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Continental igneous rock composition: A major control
of past global chemical weathering
Clément P. Bataille,1* Amy Willis,2 Xiao Yang,1 Xiao-Ming Liu1*

The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the
impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere
evolution, is largely unknown.Weuse the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chem-
ical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition
(87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is
correlated to the epsilon hafnium (eHf) of their hosted zircon grains, and we use the detrital zircon record to recon-
struct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in
igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, sug-
gesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The cor-
relation decreases during several time periods, likely reflecting changes in the chemical weathering rate
associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years,
the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather
than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of
limited utility to reconstruct changes in the global chemical weathering rate in deep times.
INTRODUCTION
The chemical weathering of silicates transfers elements from the
continental crust to seawater and exerts a direct control on several bio-
geochemical cycles. For instance, chemical weathering of silicates
transfers calcium (Ca) and magnesium (Mg) to seawater and regulates
atmospheric carbon dioxide levels and temperature at the surface by
controlling the rate of marine carbonate precipitation (1). Despite dec-
ades of research, the mechanisms controlling chemical weathering
throughout Earth’s history remain highly debated (2). The flux of ele-
ments fromcontinentalweathering to seawater is thought tobe primarily
controlled by the rate of chemical weathering. This rate depends mostly
on runoff, temperature, and erosion and is thusmodulated through time
by changes in topography (3, 4), paleogeography (5), climate (5–7), and
biological evolution (8, 9). The type of rock being weathered is also a
critical parameter in understanding chemical weathering becausemin-
erals have distinct chemical composition and dissolution kinetics (10).
However, the chemical composition of rocks subject to weathering is
usually not accounted for when reconstructing the long-term changes
in global chemical weathering.

The interpretation of the strontium isotope ratio in seawater [(87Sr/
86Sr)seawater] is a good illustration of this issue. The (87Sr/86Sr)seawater
variations are commonly used to estimate changes in global chem-
ical weathering rates throughout Earth’s history (11). The (87Sr/
86Sr)seawater curve displays an overall exponential increase controlled
by the progressive differentiation of the Earth’s crust and the associated
increase in the rubidium-to-strontium ratio (Rb/Sr) (11, 12). This
trend is superimposed by second-order fluctuations at the scale of
tens of million years, which are interpreted as reflecting changes in
the relative Sr flux from isotopically distinct sources (11–15). This in-
terpretation assumes that the 87Sr/86Sr ratios of the radiogenic and un-
radiogenic Sr sources change too slowly or are not large enough to
control the (87Sr/86Sr)seawater variations (11). For instance, the steep
rise in (87Sr/86Sr)seawater ratio in the last 40million years (My) has been
explained by several competing “flux”-based hypotheses, including
(i) an enhanced radiogenic Sr flux fromradiogenic continental surfaces
associated with uplift (3, 16) or glacial processes (7, 17, 18) and (ii) a
decreased unradiogenic Sr flux from the oceanic crust associated with
slower seafloor spreading rate (19) or cooler ocean temperature (20).
Rapid changes in the composition of the 87Sr/86Sr ratio of continental
surfaces have been invoked to explain some more specific features in
the (87Sr/86Sr)seawater curve. For instance, the emplacement of large ig-
neous provinces (LIPs) or the uplift of ophiolites can rapidly decrease
the average 87Sr/86Sr ratio from continental weathering (21–23),
whereas the weathering of Sr-rich radiogenic metalimestones could
raise the 87Sr/86Sr of rivers (24, 25). In contrast, little attention has been
given to the potential variations in the average 87Sr/86Sr ratio in igne-
ous rocks generated at plate margins. Plate margin magmatism is the
dominant contributor to new continental crust (26, 27) and serves as
parent rock to a large portion of the siliciclastic sediments of Earth’s
surface (28). The 87Sr/86Sr ratios in silicic rocks generated in this tec-
tonic setting are more variable than those in basalts (29, 30), and the
impact of these compositional variations on the (87Sr/86Sr)seawater
variations has not been explored.

Erosion and burial remove rocks from the surface through time,
which complicates the reconstruction of the compositional evolution
of igneous rocks (31). Fortunately, eroded components of rocks, such
as zircon, are preserved in the siliciclastic sedimentary record. Zircon
grains can survive multiple sedimentary cycles, because of their re-
sistance to physiochemical alteration (32), and contain a wealth of
geochemical information on their hosting igneous rock (32). Uranium-
lead dating (U-Pb date) provides precise crystallization age of the
zircon grains, whereas epsilon hafnium (eHf) records the degree to
which a melt incorporates juvenile mantle versus reworked preexist-
ing crust sources (32). Large compilations of integrated U-Pb date
and eHf from detrital zircon have been used to reconstruct the evo-
lution of the continental crust throughout Earth’s history (33–36).
However, generation and preservation biases in the detrital zircon
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record complicate the interpretation of the secular eHf variations
through time (35). Mafic rocks (high-temperature, low-silica dry
magmas) have low-zircon fertility in comparison with felsic rocks
(low-temperature, high-silica hydrous magmas) (28, 37, 38). Zircon
grains generated in intraplate volcanism, late accretionary, and col-
lisional tectonic settings are preferentially preserved in sediments
relative to those generated in extensional tectonic setting (39–43).
Ultimately, the detrital zircon record is likely biased toward silicic
igneous rocks generated in intraplate volcanism or convergent mar-
gins, although the debate on this question is far from being resolved
(28, 33, 35, 37, 38, 41, 42, 44). Acknowledging the biases outlined
above, we used the detrital zircon record to reconstruct the initial
87Sr/86Sr ratio of zircon-bearing igneous rocks [(87Sr/86Sr)i-zig] over
the last 1000 My. We discuss the strengths and limitations of this
record, andwe reinterpret the (87Sr/86Sr)seawater variations over the last
1000 My by accounting for the changes in isotopic composition of ig-
neous rocks generated through time.
RESULTS
Here, we present a method to reconstruct the (87Sr/86Sr)i-zig variations
for the last 1000My.We compiled a first database gathering integrated
U-Pb date and Hf isotopes on detrital zircon grains from globally dis-
tributed siliciclastic sediments (database S1). Detailed metadata are
used to filter the data to minimize the issues associated with the use
of combined U-Pb and Hf isotopes on detrital zircon grains (see
Materials and Methods and the Supplementary Materials). The
screened database gathers integrated U-Pb date and Hf isotopes from
24,715 zircon grains from 535 individual Mesozoic and Cenozoic sed-
iments (Fig. 1). A debiasing method based on bootstrap resampling
was applied to the compiled data set to correct for geographic and
sampling biases in the detrital zircon record (see Materials and
Methods and the SupplementaryMaterials). To account for the uncer-
tainty in eHf andU-Pb date of individual zircon grains, we performed
the resampling with introduction of Gaussian noise scaled to the eHf
value and U-Pb date of the grains (seeMaterials andMethods and the
Supplementary Materials). Using the resampled data set, we applied a
smoothing procedure to obtain an approximately unbiased estimate of
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the eHf in detrital zircon grains through time (Fig. 1). The sensitivity
of the smoothed trend to different weighing schemes, uncertainty
levels, and resampling strategies was also tested to verify the robust-
ness of our results (seeMaterials andMethods and the Supplementary
Materials).

We compiled a second database combining whole-rock strontium
isotope ratio (87Sr/86Sr) datawith integratedU-Pb date andHf isotopes
from magmatic zircon for Phanerozoic igneous rocks (database S2).
The epsilon strontium (eSr) of the whole-rock samples and the eHf
of the associated zircon grains were calculated. We screened the
database to minimize uncertainty in the eHf and eSr calculations
(see Materials and Methods and the Supplementary Materials). The
screened data set gathers 351 individual igneous rock samples with
combined eSrwhole-rock and associated average integratedU-Pb date
and Hf isotopes from their hosted magmatic zircon grains. The eHf
of zircon grains correlates with the eSr of their hosting igneous rock,
reflecting the coupling between the Sr and Hf isotope systems in
magmatic processes (Fig. 2). However, Hf and Sr can be decoupled,
with Hf always being incompatible and Sr becoming compatible
once plagioclase crystallization begins (45). This decoupling, as well
as the broad range of Sr and Hf content in the parent magma, ex-
plains the scatter in the correlation between eHf and eSr. It should
be noted that the screening procedure did not significantly change
the correlation equation between whole-rock eSr and the average
eHf of hosted magmatic zircon grains. We used the relationship be-
tween the eHf of zircon grains and the eSr of their hosting igneous
rocks to estimate the secular variations in the (87Sr/86Sr)i-zig for the last
1000My (Fig. 2). Secular changes in the (87Sr/86Sr)i-zig ratio reflect the
changing proportion of juvenile and reworked materials generated in
orogenies through time and vary with the supercontinent cycle (46).

We compared the smoothed (87Sr/86Sr)i-zig ratio curve with the
variations of the (87Sr/86Sr)seawater ratio through time (Fig. 3). To facili-
tate the time series analysis, we built upon previous work (12) to
normalize the (87Sr/86Sr)seawater variations [N(

87Sr/86Sr)seawater] (see
Materials and Methods and the Supplementary Materials). To nor-
malize this curve, we removed from the (87Sr/86Sr)seawater curve the sig-
nal associated with the radiogenic decay of the crust (Fig. 3A) (47). The
N(87Sr/86Sr)seawater curve correlates with the (87Sr/86Sr)i-zig curve over
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Fig. 1. Plot of eHf of detrital zircon grains versus U-Pb date. Black dots represent the nonresampled eHf data from a screened subset of database S1. Moving
median and quartiles at 1-My increments for the resampled database S1 (red line and green lines) and for the nonresampled database S1 (black line). The resampled
data set includes both the debiasing resampling and the uncertainty propagation resampling (see Materials and Methods and the Supplementary Materials). The
uncertainty propagation resampling uses U-Pb date (±2%) and eHf (±0.62).
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Fig. 2. Plot of eHf values of inherited zircon grains versus whole-rock eSr values for Phanerozoic igneous rocks. (A) Nonscreened database S2. (B) Screened
database S2. Screening procedure removed rock with crystallization age older than 300 Ma and with 87Rb/86Sr superior to 40. Regression models fitted to the data (red
lines) with 95% confidence interval (blue lines). RMSE, root mean square error.
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Fig. 3. Time series analysis between N(87Sr/86Sr)seawater (blue) and the median (red) and mean (green) (87Sr/86Sr)i-zig, both decomposed to their slow-varying
trend and fast-varying residues. N(87Sr/86Sr)seawater ratio (A) and (87Sr/86Sr)i-zig ratio (B) as in Fig. 1. (C) CCF. The first column corresponds to the original data at a 1-My
interpolated sampling interval, the second column corresponds to the signal filtered for 700-My or longer periodicity, and the third column corresponds to the residual
filtered between 30- and 700-My periodicity. The range of lags tested was set at ±200 My to include slowly exhumed plutonic rocks. A negative lag corresponds to the
N(87Sr/86Sr)seawater ratio lagging the (87Sr/86Sr)i-zig ratio.
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the last 1000My (Fig. 3). The highest correlation [cross-correlation function
(CCF) > 0.65] occurs when the time series are centered on each other
(lag = 0 ± 20 My), with the correlation decreasing rapidly for time lags
larger than 20 My (Fig. 3C). To test the strength of the correlation at
different periodicity, we decomposed both N(87Sr/86Sr)seawater and
(87Sr/86Sr)i-zig curves into a slow-varying trend component and a fast-
varying component by applying two respective fourth-order Butter-
worth filters (see Materials and Methods and the Supplementary
Materials). The signals show a high correlation (CCF≈ 0.6) for periodi-
cities above 30 My. The correlation decreases for periodicity shorter
than 30My likely because of the uncertainty in U-Pb date and eHf val-
ue, whichmake the (87Sr/86Sr)i-zig ratio increasingly noisy.We tested the
sensitivity of the correlation between these time series to our weighing
scheme and normalization procedure and found the correlation be-
tween these curves to be robust and independent of our data anal-
ysis choices.
DISCUSSION
We interpret the correlation between the N(87Sr/86Sr)seawater and the
(87Sr/86Sr)i-zig variations over the last 1000 My as reflecting a direct
control of the isotopic composition of silicic igneous rocks on the
(87Sr/86Sr)seawater variations. We suggest that when the global isotopic
composition of silicic igneous rocks increases, the rapid cycling and
subsequent weathering of these rocks lead to an increase in the
(87Sr/86Sr)seawater ratio within a relatively short time period (<20 My).
The (87Sr/86Sr)i-zig variations probably reflect the changes in the relative
proportion of evolved to less evolved magmas generated in orogenies
and subduction zones during different stages of the supercontinent
cycle (46, 48). Here, we reinterpret the (87Sr/86Sr)seawater variations over
the last 1000My by accounting for this compositional variable.We also
propose alternative hypotheses that could explain the correlation
between these time series.

The N(87Sr/86Sr)seawater and the (87Sr/86Sr)i-zig ratios correlate
strongly over different periodicities (Fig. 3C). Igneous rocks forming
during collisional magmatism, accretionary orogenies in advancing
phase (for example, Andean orogeny), andmature island arcs are char-
acterized by a high reworking of older crust and have high (87Sr/86Sr)i-zig
values (46, 48). In contrast, igneous rocks forming in island arcs, exten-
sional arcs, or accretionary orogenies in retreating phase (rollback) are
less evolved and have low (87Sr/86Sr)i-zig values (46, 48).We thus suggest
that the overall high N(87Sr/86Sr)seawater ratio between 600 and 300 Ma
(million years ago) reflects the continued assembly of the Gondwana-
Pannotia and Pangea supercontinents (46). During that period, colli-
sional orogenies are frequent and subduction occurs dominantly in
advancing phase, with the opening of several ocean basins forming
igneous rocks with high (87Sr/86Sr)i-zig ratios (46). The lower N(

87Sr/
86Sr)seawater ratios before 700 Ma and between 250 and 100 Ma might
reflect the increased proportion of less evolved island and extensional
arcs as well as the long-term closing of ocean basins during the
assembly of theGondwana-Pannotia andAmasia supercontinents, re-
spectively. During those periods, subduction zones are more frequently
in retreating phase forming immature arcs with lower (87Sr/86Sr)i-zig
ratios (Fig. 3A) (46). Interpreting the (87Sr/86Sr)i-zig fluctuations on a
shorter time scale ismore ambiguous because of the bias in the detrital
zircon record, the overlapping of breakup and assembly phases, and
the difference in the supercontinent assembly mode between Pangea
and Gondwana (that is, introversion versus extroversion) (46). How-
ever, we argue that the (87Sr/86Sr)i-zig fluctuations track the global evo-
Bataille et al., Sci. Adv. 2017;3 : e1602183 8 March 2017
lution of the isotopic composition of silicic magmatism occurring at
plate boundaries through time and that these isotopic fluctuations are
rapidly transmitted to seawater through erosion and weathering.

Two prerequisites for this interpretative framework to be valid
are as follows: (i) the amplitude of (87Sr/86Sr)i-zig variations and
the magnitude of the Sr flux from young zircon-bearing igneous rocks
have to be significant enough to affect the marine Sr isotope budget,
and (ii) young zircon-bearing igneous rocks have to be cycled (that is,
exhumed and weathered) rapidly on the surface (<20My) for the time
series to be synchronized (Fig. 3C). The reconstructed (87Sr/86Sr)i-zig
ratio ranges from ~0.704 to ~0.710 for the last 1000 My (Fig. 4C).
Given this range, the flux of Sr from zircon-bearing igneous rocks needs
to contribute around half of the total Sr flux to control the totality of the
N(87Sr/86Sr)seawater variations. Zircon-bearing igneous rocks represent
only ~10%of the silicates exposed onEarth’s surface at the present day
(49). Young igneous rocks and associated volcaniclastic sediments
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Fig. 4. Interpretation of the marine Sr budget. Maximum correlation coefficient
through time (A) between the N(87Sr/86Sr)seawater ratio (B) and the (87Sr/86Sr)i-zig
ratio (green) (C). Curves (B) and (C) are obtained by summing the slow-varying
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resent ocean opening stages.
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are usually highly weatherable, exhumed rapidly, and uplifted which
favors a very high solute flux from these rocks (50–53). At the present
day, young igneous rocks (including basalts) contribute more than a
third of the total Sr flux to seawater (50, 52, 53). Together, these ob-
servations suggest a large contribution of young igneous rocks to the
Sr budget in seawater.

The strength of the correlationbetween the time series is not uniform
through time (Fig. 4A). Periods of high correlation (CCF > 0.7) coincide
with supercontinent dispersal and assembly stages (Fig. 4D) (50). This
observation suggests that during periodswhenplatemargins are domi-
nated by subduction magmatism, the (87Sr/86Sr)i-zig variations, asso-
ciated with changes in the relative proportion of evolved versus less
evolved arcs, are the dominant factor of N(87Sr/86Sr)seawater variations.
One issue with this interpretation is that the detrital zircon record, and
hence (87Sr/86Sr)i-zig variations, does not record in equal proportion
between evolved and less evolvedmagmatism because zircons are pref-
erentially formed in silicic magmas (37, 41). Hence, the sensitivity of
the (87Sr/86Sr)i-zig variations to magmatism from less evolved arcs re-
mains unknown. At the present day, less evolved arcs contribute sig-
nificantly to the Sr budget in seawater and are likely to have been an
important source of Sr to the ocean in the past (52). Owing to the large
volume of magma generated during less evolved arc magmatism (42),
zircon grains from this tectonic setting might still be the dominant
control of the reconstructed (87Sr/86Sr)i-zig ratio during periods domi-
nated by this style of magmatism. Another possibility to explain the
strength of the correlation is that if the rates of mid-ocean ridge mag-
matism and subduction magmatism are at steady state (54, 55), then
the combined Sr flux from these sources should be relatively constant
through time. As the 87Sr/86Sr ratio of basalts generated inmid-oceanic
ridges and less evolved arcs varies little through time (29), the isotopic
composition of the combined subduction and mid-oceanic ridge Sr
fluxes should be mostly sensitive to the 87Sr/86Sr variations of silicic
magmatism in more evolved arcs. In any cases, the strong correlation
between (87Sr/86Sr)i-zig and N(87Sr/86Sr)seawater variations through
most of the last 1000 My suggests a strong control of the isotopic
composition of silicic arcs on the (87Sr/86Sr)seawater variations.

Periods with a low correlation coefficient (CCF < 0.5) between the
time series could be explained by the following: (i) the incomplete ge-
ographic coverage, potential biases, and/or uncertainty in the detrital
zircon database or (ii) the decoupling between eHf and eSr in mag-
matic processes (Fig. 2). However, we notice that intervals when the
time series are not correlated coincide with specific paleogeographic,
tectonic, or climatic events. We suggest that although the relative pro-
portion of evolved versus less evolved arcs is the primary driver of
(87Sr/86Sr)seawater variations, the remaining variance could be ex-
plained by changes in the relative Sr fluxes from isotopically distinct
sources associated with paleogeographic, tectonic, or climatic events.
Our reconstructed (87Sr/86Sr)i-zig variations do not account for the
radiogenic Sr flux from radiogenic recycled silicates, the unradiogenic
Sr flux frommid-oceanic ridges, or the Sr flux from recycled carbonates.
Although the relative Sr fluxes and isotopic composition from these
sources might be relatively constant over long time periods, a shift in
the relative flux from one of these isotopically distinct sources will alter
the correlation between (87Sr/86Sr)i-zig and (87Sr/86Sr)seawater variations.
The correlation coefficient decreases during the Cryogenian, the Ear-
ly Ediacaran, and the Neogene periods. During these periods, the
(87Sr/86Sr)i-zig values decrease, whereas the (

87Sr/86Sr)seawater values in-
crease, indicating a “missing” radiogenic component to the Sr isotope
budget in seawater (Fig. 4C). These periods coincide with time when
Bataille et al., Sci. Adv. 2017;3 : e1602183 8 March 2017
the rate of collisional orogenies was high and/or when the climate was
in an icehouse period (Fig. 4). During periods of collisional orogenies
or during icehouse periods, increased erosion might increase the radio-
genic Sr flux relative to the unradiogenic Sr flux (Fig. 4) (3, 18). The
correlation between the time series also decreases during the amalgama-
tion of the Pangea supercontinent. However, during this period, the
(87Sr/86Sr)i-zig values increase, whereas the (

87Sr/86Sr)seawater values de-
crease (Fig. 4C). Global runoff has been relatively constant over long
time scale, and only a few paleogeographic configurations have led to
significant runoff changes in the last 1000 My (5, 56). During Pangea
amalgamation, increased continental interior aridity led to a twofold
decrease of the global runoff relative to other time periods, which would
have largely decreased the radiogenic Sr flux from cratonic areas (5).
This progressive decrease in Sr flux from radiogenic continental areas
combinedwith the increase inmid-oceanic ridgemagmatismassociated
with the Tethys opening might explain the lower (87Sr/86Sr)seawater
values during the Permian period (57). Changes in the isotopic signa-
ture of the Sr flux exported from continents are associated with the
uplift of metamorphic rocks, ophiolites, and LIPs (22) can also play a
significant role in the Sr isotope budget (56). The rapid weathering of
these isotopically distinct rocks in favorable paleogeographic or tec-
tonic configuration likely contributes to some of the (87Sr/86Sr)seawater
variations over the last 1000 My (Fig. 4).

An alternative and/or complementary interpretation to explain the
correlation between the (87Sr/86Sr)i-zig and (87Sr/86Sr)seawater ratios is
that the generation and preservation biases of the detrital zircon
record correlate to changes in Sr flux from radiogenic and unradio-
genic sources of Sr. The (87Sr/86Sr)seawater variations are thought to
be highly dependent on the rate of collisional orogenies because of
the potential large increase in the Sr flux from uplifted recycled sili-
cates with radiogenic isotopic signatures (3, 16, 25). During periods
when both collisional orogenies and subduction magmatism occur,
the global detrital zircon record will display a high global zircon count
associated with generation and/or preservation biases (42, 43). The
detrital zircon recordwill be biased towardmagmatismoccurring dur-
ing collisional orogenies and/or arc magmatism preserved in this
convergent tectonic setting (43). The zircon grains generated in this
tectonic setting might have a more radiogenic isotopic signature that
will bias the (87Sr/86Sr)i-zig variations toward higher values. These high
(87Sr/86Sr)i-zig values could coincidewith an increase in the weathering
rate of uplifted radiogenic recycled silicates (Fig. 4). Conversely, dur-
ing periods with no collisional orogenies, the global detrital zircon
record will display a low global zircon count associated with generation
and/or preservation biases (42, 43). The reconstructed (87Sr/86Sr)i-zig
ratio might be lower during these periods, reflecting the higher contri-
bution of zircon grains with low (87Sr/86Sr)i-zig ratio (46). These low
(87Sr/86Sr)i-zig values could coincide with increased Sr flux from un-
radiogenic basalts at island arcs or mid-oceanic ridges as observed for
the Mesozoic (Fig. 4). However, this framework requires that magma-
tism associated or preserved during collisional orogeny has a distinct
isotopic signature relative to other magmatism preserved in the detrital
zircon record (43, 46, 48, 58). This might be true for some superconti-
nents and some collisional orogenies, but it also depends on themode of
supercontinent assembly and the type of arcs preserved during collision
(43, 46, 58).

In summary, we present a new method to reconstruct the evolution
of the strontium isotopic composition of silicic igneous rocks through
time. We argued that the (87Sr/86Sr)i-zig variations are the dominant
control of (87Sr/86Sr)seawater evolution over the last 1000 My. Instead of
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interpreting (87Sr/86Sr)seawater variationsas reflectingchanges in thechemical
weathering rate of radiogenic continental surfaces, we suggest that they
primarily track the relative proportion of evolved versus less evolved
magmas in the continental crust. These changes in the global isotopic
composition of silicicmagmas are likely controlled by the different types
of orogeny and the variations in subduction phases occurringwith distinct
supercontinent cycle stages. The remaining (87Sr/86Sr)seawater variations are
probably explained by changes in the relative Sr flux from isotopically dis-
tinct sources associated with specific paleogeographic configurations,
mountain-building events, emplacement of LIPs, or climate variations.
We conclude that the (87Sr/86Sr)seawater variations are of limited utility to
reconstruct the long-term chemical weathering rate.
MATERIALS AND METHODS
Database compilation and screening procedures
Database S1.
We assembled a geochemical database with integrated U-Pb date and
Hf isotopes froma total of 183 individual studies (34, 59–241), including
some from preexisting compilations (database S1) (35, 36, 46, 90, 242).
We added a large number of Mesozoic and Cenozoic samples from
regions that were underrepresented in previous databases, such as
the North American Cordillera, the South American Cordillera,
Antarctica, the Middle East, Turkey, and Australia. Each sample was
pairedwith a geospatial location. Additional data from rivers in Europe
and western Africa would be required to fill geographic gaps. When
location was not given, we used Google Earth and metadata from the
study to estimate the approximate latitude and longitude of the
samples. Other metadata compiled include the lithostratigraphic de-
scription of the sediment, age of deposition, instrument used for anal-
ysis, and range of Th/U ratio and cathodoluminescence description of
the samples. For each zircon grain present in the databases, we also
calculated eHf using Eq. (1). The result is a data set including up to
37 defined variables for each of the compiled samples from varied ge-
ographic locations. These detailed metadata were used to filter the
database and to minimize the issues associated with the use of com-
binedU-Pb andHf isotope on detrital zircon grains (36, 243). Tomin-
imize crystallization age and analytical uncertainty on eHf calculation,
we only selected the following: (i) zircon grains analyzed using in situ
analysis, (ii) zircon grains with high U-Pb date concordance (<10%),
and (iii) zircon grains with low analytical uncertainty and isobaric in-
terferences 176Yb/177Hf < 0.2 or 176Lu/177Hf < 0.005. To minimize the
possible impact of mixed sampling of complex zircon grains, we
screened zircon grains that were reportedly affected by metamor-
phism using Th/U ratio (Th/U < 0.05) and/or visual occurrence of
metamorphic rims from cathodoluminescence. The resulting database
contains 54,406 zircon grains with integrated U-Pb date and Hf iso-
topes from 1263 individual siliciclastic sediments.
Database S2.
Wecompiled a second database combiningwhole-rock 87Sr/86Sr ratio
data and average integrated U-Pb date and Hf isotopes from hosted
magmatic zircon grains from 60 individual studies (database S2)
(244–304). For each whole rock, we calculated eSr using Eq. (1). We
compiled igneous rocks data only from the Phanerozoic to minimize
the uncertainty in the eSr calculations. The data set contains 441
analyses of 87Sr/86Sr data from whole igneous rocks coupled with the
average U-Pb date andHf isotopes from their hosted magmatic zircon
grains.We used this database to relate the eHf of zircon grains with the
eSr of their hosting igneous rock (Fig. 2). We first attempted to min-
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imize uncertainty in eSr calculations by filtering data with the highest
analytical or calculation uncertainty. At equal age, whole rock with
very high Rb/Sr ratio will have a higher uncertainty in their calculated
eSr. Similarly, at equal Rb/Sr ratio, older rocks will have a higher un-
certainty in the eSr calculation.We tested several thresholds of Rb/Sr
and age uncertainty and found that keeping whole-rock data youn-
ger than 300 Ma and with 87Rb/86Sr inferior to 40 led to the best im-
provement in correlation coefficient and root mean square error. This
screening effectively removes 90 eSr from the data set or ~20% of
the data.
Epsilon value calculation.
The formula used to calculate the epsilon value is given below for the
Hf isotope system, but the formula is also valid for the strontium iso-
tope system

eHf tð Þ ¼
176Hf
177Hf

� �
sample

tð Þ

176Hf
177Hf

� �
CHUR

tð Þ
�1

0
BB@

1
CCA� 10; 000 ð1Þ

where (176Hf/177Hf)sample and (176Hf/177Hf)CHUR are the Hf isotope
ratio of the zircon and chondritic uniform reservoir (CHUR) at crys-
tallization age, respectively. These values were calculated using the
radiogenic equation, the present-day measured 176Hf/177Hf and
176Lu/177Hf, and a radiogenic decay constant of 1.867 × 10−11 years
(305). (176Hf/177Hf)CHUR and (176Lu/177Hf)CHUR at the present day
are 0.282772 ± 29 and 0.0332 ± 2, respectively (306). (87Sr/86Sr)CHUR
and (87Rb/86Sr)CHUR at the present day are 0.7045 and 0.0824 (307, 308).

Debiasing the detrital zircon record
Debiasing method.
In accordancewith theHorvitz-Thompson estimation theory, we used
weighted resampling to correct for biases in the detrital zircon record
and to obtain the best estimate of the eHf ratio of zircon-bearing ig-
neous rocks. The Horvitz-Thompson estimation theory dictates that
an unbiased estimate of eHf at any time can be obtained by weighting
each observation with the inverse of its inclusion probability in the
sample (309). We resampled with replacement (bootstrap) from our
database with resample probabilities equal to the Horvitz-Thompson
weights and performed a smoothing procedure on the resampled data
set to obtain an approximately unbiased estimate of the eHf trend
through time. Note that our resampling procedure is similar to that
of Keller and Schoene (31), althoughwemade the connection between
weighting and unbiasedness explicit via the Horvitz-Thompson esti-
mation theory.

We note three key sources of preferential sampling (bias) in our
database. First, sediments present in the database integrate different
proportions of the Earth’s surface. Some sediments in our database
drain very large catchment (for example, theMississippi River), whereas
some others represent much smaller catchments. The sediments
draining large catchments tend to have a broaderU-Pb date distribution
than those draining smaller catchments. The zircon grains collected in
small catchments are more likely to be biased toward a more local
magmatic signature than those in the larger catchments. We did not
identify a proper way to correct for this bias, but to minimize it, we
used only sediments with Cenozoic and Mesozoic depositional age,
which represent 24,715 zircon grains from 535 individual Mesozoic
and Cenozoic sediments. The idea is that older zircon grains in those
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young sediments likely represent a more integrated picture of Earth’s
surface because they had time to mix during multiple sedimentary
cycles.

Second, a disproportionate number of samples were observed from
similar geospatial locations (geographic bias) (fig. S1). If uncorrected,
Asian samples would dominate the estimation of trend eHf. We as-
sumed that the present-day sediment geographic distribution was a
sufficient estimate for geographic debiasing because of the relatively
similar paleogeography throughout this period. We weighted the ge-
ographic locations of each sediment sample using

wgeo
i ¼ 1

varðdistði; jÞÞ ð2Þ

where dist(i,j) represents the haversine distance between the location
of sediment i and the location of sediment j, and var denotes the sam-
ple variance of the distances.

Third, to correct the bias introduced by a larger number of zircon
grains sampled from the same sediment (sampling bias) (fig. S2), we
introduced the weighting by

wsed
i ¼ 1

Ni
ð3Þ

whereNi is the number of zircon grains sampled for the sediment i. To
avoid overweighing poorly sampled sediments, we screened out sedi-
ments with less than 10 zircon grains sampled. The final database used
during the debiasing procedure contained 24,377 individual zircon
grains from 470 individual sediments deposited during the Cenozoic
or Mesozoic.

To combine these sampling mechanisms into a resample probabil-
ity that places equal importance on eachmechanism, it is necessary to
rescale each component.We chose to do this bymatching the first and
second sample moments via a location- and scale-preserving correc-
tion function, z(·), which ensures that the collection of weights has a
mean of 100 and an SD of 10 for each of the two mechanisms. Thus,
our overall resample probabilities are given by

wtot
i ¼ zðwgeo

i Þ þ zðwsed
i Þ ð4Þ

We chose a resample of size 106 to balance computational con-
straints and ensure that actual resampled proportions were approxi-
mately equal to the desired resample proportion.
Response of the eHf trend to resampling procedure.
The spatial distribution of geographic weights shows higher
weights for isolated samples and lower weights for clustered
samples, as we intended our weighted resampling procedure to in-
duce (fig. S3). The prior and posterior density distributions were
compared to the present-day distribution of continental surfaces
(fig. S4). The results suggest substantial improvement in geographic
sampling distribution. However, as observed with the relatively bi-
modal distribution of the geographic weights (fig. S3), the geo-
graphic declustering procedure could benefit from applying more
advanced three-dimensional declustering methods. Prior and pos-
terior resampling distributions of zircon U-Pb date as well as secular
eHf curve do not change markedly after resampling (fig. S5), although
undersampled and isolated samples have a much higher weight (figs.
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S6 and S7). The U-Pb date distribution of the resampled database re-
sembles the U-Pb date distributions of previous databases, with a series
of U-Pb peaks centered on supercontinent periods (fig. S5). However,
we used only sediments deposited during the Mesozoic and Cenozoic,
which explains the progressive increase in zircon frequency throughout
Earth’s history that is not observed in other databases compiling sedi-
ments of all depositional ages. Previous work also noted that the secular
trends in eHf differed between compilations for the last 250 Ma of
Earth’s history (46). We suggest that these differences are associated
with significant geographic biases in these databases. The database com-
piled in this work markedly extends the geographic coverage of Meso-
zoic and Cenozoic zircon grains. Our debiasing approach also limits the
influence of sampling and geographic biases in investigating the result-
ing eHf trend.

Propagating U-Pb date and eHf uncertainties in the
smoothed eHf trend
Gaussian noise resampling.
On the basis of the resampled data set, the eHf trend was calculated
using a rolling median or rolling mean at 1 My, chosen to balance
smoothness and informativity (Fig. 1). However, although we tried
to minimize uncertainty through our screening procedure, both the
U-Pb date and eHf value of individual zircon grains contain signifi-
cant uncertainty. To test the sensitivity of the smoothed eHf trend to
these uncertainties, we resampled the debiased data set by introducing
Gaussian noise around individual U-Pb and eHf values using a range
of uncertainties for each variable. We calculated a median age discor-
dance of 2% (Q1, 0.7%; Q3, 4.1%) using the zircon grains for which
the absolute age discordance was compiled (21% of the data). Simi-
larly, we calculated a median uncertainty for eHf values of ±0.62
(Q1, ±0.45; Q3, ±1).
Response to Gaussian noise resampling.
We found that the smoothed eHf trend ismostly sensitive to uncertainty
in U-Pb date (fig. S8). The smoothed eHf trend shows very little change
when testing a range of uncertainty for the eHf value (fig. S9). Con-
versely, the overall amplitude of variations decreases progressively as
larger U-Pb date discordances are considered (fig. S8). For U-Pb date
discordance superior to 10%, the smoothed eHf trend loses most of its
structure, suggesting that lower discordance threshold should be con-
sidered when trying to reconstruct the long-term evolution of eHf
through time (fig. S8).We choose the eHf trend accounting for theme-
dian uncertainty in U-Pb date (±2%) and eHf (±0.62) as our reference
smoothed curve (Fig. 1).

Normalized (87Sr/86Sr)seawater curves
We used existing compilations of 87Sr/86Sr analysis in carbonates
to generate the (87Sr/86Sr)seawater ratio curve over the last 850 My
(13, 15). The quality and uncertainty associated with these data
vary (310). The age model of Phanerozoic carbonates is usually
more precise (<1 Ma) than that of Proterozoic carbonates (>5 Ma).
The sampling density is much higher in the Cenozoic and Mesozoic
and decreases progressively with time because of the scarcity of ex-
posed carbonates with ages older than the Mesozoic (fig. S10). The
sampling density remains higher than 1 My for the entire Phanerozoic,
whereas several data gaps exist throughout the Ediacaran and Cryo-
genian. This low sampling density complicates the comparison of
the Proterozoic trend with the (87Sr/86Sr)i-zig ratio. We applied a linear
resampling to fill data gaps in the Proterozoic and calculated the
median (87Sr/86Sr)seawater ratio at a 1-My time step.
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To facilitate the time series analysis between (87Sr/86Sr)seawater and
(87Sr/86Sr)i-zig curves, we detrended the (87Sr/86Sr)seawater variations
[N(87Sr/86Sr)seawater]. (

87Sr/86Sr)seawater ratio displays an exponential
increase throughout Earth’s history primarily driven by the radiogenic
decay of 87Rb into 86Sr in the silicate crust (12). On the basis of the
radiogenic equation, the rate of radiogenic decay through time is con-
trolled by the Rb/Sr ratio of the silicate crust. Rb and Sr are in-
compatible elements and are progressively concentrated into crustal
silicates throughout Earth’s history, leaving the mantle depleted in
these elements. Rb, being less compatible than Sr, further concentrates
into crustal silicates, which leads to an increase in the Rb/Sr ratio of the
crust through time. If the rate of crustal growth was constant through-
out Earth’s history, the Rb/Sr ratio of crustal silicates would exponen-
tially increase as a mirror image of the Rb/Sr ratio of the depleted
mantle, butwith a steeper gradient due to the small volume of the crust
in comparison with the mantle (12). However, the rate of crustal
growthwas not constant through time and altered this idealisticmodel
(35). On the basis of geochemical reconstructions, the time-integrated
87Rb/86Sr ratio could have remained relatively constant (47) or increased
slightly (31). Consequently, instead of using an idealized growth curve
with a continuous enrichment of the crust (47), we used a constant
time-integrated 87Rb/86Sr ratio for silicates over the last 1000 My as
our reference curve. However, we also tested the sensitivity of our
conclusions to a potential twofold increase or decrease of the time-
integrated 87Rb/86Sr ratio. We calculated the evolution of 87Sr/86Sr ratio
in seawater associated with radiogenic decay over the last 1000 Ma as

87Sr
86Sr

ðtÞ
� �

seawater‐decay

¼
87Sr
86Sr

ðt1000MyÞ
� �

seawater

þ
87Rb
86Sr

� �
cs

ðelt � 1Þ ð5Þ

where [87Sr/86Sr(t)]seawater-decay is the
87Sr/86Sr ratio of seawater asso-

ciated with radiogenic decay through time, [87Sr/86Sr(t1000 My)]seawater
is the 87Sr/86Sr of seawater at t = 1000 My, (87Rb/86Sr)cs is the

87Rb/
86Sr of the crust silicates for the last 1000My, and l is the decay constant
of the parent isotope (1.42 × 10−11 year−1).

N(87Sr/86Sr)seawater is calculated as

N
87Sr
86Sr
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We calculated the present-day value of the time-integrated
87Rb/86Sr ratio of the continental crust as

87Sr
86Sr

� �
riverine

¼
87Sr
86Sr

� �
cs

fcs þ
87Sr
86Sr

� �
carb

fcarb

87Sr
86Sr

� �
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¼
87Sr
86Sr

� �
riverine

� 87Sr
86Sr

� �
carb

fcarb

fcs
ð7Þ

where (87Sr/86Sr)riverine ratio is the
87Sr/86Sr ratio of the Sr exported from

rivers at the present day (0.71144) (311, 312); (87Sr/86Sr)crust and (87Sr/
86Sr)carb are the

87Sr/86Sr ratio of the continental crust silicates and car-
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bonates, respectively, with (87Sr/86Sr)carb equal to 0.708 at the present
day (52, 311, 313); and fcs and fcarb are the relative fluxes of Sr from
the continental crust silicates and carbonates at the present day (0.37
and 0.63, respectively) (52, 311, 313).

87Rb
86Sr

� �
cs

¼
87Sr
86Sr

� �
cs
−

87Sr
86Sr

� �
i

eλt−1ð Þ ð8Þ

wherel is thedecayconstantof theparent isotope (1.42×10−11 year−1) and
(87Sr/86Sr)i is the initial

87Sr/86Sr of the bulk silicate Earth 4550 Ma
(0.69897) (307).

We applied Eq. (7) and found a 87Sr/86Sr ratio of continental crust
silicates of 0.7178 at the present day, with a corresponding 8Rb/86Sr ratio
of silicates of 0.283. This value is used in Eqs. (6) and (7) to calculate the
N(87Sr/86Sr)seawater ratio.

Time-series analysis
Both (87Sr/86Sr)seawater and (

87Sr/86Sr)i-zig curves have been decomposed
into a slow-varying trend component and a fast-varying component by
applying two respective fourth-order Butterworth filters. A Butterworth
filter is a widely used technique to decompose a time series into com-
ponents with a given periodicity range. The slow-varying component
was isolated from the original record by using a cutoff corner frequency
at 1/700 My−1 with a low-pass Butterworth filter. The filter results in a
slow-varying component that has a time scale of 700My or longer. The
fast-varying component was calculated using a band-pass Butterworth
filterwith a cutoff frequency between 1/700 and 1/30My−1. These cutoff
frequencies were selected so that the half periodicity covers the range of
subduction and orogeny durations during Earth’s history (46). Cross-
correlation coefficient analysis was applied to investigate the potential
linear dependence between the pair of slow-varying components and
also that between the pair of fast-varying components. In addition to
correlation coefficient, which shows the linear dependence between
two time series, the cross-correlation can further reveal possible lead-
lag relationship, which depends on the sign of lag that corresponds to
the maximum coefficient.

Sensitivity analysis
In the first step, we verified whether the smoothed (87Sr/86Sr)i-zig trend
holds for different debiasing and resampling procedures. This is an
important question considering the scatter ineHfvalues (fig. S5).Wehave
already shown that the smoothed eHf trend [hence, the (87Sr/86Sr)i-zig
ratio] is sensitive to the uncertainty in U-Pb date (fig. S8) but not sensitive
to theuncertainty ineHfvalue.We further tested the sensitivity of the time
series analysis to our screening and debiasing procedures. In the first
simulation, we tested the impact of our debiasing procedure choices.
We changed the samplingweight calculation from 1/n to 1/n2. The result-
ing smoothed (87Sr/86Sr)i-zig ratio and the time series analysis show almost
no difference with our reference case (Fig. 3 and fig. S11). In the second
simulation, we tested the sensitivity of our screening procedure to the time
series analysis. Instead of using a data set with only sediments with
Cenozoic and Mesozoic depositional ages, we used a data set with
sediment of all depositional ages. We applied the same screening
and debiasing procedure as in our reference case. In this scenario,
the resulting smoothed (87Sr/86Sr)i-zig ratio shows some significant
differences with our reference data set (Fig. 3 and fig. S12). The cor-
relation between the time series is slightly lower than in our reference
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case, but the conclusions remain unchanged: The CCF between the
two time series remains significant and centered on zero (fig. S12).
We suggest that the slight decrease in correlation observed in this
scenario reflects the integration of zircon data from small rivers that
oversample local magmatism and bias the smoothed eHf values.

In the second step, we tested the sensitivity of the time series analysis
when using a range of calibration procedures for the N(87Sr/86Sr)seawater
ratio. In the first scenario, we assumed that the time-integrated 87Rb/86Sr
ratio increased, following an ideal growthmodel increasing by a factor of
2 throughout the last 1000 Ma (fig. S13) (310). In the second scenario,
we assumed that the time-integrated 87Rb/86Sr ratio decreased by a
factor of 2 throughout the last 1000 Ma (fig. S14) (47). The modifica-
tions in the parameterization of the time-integrated 87Rb/86Sr ratio cal-
ibration lead to some significant changes in the slow-varying trend of
(87Sr/86Sr)i-zig ratio but changes little the fast-varying (87Sr/86Sr)i-zig
trend. In both scenarios, the correlation between (87Sr/86Sr)i-zig ratio
and N(87Sr/86Sr)seawater ratio remains significant and centered on zero
(figs. S12 and S13).
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