured with high analytical qual-
ity (relative standard deviation [RSD] in pooled QC <30%, dilution 
series Pearson correlation to dilution factor >0.7, RSD in study 
samples >1.1* RSD in pooled QC) were retained and put forward 
for biological analysis. After feature filtering, targeted extraction 
datasets contained the following number of variables: lipid RPC+: 
174; lipid RPC−: 56; HILIC+: 43. Across all serum LC-MS datasets, 
3 samples were missing or contained insufficient volume, an ad-
ditional sample was excluded in RPC datasets, and 5 additional 
samples contained insufficient volume for HILIC, leaving 254 and 
250 samples for data analysis in RPC and HILIC datasets, respec-
tively. The analysis pipeline and any exclusions are illustrated in 
online supplementary Figure 1 (for all online suppl. material, see 
www.karger.com/doi/10.1159/000525911).

Signature Discovery Using Partial Least Squares Regression
Samples from Hammersmith Hospital (n = 81) were used as 

training dataset, whereas the remaining samples were randomly 
split into validation dataset 1 (n = 84) and validation dataset 2 (n 
= 83). We observed a moderate batch effect among samples col-
lected from different institutes, which was expected from a multi-
center metabolomics study. To obtain a list of stable metabolites 
across centers for downstream classification models, we performed 
three filtering steps of raw features: (1) Kolmogorov-Smirnov test 
was applied to exclude features with significantly different distri-
butions; (2) moderated t test was applied to exclude features that 
are significantly different comparing cancer cases in training data-
set and cancer cases in validation dataset 1, using “limma” package; 
(3) overlapping features, differentially expressed comparing 
MAFLD and MAFLD-associated HCC cases in both training da-
taset and validation dataset 1, were included, using “limma” pack-
age.

Partial least squares (PLS) regression was used to develop clas-
sification models to predict the presence or absence of HCC using 
the pre-filtered metabolites. A PLS model was initially fit in the 
training dataset using “pls” package. Root mean squared error of 
prediction (RMSEP), as a measure of cross-validation in the train-
ing set, was then plotted against the number of components in-
cluded in each model. The number of components which pro-
duced the minimal RMSEP was selected for the final model.

The relative perturbations in the resulting metabolites, with 
optimal coefficients, were used to calculate a predictive index for 
each individual in the training dataset to demonstrate the presence 
or absence of HCC independent of MAFLD. The predictive index 
was termed the predictive metabolite vector (PMV). The PMV was 
then applied to two validation datasets using the “plot ROC” and 
“ROC” package. Confusion matrices were derived using the “car-
et” package and a nomogram developed using the “rms” package.
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Alternative Signature Development Using Least Absolute 
Shrinkage and Selection Operator Regression
Least absolute shrinkage and selection operator (LASSO) was 

used to develop predictive model of HCC using the minimal me-
tabolite vector. The panel of identified metabolites was included as 
an input in the LASSO regression to predict HCC in the same 
training set as used in the PLS model. After 10-fold cross-valida-
tion, the model which produced the least binomial deviance was 
selected as the final optimal model, which was then applied and 
tested in two validation sets.

Inter-Metabolite Correlations
A simple spectral cluster analysis was performed using the met-

abolic profiling data. First, a similarity measure was computed for 
each metabolite linking to all other metabolites using Pearson cor-
relation coefficient in the entire cohort. The correlation matrix was 
then clustered using hierarchical clustering method. The heatmap 
was generated using the “heatmap.plus” package.

Exploration of Prognostic Metabolites
Given the increased risk of developing HCC on a background 

of cirrhosis, the relationship between PMV and cirrhosis was ex-
plored. We also explored if there was an association between PMV 
and liver function (CPT) in the HCC cohort and as it is expected 
that liver dysfunction and more advanced cancer would be associ-
ated with perturbations of lipid homeostasis. The PMV was used 
to perform subsequent continuous Cox regression and Kaplan-
Meier analysis with known predictors of overall survival (OS) in-
cluding the presence of PVT, maximal tumor diameter, CPT, and 
BCLC stage in the HCC cohort. “ggplot2” package was used for the 
analysis above. All statistical analyses were performed using R 
3.5.2.

Results

The baseline clinical characteristics of the studied pop-
ulation groups are given in Table 1. The cancer popula-
tion was significantly older (71.6 vs. 53.3 years, p < 0.001) 
and was more likely to be male (61.6 vs. 38.4%, p = 0.02). 
They also had a higher incidence of metabolic syndrome 
(92.0 vs. 29.6%, p < 0.001) and diabetes mellitus (73.0 vs. 
27.0%, p < 0.01) compared to the MAFLD group. Total 
serum cholesterol (mean 4.9 mmol/L vs. 3.9 mmol/L, p < 
0.001) and triglycerides (1.9 mmol/L vs. 1.4 mmol/L, p < 
0.01) were higher in MAFLD cohort compared to the can-
cer cohort. No differences were observed in HBA1C lev-
els. More patients in the cancer cohort had cirrhosis 
(87.0%) compared with the MAFLD cohort (13.0%) (p < 
0.01). In both cohorts, underlying liver function was pre-
served (Child-Pugh A in MAFLD cohort 99.0% and 
72.9% in HCC cohort). The median OS of the cancer 
group was 23.0 months (95% CI: 17.2–28.8).

Identification of a Metabolic Signature Predictive of 
HCC in the Presence of MAFLD
Metabolic phenotyping analysis was carried out that 

identified 230 lipid species belonging to 24 lipid classes 
and 43 small molecule metabolites. The primary aim of 
this study was to investigate whether a metabolic signa-
ture is present in serum that can accurately predict the 
presence of HCC on a background of MAFLD. First, we 
identified changes in 21 metabolites that were stable 
across the six different centers involved in this study. Us-
ing a PLS regression approach in the training set (Fig. 1a), 
we confirmed that relative changes in 21 metabolites ac-
curately differentiated the presence of HCC on a back-
ground of MAFLD (area under curve [AUC] = 0.94, 95% 
CI: 0.885–0.993). The combined relative changes of these 
21 metabolites were labeled the PMV and were derived 
for each individual in the study. The PMV was further 
tested in two validation sets, and consistent predictive 
power was exhibited (validation set 1: AUC = 0.85, 95% 
CI: 0.759–0.942; validation set 2: AUC = 0.72, 95% CI: 
0.605–0.837; combined validation sets: AUC = 0.789, 95% 
CI: 0.721–0.858) (Fig. 1b; online suppl. Fig. A, B). In the 
combined validation cohorts, the positive predictive val-
ue of the PMV was 0.79 (95% CI: 0.70–0.86), and the neg-
ative predictive value was 0.86 (95% CI: 0.79–0.91). De-
mographic details across training and validation sets are 
given in online supplementary Table 1.

The presence of cirrhosis per se is an established risk 
factor for the development of HCC [21]. Moreover, previ-
ous work has shown that liver dysfunction can influence 
metabolite profiling [22] and the relationship between 
CPT and PMV was explored. On multivariable analysis, 
both PMV and cirrhosis status were significantly associ-
ated with HCC (PMV: odds ratio [OR] = 7.84 [5.2–11.8], 
p < 0.001; cirrhosis: OR = 7.95 [5.32–11.9], p < 0.001), 
suggesting they act as independent predictors of cancer. 
No association was observed between CPT and PMV. We 
then explored whether the predictive ability of PMV in 
detecting HCC could be enhanced with the addition of 
cirrhosis. We illustrate a further improvement in the pre-
dictive model (validation set 1: AUC = 0.879 [95% CI: 
0.788–0.971]; validation set 2: AUC = 0.841 [95% CI: 
0.751–0.931]; combined validation sets: AUC = 0.855 
[95% CI: 0.793–0.917]) (Fig. 1b; online suppl. Fig. 2A, B). 
A confusion matrix was generated, after accepting the 
minimum sensitivity as 0.8, to determine an optimal 
threshold of PMV that predicted the presence of HCC 
with high specificity. The PMV-integrated model gave a 
specificity of 0.826 (95% CI: 0.75–0.89), 11% more spe-
cific than a cirrhosis-only model (specificity: 0.742, 95% 
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Table 1. Baseline characteristics of the study population

Baseline characteristic MAFLD, n (%)
N = 113 (44.0)

MAFLD-HCC, n (%)
N = 144 (56.0)

p value

Age (mean, IQR) 53.3 (13) 71.6 (10) <0.001
Sex

Male 66 (58.4) 107 (74.3)
0.02

Female 47 (41.6) 37 (25.7)
BMI (mean, IQR) (N = 188) 30.3 (6.1) 31.2 (7.9) 0.27
Metabolic syndrome* (present) (N = 193) 34 (33.7) 81 (88.8) <0.001
Diabetes (present) (N = 243) 40 (38.1) 108 (78.3) <0.001
Hypertension (present) (N = 162) 40 (38.8) 48 (81.4) <0.001
Ethnicity**

White 57 (50.4) 110 (76.4)

<0.001

Asian 18 (15.9) 16 (11.1)
Black 13 (11.5) 3 (2.1)
Middle Eastern 4 (3.5) 6 (4.2)
Chinese 3 (2.7) 3 (2.1)
Other 18 (15.9) 6 (4.2)

HBA1C (mean, IQR) (N = 116)*** 44.0 (7.0) 48.6 (33.8) 0.35
Total cholesterol (mean, IQR) (N = 141)*** 4.9 (1.3) 3.9 (1.2) <0.001
Triglyceride levels (mean, IQR) (N = 140)*** 1.9 (1.1) 1.4 (0.8) <0.01
HDL levels (mean, IQR) (N = 118)*** 1.2 (0.4) 1.1 (0.4) 0.47
Cirrhosis

Absent 89 (84.8) 36 (25.2)
<0.001

Present 16 (15.2) 107 (74.8)
Child-Turcotte-Pugh class (N = 241)

A 100 (99.0) 99 (70.7)
<0.001B 1 (1.0) 35 (25.0)

C 6 (4.3)
BCLC (N = 127)

A 37 (29.1)
B 39 (30.7)
C 39 (30.7)
D 12 (9.4)

Maximum tumor diameter (N = 128)
≤7 cm 92 (71.9)
>7 cm 36 (28.1)

PVT (N = 127)
Absent 69 (54.3)
Present 58 (45.7)

Metastases (N = 112)****
Absent 94 (83.4)
Present 18 (16.0)

Treatments, n
0 18 (12.8)
1 105 (72.9)
2 4 (2.8)
>3 7 (4.9)

OS 23.0 (17.71–28.83)

* Metabolic syndrome defined according to WHO 1999 criteria. Data regarding metabolic syndrome were not 
available for Mt Sinai cohort. ** Other as identified by patients (N = 24). *** Data pertaining for HBAIC, cholesterol, 
triglycerides, and HDL levels not available for Newcastle, Mt Sinai, and Bologna cohort. **** Presence of extrahepatic 
disease not available for Sydney cohort.
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Fig. 1. Building of predictive metabolite vector (PMV) to differen-
tiate MAFLD from MAFLD-HCC. a Selection of optimal partial 
least squares regression (PLSR) model based on 21 metabolites. 
Root mean-squared error of prediction (RMSEP) (x-axis) is plot-
ted against number of components (y-axis) after 10-fold cross-val-
idation. Three components from PLSR are used to build PMV. 

Receiver operating characteristic (ROC) curves are plotted to dem-
onstrate the predictive power of PMV and cirrhosis in the com-
bined validation sets  (b). Area under curve (AUC) values are 
shown under each plot. Confusion matrices summarizing the pre-
dicted HCC cases vs. actual HCC cases using models based on cir-
rhosis only (c) or PMV and cirrhosis (d) in the combined set.
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CI: 0.66–0.81) (Fig. 1c, d). We then derived a nomogram 
(online suppl. Fig. 3) for clinical application that com-
bines individual patients’ PMV and the presence or ab-
sence of cirrhosis as determinant for the presence of 
HCC. Of interest, PMV did not correlate with the BMI, 
presence of metabolic syndrome, or diabetes in the entire 
study cohort.

Metabolites Associated with HCC Are  
Inter-Correlated
The majority of the metabolites in the PMV corre-

sponded to lipid species, predominantly belonging to 
phosphatidylcholines (PCs), CERs, and sphingomyelins 
(SMs) lipid subclasses. Two carnitine (CAR) species and 
asymmetric dimethylarginine (ADMA) were also includ-
ed (Table 2).

When considering the OR for the presence of HCC, 
forest plot analysis illustrated that lipids belonging to 
PCs, CAR (26:1) and (18:0-DC), and ADMA were associ-
ated with the presence of HCC, whereas SM, CER lipid 

classes, lysophosphatidylcholine (LPC), and phosphati-
dylinositol were inversely associated with the presence of 
HCC (Fig. 2a). A correlation analysis of the 21 metabo-
lites associated with the presence of HCC was conducted 
(Fig. 2b). A clear division was observed between the lipid 
subclasses such that CAR (26:1) and (18:0-DC), PC 
(16:0/16:0) and (P-18:0/18:1), and ADMA were tightly 
correlated, and a correlation was observed between the 
remaining lipid species illustrating an interplay between 
the lipids identified rather than individual lipid species 
driving pathogenicity.

To simplify the PMV, LASSO regression was under-
taken considering only the 21 metabolites that make up 
the PMV (online suppl. Fig. 4A, B). We identified a seven-
lipid signature (online suppl. Table  2) which predicted 
the presence of HCC with high accuracy in both the train-
ing (AUC = 0.99, 95% CI: 0.998–1) and two validation 
sets (validation set 1: AUC = 0.92, 95% CI: 0.850–0.998; 
validation set 2: AUC = 0.79, 95% CI: 0.697–0.900) (on-
line suppl. Fig. 4C–E).
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The Metabolic Signature Is an Independent Predictor 
of Clinical Outcome in MAFLD-Associated HCC
Considering the HCC cohort alone, we observed a 

strong relationship between PMV and BCLC stage such 
that PMV increases with BCLC C/D compared with A/B 
(p < 0.001). Kaplan-Meier analysis illustrated a signifi-
cant relationship between PMV and OS, and PMV was 
significantly associated with poor OS in patients with 
MALFD-HCC (log-rank test; HR 1.97, 95% CI: 1.25–
3.09, p < 0.01) (Fig. 3). We then considered the utility of 
the PMV when compared to known prognostic factors: 
BCLC stage, presence of PVT, CPT, and tumor size, us-
ing a Cox regression model (Table 3). PMV was associ-
ated with poor OS in the univariate model (HR 1.28, 95% 
CI: 1.06–1.55, p = 0.01) and remained an independent 
prognostic factor of OS in patients with HCC on a back-
ground of MAFLD (HR 1.42, 95% CI: 1.09–1.83, p < 
0.01). As BMI is likely to decline with worsening disease 
stage, we explored changes in PMV within BCLC stage 
while considering changes in BMI; however, no signifi-
cant association between PMV and BMI was observed (p 
= 0.279).
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Table 2. Lipid profile predictive of HCC on background of NAFLD

Metabolite name Coefficient

Asymmetrie dimethylarginine 16.4728789
CAR(18:0-DC) 2.643794344
CAR(26:1) −1.115760821
Cer(d16:1/24:0) 6.636870471
Cer(d18:2/24:0) 4.846124
Cer(d18:1/24:0) 4.204558483
LPC(0:0/14:0) −4.033630203
LPC(14:0/0:0) −5.50639709
LPC(15:0/0:0) −7.825665552
LPC(20:3/0:0)_1 1.310188498
LPI(20:3/0:0) −3.339869581
PC(16:0/16:0) 4.506361519
PC(P-18:0/18:1) 9.056127427
SM(d16:1/20:0) −3.502104041
SM(d16:1/22:0) −0.45509791
SM(d16:1/24:0) −1.614155581
SM(d18:2/23:0) −2.593395293
SM(d18:2/24:0) −4.584937325
SM(d18:1/24:0) −4.774057238
SM(d18:2/22:0) −5.331737388
SM(d18:1/23:0) −5.646288334

Coefficient of variance is given. PC, phosphocholine; Cer, 
ceramide; CAR, Fatty acyl carnitine; LPC, lysophosphocholine; SM, 
sphingomyelin; LPI, lysophosphatidylinositol.

Fig. 3. a–c Kaplan-Meier survival curve illustrating the association between the PMV and overall survival. Upper 
quartile is used as the cut-off to define PMV-high and PMV-low groups. p value was given by log-rank test.
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Discussion

There are currently no screening programs for 
MAFLD-associated HCC in the absence of cirrhosis, and 
as a result, most patients will present with advanced stage 
disease [3, 8] where curative therapies are not an option. 
As 30% of the adult population worldwide has MAFLD 
[3], conventional screening with imaging is not feasible 
and there is pressing need for the development of novel 
methodologies of detecting HCC in this population 
group. As alterations in lipid metabolism are a central 
component in the pathogenesis and progression of 
MAFLD, we used ultra-performance liquid chromatog-
raphy and mass spectrometry to assess whether specific 
changes in lipids occur with the presence of HCC.

We identified a unique metabolic signature in serum 
that accurately detects the presence of HCC on a back-
ground of MAFLD. We observed robust differences in 20 
lipid species and the protein methylation by-product, 
ADMA. Collectively, this panel of 21 metabolites gave a 
high predictive accuracy of HCC. Importantly, the PMV 
was associated with the presence of cirrhosis in those pa-
tients with MAFLD, a precursor to HCC, and the combi-
nation of PMV and presence of cirrhosis significantly im-
proved the predictive accuracy of the model. Multivari-
able modeling further demonstrated that in the subgroup 
of patients with HCC, PMV was an independent prog-
nostic factor of OS. With regard to the lipid classes con-
tributing to the PMV, we observed relative increase in 
acylcarnitines and arginine and perturbations in sphin-
golipids species. As illustrated, rather than a panel of in-
dependent bioactive lipids that predict the presence of 
HCC, there is an interplay between these lipid species 
such that there is a clear inter-relationship between CAR 
(26:1) and (18:0-DC), PCs (16:0/16:0) and (P-18:0/18:1), 
and ADMA, all of which are increased relative to the re-
maining lipid species.

Mitochondrial dysfunction secondary to lipotoxicity 
is central to the progression of MAFLD [23]. It is postu-
lated that initially the increased lipid availability stimu-
lates mitochondrial capacity to protect against MAFLD 
but eventually results in oxidative stress, release of pro-
inflammatory cytokines, mitochondrial exhaustion, and 
development of NASH. Changes in mitochondrial func-
tion and fatty acid oxidation are reflected by changes in 
circulating acylcarnitine.

The carnitine shuttle system plays a central role in 
β-oxidation, the main process for energy production 
within the mitochondria. Consistent with our findings, 
long-chain acylcarnitines (C14 and above) have been 
shown to accumulate in both the serum and tissue in pa-
tients with NASH and HCC as these fatty acyl species rely 
on the carnitine shuttle to enter the mitochondria [24–
26]. The accumulation of long-chain acylcarnitines is hy-
pothesized to result from a reduction in carnitine palmi-
toyltransferase 1 (CPT2), an enzyme that controls the re-
action rate of β-oxidation in the mitochondria. Expression 
of CPT2 has been shown to be reduced in MAFLD-asso-
ciated HCC tissue compared to adjacent noncancer tissue 
both in vivo and in clinical samples [25, 27]. Enooku and 
colleagues [26] explored the relationship between serum 
acylcarnitine profiles in 241 patients with MAFLD, in-
cluding 23 with MAFLD-associated HCC, and observed 
an increase in long-chain acylcarnitines with progression 
of fibrosis and HCC which is supported by an earlier 
study investigating lipid changes with MAFLD progres-
sion [22, 26]. Interestingly, Fujiwara and colleagues [27] 
postulated that acylcarnitines could be used as biomarker 
of HCC in the setting of steatohepatitis and reported a 
sequential increase in serum levels of acylcarnitines in 3 
patients that paralleled the development of HCC, find-
ings that are supported by our results.

We observed significant perturbations in the sphingo-
lipids, notably a relative increase in PC and reduction in 

Table 3. Effects of PMV and common prognostic factors on overall survival in HCC cohort (N = 144)

Predictor Univariable models Multivariable models

hazard ratio (95% CI) p hazard ratio (95% CI) p

BCLC stage 1.45 (1.18–1.78) <0.001 1.18 (0.870–1.60) 0.29
Tumor size >7 cm 1.60 (1.02–2.51) 0.039 0.847 (0.457–1.57) 0.59
PVT present 1.56 (1.05–2.3) 0.028 1.57 (0.944–2.62) 0.082
CPT B/C vs. A 1.54 (1.02–2.33) 0.041 1.03 (0.542–1.96) 0.93
PMV 1.28 (1.06–1.55) 0.011 1.42 (1.09–1.86) 0.0089

BCLC, Barcelona Clinic Liver Class; PVT, portal vein thrombosis; CPT, Child-Pugh Score; PMV, predictive metabo-
lite vector.
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CERs, SMs, and LPC species in the HCC cohort relative 
to the MAFLD cohort. CERs play an important anti-pro-
liferative and pro-apoptotic role in tissue homeostasis 
[28]. However, the enzymes that generate CER are often 
altered in cancer resulting in the disruption of the tumor 
suppressor effects of CER, and low CER levels have been 
shown to be associated with tumor progression and poor 
prognosis [29, 30]. An increase in CER is well document-
ed during MAFLD development which is then subse-
quently reduced with the development of HCC, results 
that are corroborated by our findings [13, 31, 32]. Previ-
ous tissue studies have illustrated a reduction in the CER/
SM ratio implicating an impaired sphingomyelinase ac-
tivity, a pathway that has been shown to have anti-apop-
totic and pro-survival roles in malignancy [33, 34]. How-
ever, CER levels can also be reduced through deacety-
lation and phosphorylation through other pathways 
lending further complexity to the role of CER in hepato-
carcinogenesis [35]. Drugs that regulate CER-related en-
zymes are gaining interest as therapeutic targets by which 
CER levels can be increased resulting in autophagy and 
inhibition of tumor growth [30].

PC can be formed de novo via the Kennedy pathway 
which has been shown to be upregulated in numerous 
cancers, through over-expression of choline kinase-α 
(CHKA) [36–38]. Moreover, the metabolism of SM re-
sults in an increase in Kennedy pathway substrates per se 
[39]. We observed an increase in PC in the HCC cohort, 
suggesting upregulation of the Kennedy pathway driven 
by CHKA, an assumption that is confirmed by TCGA 
analysis which illustrates an increase in CHKA expres-
sion in HCC compared to normal liver (online suppl. Fig. 
5). In addition to the increase in PC, we observed a de-
crease in LPC a reaction that is catalyzed by the enzyme 
LPC acyltransferase-1 that has been shown to be strongly 
expressed in HCC tissue samples [40] suggesting upregu-
lation of Land’s cycle through which fatty acids can fur-
ther be incorporated into PC [41]. Our results are consis-
tent with previous work illustrating significant reduction 
in LPC in serum of patients with HCC [42–44]. In a recent 
multi-omics study, Hall and colleagues [45] illustrated 
impaired β-oxidation and a significant increase in hepat-
ic mono-unsaturated fatty acid-PC (36:1) associated with 
hepatocyte proliferation which was attributed to in-
creased CHKA, findings which are consistent with our 
results particularly as we also observed an increase in the 
mono-unsaturated fatty acid-PC (−18:/18:1) in the pres-
ence of HCC. Gorden and colleagues [13], when investi-
gating differences in MAFLD and NASH, also noted an 
increase in phosphocholine pool with cirrhosis which 

they attribute to increase cellular proliferation, marking 
a transition point from a relatively benign phenotype to a 
premalignant type.

The methylated arginine species ADMA is generated 
following cleavage of proteins that are post-translational-
ly methylated at the arginine residues. ADMA regulates 
the amount of nitrous oxide produced in the body by 
competing with L-arginine for nitrous oxide synthase 
with elevated levels of ADMA associated with endothe-
lial dysfunction. ADMA is metabolized by dimethylargi-
nine dimethylaminohydrolase which is highly expressed 
within the liver, and it is well established that levels of 
ADMA increase with liver cirrhosis [46]. Two studies 
have reported elevated levels of ADMA in patients with 
MAFLD which is hypothesized to be associated with the 
cardiovascular consequences of the metabolic syndrome 
associated with this population group [47–49]. It could be 
postulated that the increase in ADMA observed in this 
study with HCC could be the result of progressive paren-
chymal damage from malignancy and not just a reflection 
of liver dysfunction [49].

Interestingly, even though we observed significant dif-
ferences in triglycerides and cholesterol levels between 
the HCC and MAFLD cohorts, these are not included in 
the PMV. This suggests the changes in the lipid profile 
observed reflect metabolic reprogramming in HCC, a 
hallmark of cancer, which in turn has systemic effects in-
cluding loss of weight and reduced appetite which may 
also contribute to the differences in lipidomics profiles 
observed. Correlation with tumor tissue would be of im-
portance to further strengthen this hypothesis.

Another key consideration is that we have shown that 
there is an inter-relationship between individual lipids 
and no individual lipid exerts an effect on its own reflect-
ing the known interplay of each sphingolipid species and 
is a more relevant biologic approach [39]. Acknowledg-
ing the limitation of analyzing multiple lipids in the clin-
ical setting, we undertook LASSO regression to ascertain 
whether a smaller number of lipids could be used to detect 
the presence of HCC. A 7-lipid signature was developed 
that identified HCC with high accuracy which could be 
taken forward in further validation studies. Moving for-
ward, it would be of importance to explore the PMV in a 
longitudinal study of patients with MAFLD in order to 
examine at what stage is there a metabolic switch and to 
delineate the role of the PMV as a screening tool for HCC 
in this population group. We observed a significant im-
pact of the collection center on the lipids profiled. This is 
a recognized limitation of metabolic profiling when sam-
ples are collected using different protocols. By selecting 
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for metabolites that were stable across sample collection 
sites (with comparable distributions), our approach to 
this challenge ensures that the resulting biomarkers are 
robust with respect to any procedural differences in sam-
ple collection. This approach may be overly stringent, and 
the use of more homogenous sample collection proce-
dures may have resulted in additional metabolic insights. 
Future work would be strengthened by universal collec-
tion protocols to minimize the impact of sample handling 
on results. In addition, we noted a higher incidence of 
metabolic syndrome in those patients with HCC com-
pared to the MAFLD group reflecting the higher inci-
dence of hypertension and diabetes in those with HCC. A 
significant difference was observed in the age of the two 
cohorts with the MAFLD group being younger overall 
which may explain the differences in incidence of these 
comorbidities. There is a significant amount of missing 
data that may also impact on the differences in baseline 
demographic data. Similarly, differences in cholesterol 
and HBA1C may be attributable to weight loss and ca-
chexia in the HCC subgroup, but should be interpreted 
with caution given the large amount of missing data.

In conclusion, through exploratory lipidomics and 
metabolomics, we have identified a unique metabolic sig-
nature that accurately discriminates the presence of HCC 
on a background of MAFLD. The PMV reflects altera-
tions in β-oxidation and sphingolipid metabolism, the bi-
ology of which requires further elucidation. The PMV 
should be taken forward in prospective, longitudinal 
studies to validate its utility.
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