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Abstract: Objective: The objective of this review was to evaluate the effect of non-thermal atmospheric
plasma (NTAP) on adhesives resin–dentin micro-tensile bond strength (µTBS) in previously published
studies. Methods: Electronic search was conducted using the Medline, Cochrane library, and Scopus
databases. The included studies were laboratory studies that investigated the effect of NTAP on
adhesives µTBS to coronal dentin. Studies that evaluated the effect of NTAP on bond strength to
indirect substrates, enamel or root dentin, were excluded. The methodological quality of included
studies was assessed. Results: Thirteen studies were included in this systematic review. All the
included studies were considered to have a medium risk of bias. NTAP significantly improved µTBS
at 24 h or after short-term aging in five studies (38.5%) and both immediate and after long-term aging
in 5 studies (38.5%). In two studies (15.4%), NTAP resulted in a short-term material-dependent effect
that was not stable after long-term aging. Interestingly, in one study (7.7%), NTAP had a positive
effect only in the etch-and-rinse (ER) mode after long-term aging. Conclusion: Within the limitations
of this systematic review, NTAP application could enhance resin–dentin µTBS of ER adhesives or
universal adhesives (UAs) applied in the ER mode. In the ER mode, the rewetting step after NTAP
seems to be unnecessary. Because of the limited information currently available in the literature,
further studies are required to evaluate the effect of the NTAP application on self-etch (SE) adhesives
or UAs applied in the SE mode.

Keywords: adhesives; resin–dentin bonding; micro-tensile bond strength; non-thermal atmospheric
plasma

1. Introduction

The stability of the resin–dentin interface affects the clinical performance of resin-based
composite (RBC) restorations [1]. Resin–dentin bonding can be achieved by either etch-and-
rinse (ER) or self-etch (SE) approaches. In the ER strategy, dentin is demineralized using
phosphoric acid followed by the washing and drying steps before adhesive application
and infiltration into dentin. In the SE approach, an acidic primer or adhesive is used to
simultaneously demineralize and infiltrate dentin, so the washing and drying steps are
not required [2]. Current adhesives can be categorized into ER adhesives, SE adhesives
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or universal adhesives (UAs) which are the latest generation of dental adhesives that
can be used in either ER or SE strategy [3]. Irrespective of the adhesive strategy applied,
the achievement of a durable resin–dentin bonding is a challenging task [4,5], and it
relies mainly on the hybrid layer which is created as a result of infiltration of adhesive
monomers into the demineralized dentin [6]. The SE strategy is associated poor resin
infiltration can be also noticed within the adhesive interface, which adversely affects the
resin–dentin bond durability [7]. Further, the etching of dentin with phosphoric acid can
result in the formation of thicker hybrid layers, and longer and more well-defined resin
tags [8]. However, adhesives may not completely encapsulate the exposed collagen fibrils
of acid-etched dentin [9,10].

Resin–dentin bonding can be affected by dentin wetness prior to adhesives applica-
tion [11,12]. The wetness of acid-etched dentin is a determinant factor affecting the quality
of the hybrid layer and dentin bonding with ER adhesives [13]. Moreover, it can affect
the outcome of the adhesive application mode [14]. The bonding performance of some
UAs applied in the ER strategy may be affected by dentin wetness [15]. However, recent
studies [16–18] have shown that this effect is material–dependent for UAs. The drying of
acid-etched dentin may be inadequate, resulting in overly wet dentin, or excessive drying
can lead to dentin desiccation, which in turn could result in the collapse of collagen fibrils
within demineralized dentin and inadequate infiltration of adhesive into inter-tubular
dentin [19]. Inadequate drying of acid-etched dentin could also result in the suboptimal re-
placement of loosely bound water within the collagen matrix of demineralized dentin [20];
this is a major factor that adversely affects the durability of resin–dentin bonding [21],
owing to the hydrolytic degeneration of collagen [22]. The effect of several approaches,
such as the use of collagen cross-linkers [23] and novel solvents [24] on the resin–dentin
bond strength and stabilization of the hybrid layer has been investigated.

Plasma is described as partially ionized gases containing highly reactive particles such
as electronically excited atoms, molecules and free radical species [25]. Based on the gas
temperature, plasmas can be categorized into two main types: thermal (high temperature)
and non-thermal (low-temperature or cold) plasmas (NTAP) [26] which can be used in the
biomedical applications. Recently, NTAP has gained substantial attention in the field of
the adhesive dentistry for non-destructive surface treatment associated with less chances
of technical errors and improvement in the dentin surface energy and wettability [27].
Moreover, NTAP may increase the hydrophilicity of the demineralized dentin surface,
which enhances adhesive penetration into spaces around collagen fibrils of acid-etched
dentin [28]. A previous narrative review generally discussed the effects of NTAP on
resin–dentin bonding [29]: however, few studies on the bond strength were considered.
Therefore, the objective of this review to evaluate the effect of NTAP on the bond strength
to coronal dentin in light of the currently available literature.

2. Methods
2.1. Methods

The Preferred Reporting Items Systematic Review and Meta-Analysis (PRISMA) state-
ment guidelines [30] were followed in reporting this systematic review. Considering the
participants (P), interventions (I), comparators (C), and outcomes (O), and the (PICO) ques-
tion formula [24], the research question for this systematic review was as follows: “Can
NTAP treatment (I), compared to no NTAP treatment (C), affect adhesives micro-tensile
bond strength (µTBS) (O) in case of bonding to coronal dentin (P)?”

2.2. Information Sources and Systematic Search

The search keywords “Non thermal plasma” or “cold plasma,” “adhesive,” “bond
strength,” and “dentin” or “dental” were used to perform the electronic search in three
databases, namely, Medline, Web of Science, and Scopus, in order to identify studies that
investigated the effect of NTAP on resin–dentin (µTBS) and that were published between
Jan 01, 1990, and Oct 04, 2020, in the English language. In addition, the reference lists of
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the included studies were searched manually to identify relevant studies. The identified
studies were imported into Endnote X7.7 software (Thompson Reuters, Philadelphia, PA,
USA) and duplicated items were removed.

2.3. Search Strategy

After the duplicated studies were removed, all the remaining identified studies were
distributed among the seven authors of this paper. The eligibility criteria were checked
independently by each author at the title/abstract level for all articles and at the full-text
level for selected articles.

The included studies had to be laboratory studies in which the effect of NTAP on the
µTBS of adhesives in the case of bonding to coronal dentin was evaluated and published in
the English language. The exclusion criteria were as follows: (1) studies irrelevant with
respect to the study question, (2) reviews, (3) clinical studies, and (4) studies that evaluated
the effect of NTAP on the bond strength in the case of bonding to dental substrates other
than coronal dentin or studies in which adhesives resin–dentin µTBS was not evaluated. For
this systematic review, at least six authors were required to agree to the inclusion/exclusion
of any study.

2.4. Data Extraction and Bias Risk Assessment for the Included Studies

The details of the included studies and their main outcomes in relation to the research
question are summarized in Table 1. Moreover, the adhesive procedures applied in each
study are detailed in Table 2. The methodological quality of each included study was
independently evaluated by the authors according to parameters that are adopted and
modified from previous systematic reviews of studies on the in vitro bond strength [31,32]:
These parameters are teeth randomization [31,32], teeth free of caries [31,32], blinding of the
examiner [31,32], samples with similar dimensions [32], evaluation of the failure mode [32],
sample size calculation [31,32], and complete NTAP specifications and application details
(working gas, flow rate, power input, application time, and distance of NTAP source).
During assessment of each study, if the presence of some of these parameters was identified,
the study was said to have a “Yes” for each specific parameter; if the information was not be
obtained, the study received a “No.” Studies that reported one or two items were considered
to have a high risk of bias, and if they reported three to five of the said parameters, they
were considered to have a medium risk of bias; similarly, they were considered to have a
low risk of bias if they reported six or seven items.

Table 1. Data extraction items from the studies included in the review.

Study
NTAP Specifications NTAP

Application Adhesive µTBS Main Outcome

Working
Gas

Power
Input Time Distance - Sample

Size Aging -

1. Han et al.,
2019 [33]

Helium
Flow rate

(FR):
5000
sccm

3 W 30 s 5 mm

Adper Single
Bond 2 Adhesive,
3M ESPE; St Paul,

MN, USA.

(n = 6)
Tooth

24 h
10,000

Thermocycling
(TC)

NTAP treatment
enhanced resin-dentin
µTBS, at 24 h and after

thermocycling.

2. Ayres et al.,
2018 [34]

Argon
FR:5000

sccm
N/A 10, 30 s 10 mm

Scotchbond
Universal, 3M
ESPE; St Paul,

MN, USA.

(n = 8)
Tooth

One week
Two years water

storage (WS)

NTAP treatment (30 s)
enhanced resin-dentin
µTBS for ER mode after

aging.
NTAP treatment had no

significant effect on
resin–dentin µTBS for

SE mode, at 1 week and
after aging.
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Table 1. Cont.

Study
NTAP Specifications NTAP

Application Adhesive µTBS Main Outcome

Working
Gas

Power
Input Time Distance - Sample

Size Aging -

3. Ayres et al.,
2018 [35]

Argon
FR:5000

sccm
N/A 10, 30 s 10 mm

Scotchbond
Universal 3M
ESPE; St Paul,

MN, USA.

(n = 8)
Tooth

24 h
One year WS

One year
simulated pulpal

pressure

NTAP treatment had no
significant effect on

resin–dentin µTBS for
ER or SE modes, at 24 h

or after aging using
direct water storage.

NTAP treatment
enhanced resin-dentin
µTBS for ER or SE

modes, after aging for 1
year under simulated

pulpal pressure.

4. Zhu et al.,
2018 [36]

Helium
FR:2000

sccm
(Conven-

tional)
FR:4000

sccm
(Modi-
fied)

Conventional:
Vpp = 67
kV, Fre-

quency =
13.56
MHz

Modified:
15 W, Fre-
quency =

13.56
MHz

5, 10 s
(con-
ven-

tional)
15, 30,
45, 60 s
(modi-
fied)

10 mm

Adper Single
Bond Plus, 3M
ESPE; St. Paul,

MN, USA.

(n = 4)
Tooth

24 h
50,000 TC

Modified NTAP drying
enhanced resin-dentin
µTBS, at 24 h and after

aging.
Conventional NTAP

(5 s) enhanced
resin-dentin µTBS,

while dentin treatment
for 10 s had a negative
effect on µTBS, at 24 h

and after aging.

5. Zhu et al.,
2018 [37]

Helium
FR:4000

sccm

15 W
Fre-

quency =
13.56
MHz

N/A N/A

Adper Single
Bond Plus, 3M
ESPE; St. Paul,

MN, USA.

(n = 4)
Tooth

24 h
One year

(chloramine
solution storage)

NTAP drying enhanced
resin-dentin µTBS, at
24 h and after aging.

The highest µTBS was
obtained at 30–45 s.

6. Kim et al.,
2016 [38]

Helium
FR:2000

sccm
0.3 W 20 s 5 mm

Adper Single
Bond 2, 3M ESPE;

St Paul, MN,
USA.

(n = 24)
Hour-
glass
slabs

24 h

NTAP drying enhanced
resin-dentin µTBS. The
rewetting after NTAP
negatively affected the

resin-dentin µTBS.

7.
Hirata

et al., 2016
[39]

Argon
FR:5000

sccm

8 W
Frequency:1.1

MHz,
2 to 6 kV
peak-to-

peak

30 s 15 mm

Optibond FL,
Kerr, Orange, CA,

USA.
XP Bond,

Dentsply De Trey;
Konstanz,
Germany.

(n = 6)
Tooth

One week WS
One year WS

NTAP treatment before
acid etching had no
significant effect on
resin-dentin µTBS of

two-step ER adhesive, at
24 h or after aging.

NTAP drying enhanced
resin-dentin µTBS of

two-step ER adhesive, at
24 h. However, this
effect was not stable

after aging.

8.
Abreu

et al., [40]
2016

Argon
FR:N/A 60 W 15, 30,

45 s N/A

Clearfil SE Bond,
Kuraray Noritake

Dental;
Kurashiki, Japan.

(n = 5)
Tooth 48 h WS

NTAP treatment (30 s)
enhanced resin-dentin

µTBS, promoting
chemical changes in the

dentin structure.

9.
Hirata

et al., 2015
[27]

Argon
FR:5000

sccm

8 W
Frequency:1.1

MHz,
2 to 6 kV
peak-to-

peak

30 s 15 mm

Clearfil SE Bond,
Kuraray Noritake

Dental;
Kurashiki, Japan.

Scotchbond
Universal, 3M
ESPE; St Paul,

MN, USA.

(n = 6)
Tooth One year WS

NTAP treatment
enhanced resin-dentin
µTBS for the universal

adhesive, at 24 h.
However, this positive

effect was not stable
after aging.

NTAP treatment had no
significant effect on

resin-dentin µTBS for
the two-step SE

adhesive, at 24 h or
after aging

10. Dong et al.,
2015 [41]

Argon
FR:3000

sccm
2–3 W 30 s N/A

OptiBond
All-In-One, Kerr;

Romulus, MI,
USA.

(n = 8)
Tooth

24 h WS
60 days WS

NTAP treatment
enhanced resin-dentin

µTBS, at 24 h and
60 days.
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Table 1. Cont.

Study
NTAP Specifications NTAP

Application Adhesive µTBS Main Outcome

Working
Gas

Power
Input Time Distance - Sample

Size Aging -

11. Han et al.,
2014 [42]

Helium
FR:2000

sccm

Conventional:
21.6 kW

h
Pulsed:

1.1 kW h

30 s 5 mm

Scotchbond
Multi-Purpose
Plus adhesive

system, 3M ESPE;
St Paul, MN,

USA.

(n = 20)
Hour-
glass
slabs

24 h
5000 TC

Both types of NTAP
drying enhanced

resin-dentin µTBS at 24
h and after

thermocycling.

12. Dong et al.,
2013 [43]

Argon
FR:3000

sccm
2–3 W 30 s N/A

Adper Single
Bond Plus, 3M
ESPE; St. Paul,

MN, USA.

(n = 8)
Tooth 24 h NTAP drying enhanced

resin-dentin µTBS.

13. Ritts et al.,
2010 [44]

Argon
FR:2500

sccm
5 W 30, 100,

300 s N/A

Adaper Single
bond plus, 3M
ESPE; St Paul,

MN, USA.

N/A 24 h

NTAP drying (30 s)
enhanced resin-dentin

µTBS.
Prolonged plasma

treatment could lead to
a weak interface and
deteriorated dentin

micromechanical
properties.

Table 2. Adhesive procedures applied in studies included in the review.

Study

Adhesive Procedures

Substrate
(Dentin)

Acid
Etching/Time

Dentin
Moisture NTAP Function Rewetting Adhesive Bonded

MaterialApplication Air-Drying Light-Curing

1. Han et al.
2019 [33] NA 35% H3PO4/ Wet

Drying of
demineralized

dentin
No N/A Gently

air-dried 10 s RBC

2. Ayres et al.,
2018 [34] Sound

34%
H3PO4/(ER),

No (SE)
N/A

Dentin surface
treatment
Drying of

demineralized
dentin

No Manufacturer’s
Instructions

Manufacturer’s
Instructions

Manufacturer’s
Instructions RBC

3. Ayres et al.,
2018 [35] Sound

34%
H3PO4/(ER),

No (SE)
Blot-dried

Dentin surface
treatment
Drying of

demineralized
dentin

No Manufacturer’s
Instructions

Manufacturer’s
Instructions 10 s RBC

4. Zhu et al.,
2018 [36] Sound 32% H3PO4 Blot-dried

Drying of
demineralized

dentin
Yes N/A Air-thined 15 s RBC

5. Zhu et al.,
2018 [37] Sound 32% H3PO4 Blot-dried

Drying of
demineralized

dentin
Yes N/A Air-thined 15 s RBC

6. Kim et al.,
2016 [38] Sound 35% H3PO4 N/A

Drying of
demineralized

dentin
Yes/No N/A Gently

air-dried 10 s RBC

7.
Hirata

et al., 2016
[39]

Sound 35% H3PO4 N/A
Drying of

demineralized
dentin

No Manufacturer’s
Instructions

Manufacturer’s
Instructions

Manufacturer’s
Instructions RBC

8.
Abreu

et al., 2016
[40]

2.5%
NaOCl No N/A Dentin surface

treatment No Manufacturer’s
Instructions

Manufacturer’s
Instructions

Manufacturer’s
Instructions RBC

9.
Hirata

et al., 2015
[27]

Sound No N/A Dentin surface
treatment No Manufacturer’s

Instructions
Manufacturer’s
Instructions

Manufacturer’s
Instructions RBC

10. Dong et al.,
2015 [41] Sound No Moist Dentin surface

treatment Yes Manufacturer’s
Instructions

Manufacturer’s
Instructions 10 s RBC

11. Han et al.,
2014 [42] Sound 35% H3PO4 Blot-dried

Drying of
demineralized

dentin
Yes Manufacturer’s

Instructions
Manufacturer’s
Instructions 10 s RBC

12. Dong et al.,
2013 [43] Sound 37% H3PO4 Blot-dried

Drying of
demineralized

dentin
Yes N/A N/A 10 s RBC

13. Ritts et al.,
2010 [44] Sound 37% H3PO4 Blot-dried

Drying of
demineralized

dentin
Yes N/A N/A 10 s RBC
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3. Results
3.1. Search Results

The electronic search in all databases identified 2287 published articles. After the
removal of duplicated studies, the initial screening of the 1169 search results independently
performed by the authors at the title/abstract level resulted in the exclusion of 1100 studies
because of one or more of the following reasons: irrelevant to research question, review
articles, clinical studies, and studies evaluating the effect of NTAP on the implant surface
and osteointegration, biofilm and disinfection, and not written in English language.

Sixty-nine studies were assessed at the full-text level for eligibility, and fifty-six studies
were excluded. The excluded studies evaluated the effect of NTAP on: (1) bond strength
to indirect substrates, (2) bond strength to enamel, (3) dentin surface characterization, (4)
sealer penetration or bond strength to root dentin, (5) adhesive penetration into dentin or
degree of conversion, (6) bond strength to coronal dentin using mini-interfacial fracture
toughness or macro-tensile and (7) bond strength of composite inlay. Finally, thirteen
studies satisfied the inclusion criteria and were included for qualitative analysis in this
systematic review. The search stages are illustrated in Figure 1.
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The included studies are summarized in Table 1, which provides the details regarding
NTAP specifications and application, adhesives used, sample size, and aging applied in
the µTBS test and the study’s main outcome in relation to the research question. Moreover,
the adhesive procedures applied in each included study are detailed in Table 2, which
lists details about the status of the bonded substrate, use of phosphoric acid etching,
dentin moisture, NTAP function, dentin rewetting, adhesive application, air-drying and
light-curing steps, and bonded material.

3.2. Descriptive Analysis

In the 13 studies, two NTAP gases (helium in five studies (38.5%) and argon in eight
studies (61.5%) were used at a flow rate of 2000 to 5000 sccm and power input of 0.3 to 60 W
to evaluate the effect of NTAP on the µTBS of eight adhesives (five ER, two SE, and one MM)
bonding to coronal dentin. Further, the dentin was blot-dried in six studies (46.2%) and was
wet or moist in two studies (15.4%) before NTAP application, and the dentin moisture not
clearly mentioned in five studies (38.5%). The NTAP application durations varied between
5 to 300 s, with 30 s being the most frequently used application time as it was used in 11
studies (86.6%). The distance of the NTAP source varied between 5 and 15 mm. However,
it was not clearly mentioned in five studies (38.5%). In four studies (30.8%), the µTBS was
evaluated immediately, while artificial aging of samples was performed in nine studies
(69.2%). NTAP significantly improved µTBS at 24 h or after short-term aging in five studies
(38.5%) and both immediate and after long-term aging in 5 studies (38.5%). In two studies
(15.4%), NTAP resulted in a short-term material-dependent effect that was not stable after
long-term aging. Interestingly, in one study (7.7%), NTAP had a positive effect only in
the ER mode after long-term aging. The dentin substrate was sound in 11 studies (84.6%)
sound, and it was treated with 2.5% NaOCl in one study (7.7%). Rewetting of dentin was
performed after NTAP application in six (46.2%) studies, not performed in another six
(46.2%) studies, while in one study (7.7%), the effect of rewetting after NTAP was evaluated.
The adhesive application time and air-drying time were not precisely mentioned in six
(46.2%) and two (15.4%) studies, respectively.

Based on the parameters used for the assessment of risk of bias, all the included
studies were considered to have a medium risk of bias. The scores of the included studies
are presented in Table 3. The included studies scored poorly in terms of two items, namely,
sample size calculation and blinding of the examiner.

Table 3. Assessment of risk of bias for the included studies.

Study Randomization Caries Free
Similar Di-
mensions
Samples

Sample
Size Calcu-

lation
Blinding of
Examiner

Failure
Mode

NTAP
Specifications

and Application
Risk of Bias

1. Han et al.,
2019 [33] Yes No Yes No No Yes Yes Medium

2. Ayres et al.,
2018 [34] No Yes Yes No No Yes Yes Medium

3. Ayres et al.,
2018 [35] Yes Yes Yes No No Yes Yes Medium

4. Zhu et al.,
2018 [36] Yes Yes Yes No No No Yes Medium

5. Zhu et al.,
2018 [37] Yes Yes Yes No No No No Medium

6. Kim et al.,
2016 [38] Yes Yes Yes No No Yes Yes Medium

7. Hirata et al.,
2016 [39] Yes Yes Yes No No Yes Yes Medium

8. Abreu et al.,
2016 [40] No No Yes Yes No Yes No Medium

9. Hirata et al.,
2015 [27] Yes Yes Yes No No Yes Yes Medium

10. Dong et al.,
2015 [41] Yes Yes Yes No No Yes No Medium
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Table 3. Cont.

Study Randomization Caries Free
Similar Di-
mensions
Samples

Sample
Size Calcu-

lation
Blinding of
Examiner

Failure
Mode

NTAP
Specifications

and Application
Risk of Bias

11. Han et al.,
2014 [42] Yes Yes Yes No No Yes Yes Medium

12. Dong et al.,
2013 [43] No Yes Yes No No Yes No Medium

13. Ritts et al.,
2010 [44] No Yes Yes No No Yes No Medium

4. Discussion

Systematic reviews can help in the healthcare decision-making as they gather, summa-
rize, and evaluate all studies discussing a specific research question [45]. Thus, they serve
to identify gaps in the literature and suggest avenues for future studies. [46] PRISMA state-
ment guidelines were followed in reporting this systematic review as it is recommended
in reporting dental systematic reviews [45] and the PRISMA endorsement is associated
with more thorough reporting compared to other guidelines [47]. Different bond strength
tests can be used to evaluate resin–dentin bonding [48]. Only studies in which the µTBS
test was applied were included in this systematic review as the µTBS test is a versatile and
effective method for evaluating the resin–dentin bond strength [49–51], that may correlate
with clinical outcomes better than other bond strength tests [52]. NTAP application had
a significant positive effect on the resin–dentin µTBS [33–38,40–44]. While in two stud-
ies [27,39], NTAP application resulted in only a short-term material-dependent positive
effect that was not stable after long-term aging. It is noteworthy that the effect of NTAP
was more prominent with ER adhesives or UAs applied in the ER mode. In contrast, in the
case of SE adhesives or UAs applied in the SE strategy, short- or medium-term µTBS results
showed the positive effect of NTAP [40,41], while long-term results indicated no effect [34]
or material-dependent effect [27] of NTAP. The treatment of demineralized dentin surfaces
with NTAP has been known to increase the penetration of adhesives, resulting in improved
adhesion to resin. [28,42–44] Upon the qualitative assessment of resin–dentin interfacial
morphology using SEM, in the case of the SE mode, no significant difference was detected
between NTAP-treated and non-treated groups [27,35,41]. However, in the ER mode, the
resin tags formed following NTAP application were longer, well-defined and more abun-
dant compared to non-treated groups [35,37,38,42,43], which was in contrast to the results
obtained by Hirata et al. [39] However, the interpretation of adhesive penetration (resin
tags) into dentin is controversial. [53] Thus, it cannot be used alone to explain the positive
impact of NTAP on resin–dentin µTBS. NTAP might enhance the hybrid layer integrity in
two aspects. First, it may have stiffening effect on the hybrid layer, as confirmed by the
results of short-term evaluations of the nano-hardness and Young’s modulus [34], and it
can apparently inhibit the matrix metalloproteinase (MMPs) enzymatic activity in the ER
mode. [35] NTAP application resulted in the formation of a thicker hybrid layer in the ER
mode, as observed in SEM assessment [37,43]. In addition, the micro-Raman spectroscopy
analysis indicated better penetration of the adhesive resin into the hybrid layer. [33,38] An-
other possible explanation for the effects of plasma drying on the improved bond strength
and its mechanism is that breakdown of interfibrillar bonds, such as hydrogen bonds,
might induce structural changes in exposed collagen fibers (Figure 2), thereby preventing
collapse of the collagen networks under dry conditions [44,54]. NTAP enhanced the resin
infiltration into the collagen network, and this could have improved the immediate µTBS
and also might have protected the collagen structure in addition to inhibiting the MMPs
enzymes [35]: thus the durability of bonding is improved [33]. As it has been reported
that partially encapsulated or exposed dentin collagen fibrils at the hybrid layer [9,10] and
susceptible to hydrolytic degradation over time [55]. Previous studies have shown that
wet bonding can deteriorate the resin–dentin interface [56], resulting in its degradation
over time. [57] However, this effect is material-dependent for current UAs [18]. While
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NTAP application was followed by rewetting of the NTAP-treated dentin surface to achieve
wet-bonding in six studies (46.2%), this step (rewetting) was omitted in another six studies
(46.2%). Thus, it seems that there is no consensus on dentin rewetting after NTAP treat-
ment. Dentin rewetting after NTAP application may result in a significant reduction in the
charges, while covalent modifications of the collagen fibrils will endure for the adhesive
application [44]. In addition, rewetting of the NTAP-treated dentin surface may result
in total or partial reduction in its wettability [34,41]. The results of one study [38] that
evaluated the effect of rewetting after NTAP drying revealed that NTAP drying alone can
result in a higher bond strength compared to wet-bonding (rewetting). This was explained
by the maintenance of the collagen network despite the water loss, which resulted in the
uniform and homogeneous adhesive–dentin interface [38]. Moreover, in multiple studies,
the omission of the rewetting step after NTAP application did not seem to prevent the
enhancement of resin–dentin µTBS [38]. Although NTAP may significantly increase the
dentin wettability [27,34,41,58,59] due to elimination of the carbon-containing materials or
organic substances from the dentin surface, as confirmed by the XPS analysis results [58,59],
its effect on adhesives applied in the SE mode was less clear compared to the effect in the
ER mode. This can be explained by the fact that NTAP causes no discernable topographic
changes (roughness) to dentin [35,59]. Moreover, in the SE mode, there are no acid-etching
and washing steps that require drying with air or NTAP, and adhesives simultaneously
demineralize and infiltrate the dentin while the collagen fibrils are not exposed. The
included studies presented a medium risk of bias. Despite their use in previous studies,
the criteria used in the assessment of the risk of bias seem to be rather general and not
topic specific. Previous systematic reviews [60] used topic-specific criteria in order to be in
accordance with the research question. Similarly, in this study, NTAP specifications were
of the aspects used to assess the risk of bias for the included studies. Thus, the adhesive
application protocol—including the application time [61] and method [62] in addition to
adhesive air-drying [60] could significantly affect the bond strength achieved. In studies on
the bond strength, more details on the adhesives application protocol should be precisely
described (instead of simply mentioning that application was performed “according to
manufacturer’s instructions”). This seems to be essential as such instructions may not
be clearly described by some manufacturers. Helium- and argon-generated NTAP can
result in different amounts of reactive species [63], thus studies comparing the effect of
different NTAP gases is recommended. Studies evaluating the effect of NTAP on the
chemical reaction or nano-layering between adhesives and dentin are also recommended.
This systematic review is limited by the lack of quantitative evaluation of evidence by
statistical analysis achieved through meta-analysis [64] that could not be conducted due to
methodological heterogeneity among included studies, particularly in terms of the NTAP
specifications (gas type, flow rate, power, application time, and distance of NTAP source)
and aging conditions. Moreover, the small number (8) of adhesives tested in the included
studies is one of the limitations of this systematic review.
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Figure 2. The effect of non-thermal atmospheric plasma (NTAP) on adhesive resin–dentin bonding in etch-and-rinse
(ER) mode.

5. Conclusions

Within the limitations of this systematic review, NTAP application could enhance
resin–dentin µTBS of ER adhesives or UAs applied in the ER mode. The NTAP effect
could be a result of the enhancement in the quality of the hybrid layer formed [33,37,38,43]
and the inhibition of the MMPs enzymatic activity [35]. In the ER mode, NTAP can be
considered an effective drying method of acid-etched dentin, and the rewetting step after
NTAP seems to be unnecessary. Because of the limited information currently available in
the literature, further studies are required to evaluate the effect of the NTAP application on
SE adhesives or UAs applied in the SE mode.
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