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Abstract

Quinoline-3-carboxamides (Q compounds) are immunomodulatory compounds that have

shown efficacy both in autoimmune disease and cancer. We have in here investigated the

impact of one such compound, paquinimod, on the development of diabetes in the NOD

mouse model for type I diabetes (T1D). In cohorts of NOD mice treated with paquinimod

between weeks 10 to 20 of age and followed up until 40 weeks of age, we observed dose-

dependent reduction in incidence of disease as well as delayed onset of disease. Further, in

contrast to untreated controls, the majority of NOD mice treated from 15 weeks of age did

not develop diabetes at 30 weeks of age. Importantly, these mice displayed significantly

less insulitis, which correlated with selectively reduced number of splenic macrophages and

splenic Ly6Chi inflammatory monocytes at end point as compared to untreated controls. Col-

lectively, these results demonstrate that paquinimod treatment can significantly inhibit pro-

gression of insulitis to T1D in the NOD mouse. We propose that the effect of paquinimod on

disease progression may be related to the reduced number of these myeloid cell popula-

tions. Our finding also indicates that this compound could be a candidate for clinical develop-

ment towards diabetes therapy in humans.

Introduction

Type 1 Diabetes (T1D) is an autoimmune disorder that causes severe loss of pancreatic β-cells

and insulin production [1]. T cells are key mediators of this process but understanding of the

mechanisms that underlie T cell dysregulation in humans with T1D is limited [2]. The most

prominent therapy offered to T1D patients is exogenous insulin administration. This treat-

ment, however remains suboptimal and fails to prevent severe complications of the disease.

The non-obese diabetic (NOD) mouse model is a good model for T1D and while develop-

ing a more severe insulitis than commonly seen in the human disease, displays several charac-

teristics common to human T1D [3–5]. The development of T1D in the NOD mouse is

spontaneous and highly T cell-dependent. Already at 3–4 weeks of age there is detectable insu-

litis in these mice, causing selective cell death of the insulin producing β-cells in the islets of
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Langerhans as the disease progresses [3–5]. Female NOD mice display severe insulitis at about

15 weeks of age and develop glycosuria at around 15–30 weeks of age.

The initial phase of insulitis involves early presence of macrophages and dendritic cells [6–

9]. This is followed by recruitment of self-antigen specific CD4 and CD8 T cells (reviewed in

[10, 11]) and cell transfer experiments demonstrated that both CD4 and CD8 T cells partici-

pate in the β-cells destruction process [12–14]. The autoimmune T cell response is directed to

self-antigens expressed by the β-cells (reviewed in [15]) and the initiation of the response

involves presentation of islet antigens by islet-derived DCs in draining pancreatic lymph

nodes [16–19]. Further, DCs were found to be critical for maintaining the T cell response [20].

It has been reported that DCs in NOD mice produce elevated level of IL-12 and have elevated

T cell stimulatory capacity [21, 22]. In addition to DCs and macrophages, other cells such as

neutrophils, plasmacytoid DCs [6, 23], NK cells [24, 25] and B cells [26, 27] have also been

shown to be involved in the disease process.

A large variety of therapeutic approaches have been attempted in the NOD mouse model

and shown efficacy on progression on T1D and even recovery of β-cell activity (reviewed in

[28–30]). Some of these pre-clinical studies involved antibody-based therapies targeting T cells

[31–33] or B cells [34, 35]. These studies led to clinical trials that have also shown some benefi-

cial effects on T1DM in patients (reviewed in [29, 36, 37].

Quinoline-3-carboxamides (Q compounds) are immunomodulatory compounds [38–40]

that have shown efficacy in several different experimental models of human inflammatory dis-

ease [40–44] and cancer (reviewed in [45, 46]). One such compound, paquinimod, was shown

to bind the S100A9 protein and prevent its interaction with TLR4 [47]. S100A9 is an intracellu-

lar calcium-binding protein that is released and detected in circulation in various inflammatory

conditions [48–50]. Since the binding of S100A9 to TLR4 stimulates a pro-inflammatory cyto-

kine-response in monocytes [51–53], the finding that paquinimod blocks that binding provided

one candidate mechanism for the efficacy of the compound in inflammatory disease. We have

in our previous work investigated the efficacy of the Q compound paquinimod on disease devel-

opment in experimental autoimmune encephalomyelitis (EAE), a model of T cell-mediated

autoimmunity [43] and in peritonitis, a model of acute inflammation [42]. In both of these stud-

ies [42, 43] as well as other studies from our laboratory [54, 55], we could show selective effects

of Q compounds on inflammatory monocytes [42, 43, 54], eosinophils [42, 54] and myeloid

(CD11b+) dendritic cells [55]. Importantly, in the EAE model a selective reduction of inflamma-

tory monocytes correlated with a reduced in vivo T cell response [43]. Several other laboratories

have also reported that treatment with the Q compound laquinimod, which is structurally simi-

lar to paquinimod, could reduce the proportion of disease-causing Th1 and Th17 cells in the

EAE model [40, 56–59], and that this modulation may be mediated via effects on myeloid anti-

gen-presenting cells and not due to direct effects on the T cells themselves [56, 57].

Administration of exogenous insulin is currently the most common treatment for human

T1D. The disease progresses in treated individuals and they display various disease-associated

complications. There is therefore demand for novel treatments that would inhibit progression

of the disease and ideally would also allow for regeneration of β-cell mass in the pancreatic islets.

Stem cell-based strategies provide examples of such novel treatments [60, 61]. Since paquini-

mod in previous studies had shown efficacy in other T cell-dependent disease models, we

hypothesized that paquinimod treatment might also have beneficial effects on the development

of T cell-dependent T1D in the NOD mouse. To address this hypothesis, we have in this report

treated NOD mice with paquinimod and investigated the efficacy of treatment on the develop-

ment of insulitis and T1D. In line with our hypothesis, we found significantly reduced incidence

and delayed onset of diabetes in the treated mice. Further, the reduced incidence of disease cor-

related with amelioration of insulitis. Analyses of cells isolated from spleen and pancreatic

Efficacy of paquinimod in diabetes of the NOD mouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0196598 May 9, 2018 2 / 17

did not have any additional role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: TL was a part-time employee

and owns shares in Active Biotech AB. MT is an

employee and has ownership interests in Active

Biotech AB. FI receives a research grant from

Active Biotech AB. There are no further patents,

products in development or marketed products to

declare. This does not alter our adherence to all the

PLOS ONE policies on sharing data and materials,

as detailed online in the guide for authors.

https://doi.org/10.1371/journal.pone.0196598


lymph nodes (panLN) revealed selective reduction of subpopulations of myeloid cells in the

treated mice. In particular, the number Ly6Chi inflammatory monocytes were reduced in

spleen. Collectively our results demonstrate that the immunomodulatory compound paquini-

mod is a potent inhibitor of insulitis and diabetes development in the NOD mouse.

Materials and methods

Mice and treatment

Female NOD/MrkTac mice were purchased from Taconic (USA). All animal experiments

were performed with the permit of the local committee for the ethics of animal experiments of

Malmö and Lund (permits M281-01 and M42-14). Mice were exposed to increasing concen-

tration of CO2 and upon loss of consciousness euthanized by cervical dislocation. To investi-

gate the effect of the Q-compound paquinimod on development of glycosuria and insulitis,

mice were treated with the compound dissolved in drinking water at different concentrations

corresponding to daily doses of about 0.04, 0.2, 1, and 5 mg/kg body weight/day). The mice

were treated with paquinimod starting from either 10 or 15 weeks of age. The duration of

treatment varied from 5 to 23 weeks in the different experiments performed. Paquinimod was

obtained from Active Biotech, Lund, Sweden.

Diabetes incidence, insulitis scoring, and histological analysis

Mice were monitored for diabetes incidence by weekly measurement of glucose levels in urine

(Keto-Diaburtest 5000 kit, Roche). Mice were considered diabetic when glucose level in urine

was more than 13 mmol/l for two consecutive weeks. Due to our ethical permits for animal

experiments (see above), mice that were considered diabetic according to these criteria had to

be euthanized. Pancreas tissue samples were frozen in isopentane and cooled with liquid nitro-

gen, or alternatively, fixed and embedded in paraffin. Tissue sections (5–6 μm) were stained

with hematoxylin and eosin (H&E) to assess insulitis. The sections were evaluated randomly

and blinded by microscopy. Insulitis was scored in at least 40 non-overlapping islets per

mouse using the following grading: no infiltration or intact islets (score 0), peri-insulitis (score

1), less than 50% of islets infiltrated (score 2), and more than 50% of islets infiltrated (score 3).

The insulitis index was calculated according to the following formula [62]: Insulitis index =

(0 × n0) + (1 × n1) + (2 × n2) + (3 × n3) / 3 (n0 + n1 + n2 + n3)

Where n0-n3 denotes the number of islets of scores 0–3.

Immunohistochemistry

Consecutive 8 μm cryosections were prepared from 5 different levels of the pancreas and

stained with optimal concentration of anti-CD4, anti-CD8 (both from Affymetrix; Santa

Clara, Ca, USA), anti F4/80 and anti-FoxP3 (eBioscience, Nordic Biosite, Täby, Sweden). The

slides were then incubated with polymer horseradish peroxidase-labeled secondary antibodies,

and 3,3-Diaminobenzidine (DAB), respectively. The stained sections were analyzed in a Leica

DMRX microscope. At least 40 islets were analyzed from each pancreas. The scoring of the

extent of staining was performed as follows:

CD4/CD8: score 1, cells located peripherally, encircling the islet; score 2, cells infiltrating

up to 1/3 of the islet; score 3, cells infiltrating 1/3 to 2/3 of the islet; score 4, cells infiltrating

more than 2/3 of the islet.

F4/80: score 1, cells located peripherally, encircling the islet; score 2, discrete presence of

cells in islet; score 3, moderate presence of cells in islet; score 4, marked presence of cells in

islet.

Efficacy of paquinimod in diabetes of the NOD mouse
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FoxP3: score 1, only a few positive cells; score 2, low density of positive cells in islet; score 3,

moderate density of cells in islet; score 4, high density of cells in islet.

Antibodies and flow cytometry

Single cell suspensions were prepared from spleens and pancreatic lymph nodes by disaggre-

gation through 70 μm filters. The number of cells obtained from spleens and pancreatic lymph

nodes were determined by flow cytometry by including AccuCount beads (Sphereotech, Lake

Forest, IL) in the antibody-stained cell suspensions. The following antibodies were purchased

from Biolegend (Nordic Biosite, Täby, Sweden): CD11b-Alexa700, Ly6G-APC-Cy7, F4/

80-PE-Cy7, streptavidin Brilliant Violet 605. The following antibodies were purchased from

BD Biosciences (San Jose, Ca, USA): CD19-PerCP-Cy5.5, Ly6C-biotin, SiglecF-PE. Prior to

surface staining, cells were incubated with the 2.4G2 (anti-CD16/CD32) antibody to prevent

unspecific binding. Cells were then stained with the above-mentioned antibodies in FACS

buffer (PBS supplemented with 5% fetal calf serum and 0.05% NaN3 (Sigma-Aldrich, St. Louis,

MO). Fixable viability dye e-Fluor506 (eBioscience) was used for detecting and excluding dead

cells from the analyses. Cells were analyzed using an LSRII flow cytometer (BD Biosciences)

and FlowJo software (Tree Star, Ashland, OR).

Statistical analyses

Results are presented as mean and standard error of the mean (SEM). Differences between two

groups were considered significant when P<0.05 as assessed by the non-parametric Mann-

Whitney U test. Differences in disease incidence were assessed by Mantel-Cox log-rank test

analysis. Statistical analysis was performed using the GraphPad Prism 6 software (GraphPad

Software, San Diego, CA).

Results

Paquinimod treatment prevents development of diabetes in the NOD

mouse

To assess the preventive efficacy of paquinimod on diabetes development in female NOD

mice, we treated groups of mice with daily doses of 0.04, 0.2, 1, and 5 mg/kg/day of paquini-

mod from week 10 of age until week 20 of age. Glycosuria was analyzed on a weekly basis from

10 weeks of age until the endpoint of the experiment at 40 weeks of age. As shown in Fig 1A,

there is a clear dose-dependent reduction in diabetes development in the paquinimod-treated

mice.

In the control group 80% of the mice (16 out of 20) developed diabetes. The incidence of

diabetes was the same in the group that received 0.04 mg/kg/day of paquinimod (8 out of 10

mice, 80%), whereas 60% of the mice (6 out of 10) that received 0.2 mg/kg/day of paquinimod

developed diabetes. None of the mice treated with 1 mg/kg/day of paquinimod developed dia-

betes (p<0.001), while the incidence of disease development was 30% (3 out of 10; p<0.01) in

the group of mice that received 5mg/kg/day of paquinimod. The calculated average week of

diabetes onset was also significantly delayed in the groups of mice treated with 1 and 5 mg/kg/

day of paquinimod as compared to untreated controls (p<0.0001 and p<0.001, respectively)

(S1 Table).

The time of onset of diabetes in NOD mice is variable, while development of insulitis is

more homogenous such that at 15 weeks of age the NOD mouse generally displays extensive

leukocyte infiltration of the pancreatic islets [3–5]. To elucidate the efficacy of paquinimod on

disease development in NOD mice with extensive insulitis, we treated groups of mice with the

Efficacy of paquinimod in diabetes of the NOD mouse
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same doses of paquinimod as was used in the experiment in Fig 1A, but starting the treatment

at 15 weeks of age and continued until the endpoint at 38 weeks of age. A dose-dependent

reduction of diabetes incidence can also be seen in in this experiment (Fig 1B). As summarized

in S1 Table, the incidence of diabetes in the groups treated with 1 and 5mg/kg/day of paquini-

mod was 30% (3 out of 10 mice) and 31% (4 out of 13 mice), respectively and the incidence is

significantly reduced in both groups as compared to the untreated control group (73.3%; 11out

of 15 mice) (p<0.01). The week of diabetes onset is significantly reduced in these two groups

(p<0.05). There is also a trend towards lower incidence of diabetes (50%; 6 out of 12 mice) and

(58.3%; 7 out of 12 of mice) as compared to the control group in the groups of NOD mice

treated with lower doses of paquinimod (0.2 and 0.04mg/kg/day, respectively) (S1 Table).

Paquinimod treatment prevents progression of insulitis in the NOD mouse

Insulitis leads to destruction of β-cells and causes the development of T1D [3]. To elucidate a

possible ameliorating effect of paquinimod treatment on insulitis, we treated 15 weeks old

Fig 1. Delayed onset and reduced susceptibility to diabetes in paquinimod-treated NOD mice. Incidence of diabetes in mice

treated with different doses of paquinimod (mg/kg/day; n = 10 for each dose) or vehicle (Ctrl; n = 20) from 10 to 20w of age A) or 15

to 38 w of age B). In the experiment in C) and D) NOD mice were treated with 1mg/kg/day of paquinimod or vehicle starting at 15w

of age and two groups of mice (treated n = 10; controls n = 10) were sacrificed after 5 weeks of treatment (20w of age) C), and two

additional groups (treated n = 10; controls n = 10) were sacrificed after 15 weeks of treatment (30w of age). Incidence of diabetes in

treated groups compared to the control group (��, p< 0.01, ���, p< 0.001, by Mann Whitney U test).

https://doi.org/10.1371/journal.pone.0196598.g001
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NOD mice with a dose of 1 mg/kg/day, which in the experiments described above showed sim-

ilar efficacy as the 5mg/kg/day dose on the inhibition of diabetes development. One group of

mice was sacrificed at the beginning of the experiment to serve as baseline for the histological

analyses. Further, both at the age of 20 weeks and 30 weeks, respectively, one control group

(n = 10) and one treated group (n = 10) of mice were sacrificed. As can be seen in Fig 1C,

while all of the mice in the paquinimod-treated group scored negative at 20 weeks of age, a

fraction of the mice in the control group had developed diabetes. Similarly, at 30 weeks of age

all of the mice in the paquinimod-treated group still scored negative (Fig 1D). As would be

expected, however, at this later time point an increased fraction of mice had developed diabe-

tes in the control group. The incidence of diabetes was significantly reduced and the week of

onset significantly delayed in the paquinmod-treated group analyzed at 30 weeks of age (S2

Table).

Next, pancreatic tissue sections of NOD mice from both control and paquinimod-treated

groups were histologically assessed (Fig 2A). As summarized in Fig 2B and S3 Table, paquini-

mod-treated animals displayed reduced level of infiltration of pancreatic islets as compared to

untreated controls.

Fig 2. Reduced insulitis in paquinimod treated NOD mice. Cohorts of 15 w old mice were treated either with

paquinimod (Paq; 1 mg/kg/day) or vehicle (Ctrl) as indicated. Groups of mice were sacrificed at the start of the

experiment (Baseline n = 6), at 20 w of age (Ctrl n = 8; Paq n = 9) and at 30w of age (Ctrl n = 7; Paq n = 7). Serial sections

of pancreatic tissue were prepared, stained with H&E and analyzed microscopically. A) Representative images are shown;

scale bar in image: 100 μm. Insulitis scores B), and insulitis indexes C) are shown. In B), the extent of mononuclear cell

infiltration was scored from 0 through 3. Score 0 (open bars), score 1 (light grey bars), score 2 (medium grey bars), score 3

(black bars). In C) insulitis index was calculated as described in Materials and Methods. Insulitis was scored by examining

a minimum of 40 islets per animal. ��, p< 0.01, ���, p< 0.001 by Mann Whitney U test.

https://doi.org/10.1371/journal.pone.0196598.g002
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Even though infiltrated islets could also be detected in paquinimod-treated NOD mice, the

frequency of non-infiltrated islets (score 0) was significantly higher in the treated group com-

pared to the control group. Thus, the mice that were treated with paquinimod for 5 weeks

(n = 9), had 30.1% of intact islets as compared to 9.5% in controls (n = 8) (p<0.01). Further

supporting a beneficial effect of paquinimod treatment on insulitis, the frequency of score 3

islets was found to be significantly higher in controls, with 71.4% of islets having more than

50% of infiltration as opposed to 38% in treated mice (p<0.01). Similarly, in the group of mice

that was treated with paquinimod for 15 weeks, the pancreata had 45% intact islets, while only

13.3% islets were intact in control mice (p<0.05). Furthermore, the treated mice in that group

displayed reduced frequency of score 3 islets (27.2%, n = 7) compared to untreated controls

(68.6%, n = 7) (p<0.01). Importantly, even though the 15 weeks old mice as shown in Fig 2B

display extensive insulitis already at the start of the experiment, we found less pronounced

insulitis in the mice treated for 5 and 15 weeks with paquinimod compared to the age-matched

untreated controls. These results indicate that the treatment may prevent progression of

already established insulitis (S3 Table).

The histological analyses also revealed that the mean insulitis index for treated mice was sig-

nificantly lower after 5 weeks of treatment (0.7 ± 0.1, n = 9), vs control (0.8 ± 0.0, n = 9)

(p<0.001) (Fig 2C). Moreover, this significant trend was preserved even after 15 weeks of

treatment, as the insulitis index for treated group (n = 7) was 0.6 ± 0.1 (SEM), and 0.9 ± 0.1

(SEM) for the control group (n = 7) (p<0.01).

We also analyzed pancreatic tissue sections prepared from three paquinimod-treated (1mg/

kg/day) and three control mice in the experiment shown in (Fig 1B) for the expression of dif-

ferent cellular markers related to disease pathogenesis (S1A Fig). There was also reduced, even

though not significant, extent of infiltration by CD4- and CD8-positive cells in paquinimod-

treated mice (S1B Fig). Notably, there was a trend towards reduced frequency of islets heavily

infiltrated by CD4- and CD8-positive cells (S1C Fig). In contrast, there were only minor

effects on the extent of infiltration by F4/80+ macrophages and Foxp3+ regulatory T cells.

Paquinimod treatment reduces the frequencies of F4/80+ macrophages and

Ly6Chi monocytes in the splenic myeloid cell population of NOD mice

Previous studies from several laboratories have demonstrated the efficacy of Q compounds in var-

ious disease models. Some of those studies suggested that the Q compounds might ameliorate

inflammatory disease by affecting myeloid cell populations such as DCs and monocytes [43, 54,

56, 57]. We therefore used flow cytometry to investigate possible effects of paquinimod on sub-

populations of CD11b+ cells, both in spleen and pancreatic lymph nodes (panLN) using the gating

strategy shown in S2A Fig. The frequency (Fig 3A) and the absolute number (S2B Fig) of splenic

CD11b+ cells was significantly reduced after 5 weeks of treatment with paquinimod, and although

not significant, there was a trend towards reduction of these cells after 15 weeks of treatment.

However, there was no effect of paquinimod treatment on CD11b+ cells in panLNs (Fig 3A).

The frequency (Fig 3B) and absolute number (S2B Fig) of F4/80+ macrophages and Ly6Chi

inflammatory monocytes in spleen was significantly reduced both after 5 and 15 weeks Paqui-

nimod treatment. The decrease in frequency of these populations resulted in a corresponding

increase in the frequency of Ly6G+ neutrophils and SiglecF+ eosinophils (Fig 3B), but not in

absolute numbers (S2B Fig). Although the frequency of F4/80+ macrophages in panLN was

not changed in the paquinimod-treated mice, a trend towards a decrease in Ly6Chi inflamma-

tory monocytes could be seen. Similar to the effect of paquinimod in spleen, there was an

increase in the frequency on Ly6G+ neutrophils and SiglecF+ eosinophils in panLN of treated

mice (Fig 3C).

Efficacy of paquinimod in diabetes of the NOD mouse
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Discussion

The aim of this study was to investigate whether treatment of NOD mice with the immuno-

modulatory Q compound paquinimod would show efficacy on the development of diabetes.

We first treated of 10 weeks old NOD mice with various doses of paquinimod until the mice

were 20 weeks of age. This is an age at which extensive insulitis is observed in most pancreatic

islets and some of the mice will have developed diabetes. Treating the mice using this preven-

tive protocol was in a dose-dependent way sufficient not only to significantly reduce the inci-

dence of diabetes but also to significantly delay the onset of the disease. These results suggested

to us that the 10 weeks of treatment had delayed the progression of insulitis, thereby delaying

both the week of onset and the overall incidence of diabetes.

To investigate the efficacy of paquinimod on development of diabetes in mice with more

progressed insulitis, we initiated treatment in 15 weeks old mice. At this age, insulitis would

have progressed such that most of the islets of Langerhans would be heavily infiltrated by leu-

kocytes and thereby causing extensive cell death of the insulin producing β-cells. The same

doses of paquinimod that showed efficacy in the preventive treatment protocol also signifi-

cantly reduced both the onset of and the incidence of diabetes in the mice that were treated

from 15 to 40 weeks of age. These results provided further support for the hypothesis that

paquinimod treatment delays the progression of insulitis. Only a few of the mice that entered

the experiment were diabetic and hence we could not draw firm conclusions on putative thera-

peutic effects of paquinimod on established diabetes. Because of local legislation for work with

laboratory animals, we cannot keep diabetic mice for more than one week. Hence, we could

not formally address this therapeutic effect experimentally.

We obtained direct experimental support for a therapeutic effect of paquinimod treatment

on insultis by scoring pancreatic tissue sections, that were prepared from mice treated with

paquinimod from week 15 of age to either week 20 or week 30 of age. The results obtained

from the analyses of both groups of mice were very similar. In the pancreata of the treated

mice, the proportion of heavily infiltrated islets was significantly reduced and the proportion

of non-infiltrated islets was significantly increased as compared to tissue sections derived from

untreated controls. We conclude from these experiments that paquinimod treatment delays

the progression of insulitis. We further speculate that regeneration of pancreatic β-cell mass

might explain the increased frequency of non-infiltrated islets found in the treated mice. Previ-

ous studies using various therapeutic regimens in NOD mice have reported on the regenera-

tion of β-cell mass in the treated mice [63–66]. Proliferation of β-cells is a main mechanism for

increasing β-cell mass in the mouse [67], but other mechanisms may also contribute [68, 69].

The frequency and absolute number of splenic CD11b+ myeloid cells and Ly6Chi inflamma-

tory monocytes was reduced in 15 weeks old NOD mice that had been treated with paquini-

mod until 20 and 30 weeks of age, respectively. This effect was selective since the absolute

number of splenic SiglecF+ eosinophils and Ly6G+ neutrophils did not change. The effect of

treatment on panLN inflammatory monocytes and eosinophils showed similar trends. Taken

together, paqunimod-treated NOD mice displayed similar changes in splenic myeloid cell

populations as previously observed in treatment studies in other disease models either using

paquinimod or other structurally related Q compounds [55–58].

Fig 3. Paquinimod treatment reduces the frequency of Ly6Chi and F4/80+ cells in spleen of NOD mice. Cells from spleen and

panLN of the mice in Fig 1C and 1D were analyzed by flowcytometry. A), percentage of single CD19- CD11b+ cells out of total viable

cells, as well as percentage of Ly6Chi inflammatory monocytes, Ly6G+ neutrophils, and SiglecF+ eosinophils among total CD11b+ cell

population is shown both for B) spleens and C) pancreatic lymph nodes of mice. �p< 0.05, ��p< 0.01, ���p< 0.001, ����p< 0.0001,

Mann–Whitney U test.

https://doi.org/10.1371/journal.pone.0196598.g003
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Depletion of macrophages and circulating monocytes in NOD mice was shown to delay

both onset and incidence of diabetes [70] and importantly, also in an acute diabetes model

involving transfer of diabetogenic T cells [71]. The latter result indicates that macrophages and

monocyte are crucial for diabetes development even in the effector phase of the T cell response.

Conversely, overexpression of CCL2 in NOD pancreatic β-cells that leads to recruitment of

large numbers of monocytes to the pancreas caused insulitis [72] and even the development of

diabetes [73]. Taken together, these previous studies indicate that both macrophages and

monocytes may be important for development of diabetes in the NOD mouse. The spleen has

been shown to be a reservoir for monocytes during inflammatory conditions [74]. Thus, the

reduction of the number of splenic Ly6Chi inflammatory monocytes caused by paquinimod

treatment in the experiments reported in here, might potentially contribute to the observed

ameliorating effects on diabetes.

Our previous studies indicated that paquinimod, as well as the structurally related Q com-

pound tasquinimod, interfere with the accumulation of inflammatory monocytes and eosino-

phils in the inflamed peritoneum [42] and in tumor tissue [54], respectively. Along these lines,

reports from other laboratories showed that other structurally related Q compounds had simi-

lar effects. Thus, laquinimod reduced the transmigration of LPS-stimulated monocytes in an

in vitro model [75] and linomide prevented leukocyte-endothelium interactions and extrava-

sation in a rat model of TNFα-induced hepatic injury [76]. Finally, in a recent report paquini-

mod was shown to increase the rolling velocity of leukocytes on inflamed endothelium in vivo

[77]. Collectively, these previous studies suggest that recruitment of leukocytes to sites of

inflammation might be a common mode of action of paquinimod and other structurally

related Q compounds, that may explain their efficacy in various models of inflammation. In

the present report, we treated NOD mice with paquinimod from the age of 10 or 15 weeks of

age. At 8 weeks of age a new set of “late myeloid” genes are expressed in pancreatic islets of the

NOD mouse [78], indicative of arrival of new myeloid cells such as monocytes. We speculate

that paqunimod might interfere with the recruitment of such late arriving myeloid cells,

thereby interfering with the progression of insulitis.

It well established that development of T1D in the NOD mouse is T cell dependent [3, 10,

11]. In the present study, we also analyzed sections of pancreatic tissue from control and

paquinimod-treated mice using immuno-histochemistry. The islets of pancreas from treated

mice displayed a trend towards reduced frequency of islets that were heavily infiltrated by CD4

and CD8 T cells. Because only a few mice were analyzed this reduction did not reach signifi-

cance and therefore we cannot draw firm conclusions from these analyses. Nevertheless, this

reduction probably reflects the overall reduced insulitis in the paquinimod-treated mice. Fur-

ther, studies from several laboratories have suggested that myeloid cells might have a func-

tional impact on the T cell response in mice treated with Q compounds. Thus, our laboratory

previously reported that paquinimod treatment ameliorated EAE, that is a T cell dependent

murine model of multiple sclerosis. The amelioration correlated with reduced number of

splenic Ly6Chi inflammatory monocytes and we could show that these cells are important for

development of EAE [43]. Similar amelioration of disease in the EAE model was observed in

mice treated with the Q compound laquinimod [56, 57]. Modulation of the myeloid cell com-

partment, either monocytes or myeloid DCs, was also reported in those studies and it was pro-

posed that the modulation might reduce the frequency of disease-causing effector T cells [56,

57]. We therefore speculate, that also in the NOD mouse model the effect of paquinimod on

myeloid cells might lead to a modulation of T cell function. In support of this view, Weiss et al

reported on a shift from Th1 to Th2 type cytokine response in spleen cells from NOD mice

treated with the Q compound linomide [79].
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Although we acknowledge the limitations of the NOD model for predicting the possible

effects of the same compound in human disease, the spontaneous nature of disease develop-

ment in the NOD mouse has made it the most used pre-clinical model of human T1D. Many

of the previous reports on the efficacy of Q compounds in inflammatory disease and cancer

have involved the use of models in which disease is induced and not spontaneously developing

as in the NOD mouse. The demonstration of the long-term protection from development of

overt diabetes in NOD mice treated with paquinimod provides an attractive non-cytotoxic

basis for clinical trials in type1diabetes. Phase I clinical trials in patients with systemic lupus

erythematosus [41] and systemic sclerosis (unpublished results) have been performed and

demonstrated good tolerability for this compound.

Supporting information

S1 Table. Average week of onset, incidence of diabetes and survival of control and paquini-

mod-treated NOD mice. Average week of disease onset was calculated until a week 40 and
bweek 38 for the therapeutic treatment groups. For the mice that had not developed diabetes at

the endpoints at aweek 40 or bweek 38, respectively those weeks were considered as the week of

onset. Data are presented as mean ± SEM. Statistical significance compared to control group

(Ctrl) was calculated by Mann Whitney U test for the onset data, and by the log-rank test for

the incidence and survival data (�, p<0.05;��, p< 0.01; ���, p< 0.001; ����p<0.0001).

(PDF)

S2 Table. Delayed onset and reduced incidence of diabetes in paquinimod-treated NOD

mice. a Average onset week was calculated for these mice until aweek 20 or bweek 30. For the

mice that did not develop diabetes the onset week was considered as week 20 or week 30,

respectively. Data presented as mean ± SEM. Statistically significant (�, p< 0.05) compared to

control group (Ctrl) by Mann Whitney U test for the onset data, and by the log-rank test for

the incidence and survival data. Incidence of treated mice compared to control group (�, p<
0.05, ��, p< 0.01).

(DOCX)

S3 Table. Reduced severity of insulitis in paquinimod-treated NOD mice. Average score

was calculated from histological analyses of islet infiltration in pancreata isolated from mice at

indicated weeks of sacrifice or, alternatively, isolated from mice that were sacrificed when

proved to be diabetic. Data are presented as the mean percentage of islets with scores 0–3

within each of the indicated groups of mice ± SEM. Statistically significant (�, p< 0.05, ��, p<
0.01) by Mann Whitney U test for each score as compared to control (Ctrl) group.

(DOCX)

S1 Fig. Reduced frequency of heavily T cell-infiltrated pancreatic islets in paquinimod-

treated NOD mice. Groups of mice were treated either with paquinimod (Paq; 1 mg/kg/day,

n = 3) or vehicle (Ctrl, n = 3) from 15 w– 38 w of age. Serial sections of pancreatic tissue were

prepared, stained with H&E and with various antibodies and analyzed microscopically. A)

Representative images of CD4, CD8, F4/80 and FoxP3 staining in consecutive tissue sections

of the same pancreatic islet are shown (Scale bar: 100 μm). B) Mean scores of indicated mark-

ers in pancreatic islets, calculated as described in Materials and Methods. C) Percentage of

Scores 1 through 4 for each marker in ctrl and paq-treated mice. Score 0 (open bars), score 1

(light grey bars), score 2 (medium grey bars), score 3 (striped bars), score 4 (black bars). A

minimum of 40 islets was examined for each animal.

(TIF)
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S2 Fig. A), gating strategy for the identification of F4/80+, Ly6Chi, Ly6G+, SSChi SiglecF+ cells

within the CD19- CD11b+ cell population in spleen and panLN, that are shown in Fig 3. B)

Absolute number of splenic myeloid cell population shown in Fig 3B.

(TIF)
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