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Glioblastoma is the most common malignant primary brain tumor in adults. Despite
treatment consisting of surgical resection followed by radiotherapy and adjuvant
chemotherapy, survival remains poor at a rate of 26.5% at 2 years. Recent successes
in using immunotherapies to treat a number of solid and hematologic cancers have led to a
growing interest in harnessing the immune system to target glioblastoma. Several studies
have examined the efficacy of various immunotherapies, including checkpoint inhibitors,
vaccines, adoptive transfer of lymphocytes, and oncolytic virotherapy in both pre-clinical
and clinical settings. However, these therapies have yielded mixed results at best when
applied to glioblastoma. While the initial failures of immunotherapy were thought to reflect
the immunoprivileged environment of the brain, more recent studies have revealed immune
escape mechanisms created by the tumor itself and adaptive resistance acquired in
response to therapy. Several of these resistance mechanisms hijack key signaling
pathways within the immune system to create a protumoral microenvironment. In this
review, we discuss immunotherapies that have been trialed in glioblastoma, mechanisms
of tumor resistance, and strategies to sensitize these tumors to immunotherapies. Insights
gained from the studies summarized here may help pave the way for novel therapies to
overcome barriers that have thus far limited the success of immunotherapy in
glioblastoma.
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INTRODUCTION

Glioblastoma (GBM) is the most common cause of primary brain malignancy, accounting for 27% of
all brain tumors and 80% of malignant brain tumors (Ostrom et al., 2015). The current standard of
care (SOC) for primary GBM is maximally safe surgical resection followed by concurrent
radiotherapy and temozolomide (TMZ) for 6 weeks and then adjuvant TMZ for 6 months
(Fernandes et al., 2017). However, despite treatment, median survival remains low with a 2-year
survival rate of under 30% (Stupp et al., 2005) and recurrence occurring in over 90% of high-grade
glioma patients (Choucair et al., 1986).

The recent use of immunotherapies, such as immune checkpoint inhibitors and autologous T cells
expressing chimeric antigen receptors (CAR), to successfully treat various solid and hematologic
malignancies has led to growing interest in applying similar methods to GBM. Nivolumab, an anti-
programmed death-1 (PD-1) antibody, and ipilimumab, an anti-cytotoxic T-lymphocyte associated-
protein 4 (CTLA-4) antibody, have led to improvements in survival when used in stage III and IV
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melanoma patients (Wolchok et al., 2017). Autologous T cells
genetically engineered to express CAR specific for CD19 on
B cells have been used to treat hematologic malignancies
(Kalos et al., 2011). Despite successes with other cancers,
similar checkpoint inhibitor and T cell therapies applied to
GBM have not seen the same level of success.

This review aims to delineate the multiple avenues of
immunotherapy that have been tested in glioblastoma
treatment, including checkpoint inhibitors, vaccines, adoptive
transfer of effector lymphocytes, and oncolytic virotherapy to
stimulate an anti-tumoral immune response. We will also address
the mechanisms of primary and secondary resistance seen in the
immunologically unique environment of the CNS. Finally, we will
discuss strategies to overcome the immunosuppressive tumor
microenvironment and subsequently sensitize tumors to the
immune response.

Immunotherapies
Immune Checkpoint Inhibitors
Immune checkpoints are naturally occurring co-inhibitory
receptors expressed on the surface of T cells that play an
important role in down-modulating the immune response and
promoting self-tolerance (Pardoll, 2012). While these receptors
initially evolved to prevent the development of autoimmunity and
maintain immune homeostasis, they have been found to be
upregulated in various forms of cancer promoting immune
tolerance to tumor cells (Pardoll, 2012). To this end, inhibitors
targeting checkpoint molecules such as CTLA4 and PD1 have
been used to successfully treat patients with solid tumors. In the
following section, we will be covering well-known checkpoint
inhibitors and their successes and pitfalls in treating various
cancers (Table 1).

Anti-CTLA4
The first checkpoint inhibitor approved for clinical use in cancer
patients targeted CTLA4 (Hodi et al., 2003; Phan et al., 2003;
Hodi et al., 2010; Hodi et al., 2003; Phan et al., 2003; Hodi et al.,
2010), an inhibitory receptor expressed on regulatory T cells
(Tregs), CD4, and CD8 T cells (Chan et al., 2014). Blockade of
CTLA4 has been shown to increase the infiltrative T cell and
decrease Treg response to tumor cells (Curran et al., 2010) by
allowing the co-stimulatory receptor CD28 to bind CD80 (B7.1)
and CD86 (B7.2) expressed on antigen-presenting cells (APC)
(Linsley et al., 1994). Under homeostatic conditions, the
interaction between CD28 and B7 provides a crucial second
signal to activate T cells (Lenschow et al., 1996). This
mechanism is well demonstrated by the rampant
autoimmunity seen in CTLA4 knockout murine models (Tivol
et al., 1995; Waterhouse et al., 1995).

Blockade of CTLA4 using the checkpoint inhibitor
ipilimumab has been shown to improve survival in patients
with unresectable stage III or IV melanoma when compared to
use of a peptide vaccine alone (Hodi et al., 2010), and similar anti-
CTLA4 therapies are currently being studied in clinical trials for
cervical cancer, bladder cancer, and soft tissue sarcoma. In non-
small cell lung cancer (NSCLC), the combination of anti-CTLA4
and anti-PD1 has been shown to delay time to deterioration
compared to chemotherapy and resulted in an overall response
rate of 30% in the CheckMate 568 study of 288 patients with stage
IIIB/IV NSCLC (Ready et al., 2019; Reck et al., 2021). In
preclinical murine models of GBM, CTLA4 blockade has been
shown to decrease Treg populations and improve long-term
survival (Fecci et al., 2007; Grauer et al., 2007). In patients
with melanoma metastases to the brain, ipilimumab reaches a
response rate of 18% in neurologically asymptomatic patients not

TABLE 1 | Past and present phase II/III clinical trials with ICIs in glioblastoma.

Clinical
trial

Duration Phase Target Treatment Control Indication Outcome References

ISRCTN84434175 Ipi-Glio 2018- II CTLA4 Ipilimumab + TMZ (n � 80) TMZ (n � 40) ndGBM Ongoing (Brown et al.,
2020)

NCT02017717
CheckMate 143

2014- III PD-1 Nivolumab (n � 184) Bevacizumab
(n � 185)

rGBM OS-
12 months: 42%

(Reardon et al.,
2020)

NCT02550249 2015–2017 II PD-1 Neo- and adjuvant
nivolumab (n � 30)

None ndGBM,
rGBM

OS: 7.3 months (Schalper et al.,
2019)

NCT02617589
CheckMate 498

2016–2021 III PD-1 Nivolumab + RT (n � 280) TMZ + RT (n � 280) ndGBM Non-
improved OS

(Sampson et al.,
2016)

NCT02667587
CheckMate 548

2016- III PD-1 Nivolumab + RT + TMZ Placebo + TMZ
+ RT

ndGBM Ongoing BMS press
release

NCT02337491 2015–2020 II PD-1 Pembrolizumab +
bevacizumab (n � 50)

Pembrolizumab
(n � 30)

rGBM PFS-6months 26
vs 6.7%

(Nayak et al.,
2021)

NCT02337686 2015–2020 II PD-1 Pembrolizumab + Surgery
(n � 15)

None rGBM PFS-6: 53% (De Groot et al.,
2018)

NCT03174197 2017- II PDL1 Atezolizumab + TMZ
(n � 50)

None ndGBM OS: 17.1 mo (Weathers et al.,
2020)

NCT03291314 GLIAVAX 2017- II PDL1 Avelumab + axitinib
(n � 54)

None rGBM PFS-
6 months: 18%

(Neyns et al.,
2019)

NCT02336165 2015 II PDL1 Durvalumab + RT (n � 40) None ndGBM OS-
12 months: 60%

(Reardon et al.,
2019)

NCT03047473 2017–2021 II PDL1 Avelumab (n � 30) None ndGBM Ongoing (Jacques et al.,
2018)
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on steroids and 5% in symptomatic patients taking steroids
(Margolin et al., 2012). The use of ipilimumab with an anti-
PD1 inhibitor in metastatic melanoma to the brain has also been
shown to have improved intracranial efficacy than either
monotherapy, likely via significant increase of CD8+ T cell
migration to the brain (Taggart et al., 2018).

In GBM, the combination of ipilimumab and bevacizumab, a
monoclonal antibody that inhibits vascular endothelial growth
factor (VEGF), has been tested in 20 patients and demonstrated a
31% partial response rate with adverse events in 2 patients (Carter
et al., 2016). While this suggests an overall benign safety profile
for the combination of these two drugs to treat GBM, it has been
noted in the literature that the mixture of newly diagnosed GBM
(ndGBM) and recurrent GBM (rGBM) patients in the study, the
use of radiographic response as a determinant of response rather
than clinical status, and the higher rates of Grade 3 toxicity in
combination therapy compared to bevacizumab alone (35 versus
11%) warrant closer investigation (Tini and Pirtoli, 2016). This
has led to a formal phase I trial testing the maximally safe dose in
three separate conditions: ipilimumab and TMZ, nivolumab and
TMZ, and the combination of all three drugs in patients with
gliosarcoma or ndGBM (National Cancer Institute (NCI), 2020).

Ipilimumab is also being tested as neoadjuvant treatment in
combination with anti-PD1 inhibitor nivolumab for patients with
surgically resectable GBM (MD PYW, 2021), and the same
combination has been shown to be safe via intratumoural and
intracavitary administration in a phase I trial for rGBM patients
(Schwarze et al., 2020). In the ongoing Ipi-Glio trial, ipilimumab
is being tested in combination with TMZ versus TMZ alone in
rGBM patients with results pending (Brown et al., 2020).

Anti-PD1/PDL1
The successes in targeting CTLA4 led to the development of similar
antibodies against the checkpoint molecule PD1 and its ligand PDL1.
PD1 is predominantly expressed on activated B and T cells, and it
counters CD28-mediated stimulatory processes by binding its ligands
PDL1 and PDL2 (Latchman et al., 2001; Keir et al., 2008). Much like
the downstream consequences of CTLA and B7 binding, the
interaction between PD1 and its ligands subsequently inhibits
T cell activation and proliferation (Sharpe and Pauken, 2018), a
mechanism highlighted by the presence of lymphoproliferation and
spontaneous multi-organ autoimmunity in PD1 deficient murine
models (Nishimura et al., 1998; Wang et al., 2005). PDL1 is not only
expressed on immune cells but also on various tissues such as
endothelial and epithelial cells, as well as classically ‘immune
privileged’ sites such as the eye (Boussiotis, 2016). Its ubiquitous
expression and upregulation on tumor cells suggest that PDL1 may
play a role in immune evasion (Blank et al., 2005), making the PD1/
PDL1 pathway an ideal target for checkpoint inhibition.

Two anti-PD1 inhibitors have been approved for clinical use:
nivolumab and pembrolizumab. Initially tested in patients with
melanoma, nivolumab was found to increase overall survival
(72.9%) at 1 year in patients with metastatic melanoma
compared to patients receiving dacarbazine (42.1%) (Robert
et al., 2015). The combined use of nivolumab and ipilimumab
(58%) was subsequently shown to increase rate of overall survival
at 3 years compared to ipilimumab alone (34%) in a phase III trial

from 2017 conducted in patients with advanced melanoma.345

However, similar findings have not been reproduced for
nivolumab use in glioblastoma.

There have been three phase III trials testing the use of
nivolumab in GBM: Checkmate 143, Checkmate 498, and
Checkmate 548. Checkmate 143 tested use of nivolumab
versus bevacizumab in patients with rGBM and found
comparable overall survival (42%) in the two groups, with a
higher objective response rate to bevacizumab (23.1%) than to
nivolumab (7.8%) (Reardon et al., 2020). RNA sequencing of
human glioma tissue after neoadjuvant nivolumab treatment did
demonstrate increased immune cell infiltrate, T cell receptor
clonal diversity, and expression of chemoattractant transcripts
such as CCL4 and CCL3L1 compared to pre-treatment tissue
(Schalper et al., 2019). However, despite the promotion of
immune surveillance, nivolumab use did not significantly
affect patient outcome.3738 Checkmate 498 tested nivolumab
and radiation versus SOC TMZ and radiation in treatment-
naïve, MGMT-unmethylated patients and found non-
improved overall survival in the nivolumab-treated cohort
(Sampson et al., 2016). Checkmate 548 tested the use of
nivolumab and SOC to placebo and SOC in ndGBM patients
with MGMT methylation but was unable to meet its primary
endpoint of overall survival (Bristol-Myers Squibb, 2020a).

Pembrolizumab use has had a similar trajectory to that of
nivolumab, finding limited success in GBM compared to
melanoma. In a phase III trial testing pembrolizumab to
ipilimumab for advanced melanoma patients (KEYNOTE-
006), pembrolizumab use was associated with increased overall
survival (Schachter et al., 2017). As adjuvant therapy in patients
with resected stage III melanoma, pembrolizumab use (75.4%)
continued to be associated with longer recurrence-free survival at
1 year than placebo (61%) (Eggermont et al., 2018). However,
these findings did not translate to GBM, and a phase II trial using
pembrolizumab alone versus with bevacizumab in patients with
rGBM did not find a significant therapeutic benefit in either
group (Nayak et al., 2021).

Atezolizumab, avelumab, and durvalumab are three anti-PDL1
inhibitors that have been approved for clinical use. Atezolizumab
has seen promising results in both GBM and other cancers. In the
IMvigor130 trial in urothelial cancer patients, the combination of
atezolizumab and platinum-based chemotherapy was found to
prolong progression-free survival compared to placebo and
chemotherapy (Galsky et al., 2020). Atezolizumab was then
found to be well-tolerated in rGBM patients, particularly in
patients with a high peripheral CD4+ T cell count, (Lukas et al.,
2018), and a phase II trial found the combination of atezolizumab
TMZ, and radiation in ndGBM patients to be tolerable and
efficacious with a median OS of 19months and median PFS of
10.6 months (M.D. Anderson Cancer Center, 2021). However,
avelumab has not seen a similar level of success in GBM,
having failed to meet the threshold for justifying further
investigation in the GLIAVAX trial testing axitinib and
avelumab combination use in rGBM patients following SOC
(Neyns et al., 2019). Durvalumab has been FDA approved for
bladder cancer and non-small cell lung cancer (NSCLC) and is
currently being tested in a phase II trial for newly diagnosed
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unmethylated GBM patients (Ludwig Institute for Cancer
Research, 2021).

Anti-LAG3 (CD223)
Lymphocyte activation gene-3 (LAG3) is a cell surface molecule
that associates with the CD3/T cell receptor (TCR) complex to
competitively bindMHC II molecules on antigen-presenting cells
(APC), subsequently inhibiting immune cell proliferation (Long
et al., 2018). Constant antigen exposure in the tumor
microenvironment has been shown to upregulate LAG3
expression and contribute to immune cell exhaustion
(Andrews et al., 2017). Its pervasive and aberrant expression
in the tumor microenvironment has made it a target of interest in
cancers that have seen limited success with established ICIs.

Preclinical data in murine GBM models has revealed improved
survival in LAG3 knockout mice receiving anti-PD1 treatment
compared to wild-type (WT) mice treated with anti-PD1,
suggesting that LAG3 inhibition may potentiate the anti-tumoral
effect of anti-PD1 (Harris-Bookman et al., 2018). The use of
relatlimab, an anti-LAG3 monoclonal antibody, and nivolumab
in combination is currently being tested in several clinical trials
for GBM, hematologic malignancies, and other advanced solid
tumors (Puhr and Ilhan-Mutlu, 2019). Of the anti-LAG3 drugs
under development, relatlimab is the only to undergo phase III trials,
currently for metastatic melanoma (Bristol-Myers Squibb, 2020b).

Vaccines (Table 2)
Peptide Vaccines
Peptide vaccines utilize in vitro-synthesized peptides to induce a
lasting anti-tumor immune response (Kumai et al., 2017). The
targets of peptide vaccines are either tumor-associated antigens
(TAA) or tumor-specific antigens (TSA) (Calvo Tardón et al.,

2019). TAAs are expressed in both non-malignant and malignant
tissue but have higher expression in malignant tissue, while TSA
are exclusively expressed in malignant tissue (Calvo Tardón et al.,
2019). While TSAs are most often derived from non-synonymous
single nucleotide variants (SNV), which are patient-specific, there
has also been a push to use TSAs derived from alternative sources
such as frameshift mutations, splice variants, fusion proteins, and
endogenous retroelements, which have the benefit of being more
likely to be shared among tumors and less likely to be patient-
specific (Smith et al., 2019).

Vaccines targeting TAAs have demonstrated non-improved
overall survival in phase III trials for pancreatic cancer
(Middleton et al., 2014) and renal cell carcinoma (Rini et al.,
2016), but the use of a peptide vaccine against three TAAs
(EphA2, IL13Rα2, and survivin) in children with recurrent
high-grade gliomas was well tolerated and demonstrated a
median PFS at 4.1 months and median OS at 12.9 months
(Pollack et al., 2016). IMA950, a multi-peptide vaccine
containing 11 tumor-associated peptides (Rampling et al.,
2016), was well-tolerated in a phase I trial of ndGBM patients
(Rampling et al., 2016) and shown to induce immunogenicity in
the form of CD8+ T cell responses in 63.2% of ndGBM and grade
III astrocytoma patients (Migliorini et al., 2019). However, unlike
the synergy demonstrated between anti-LAG3 and anti-PD1
inhibitors, IMA950 vaccination did not improve response to
bevacizumab in high grade glioma patients, and there were no
significant differences in median PFS or OS between vaccinated
and control patients (Boydell et al., 2019).

Epidermal growth factor receptor variant III deletion
mutation (EGFRvIII) is the most well-studied TSA in GBM,
and there have been several clinical trials conducted focusing on
rindopepimut, a peptide vaccine targeting EGFRvIII (Swartz

TABLE 2 | Past and present phase II/III clinical trials with vaccines in glioblastoma.

Clinical
trial

Duration Phase Target/
Lysate

Treatment Control Indication Outcome References

NCT01498328
ReACT

2011–2016 II EGFRvIII Bevacizumab +
Rindopepimut (n � 33)

Bevacizumab + KLH
(n � 35)

rGBM PFS-6months: 27
vs 11%

(Reardon et al.,
2015)

NCT00458601
ACT III

2007–2016 II EGFRvIII SOC + Rindopepimut +
GM-CSF (n � 65)

None ndGBM PFS-5.5 months: 66% (Schuster et al.,
2015)

NCT01480479
ACT IV

2011–2016 III EGFRvIII Rindopepimut + GM-
CSF + TMZ (n � 371)

KLH + TMZ (n � 374) ndGBM OS: 20.1 vs
20 months

(Weller et al.,
2017)

NCT00643097
ACTIVATe

2007–2016 II EGFRvIII PEP-3-KLH conjugate
+ GM-CSF (n � 18)

TMZ (n � 17) ndGBM PFS-6 months: 67% (Sampson et al.,
2010)

NCT01920191 2013–2016 II TAA SOC + IMA950/poly-
ICLC (n � 19)

None ndGBM OS: 19 months (Migliorini et al.,
2019)

NCT00766753 2006–2016 II TAA αDC1 + poly-ICLC
(n � 22)

None rGBM PFS-
12 months: 40.9%

(Okada et al.,
2011)

NCT02078648 2014–2018 II TAA SL-701 + poly-ICLC +
bevacizumab (n � 74)

None rGBM OS-12: 37% (Peereboom
et al., 2018)

NCT00293423 2013–2017 II Autologous
peptides

HSPPC-96 (n � 41) None rGBM OS-6 months: 90.2% (Bloch et al.,
2014)

NCT00905060 2009–2014 II Autologous
peptides

HSPPC-96 + TMZ
(n � 46)

None ndGBM OS: 23.8 months (Bloch et al.,
2017a)

NCT01814813 2013–2017 II Autologous
peptides

HSPPC0-96 +
bevacizumab (n � 59)

Bevacizumab
(n � 31)

rGBM OS: 7.5 vs
10.7 months

(Bloch et al.,
2017b)

NCT00045968 2006–2016 III Tumor lysate DCVax-L + TMZ
(n � 232)

Autologous PBMC+
TMZ (n � 99)

ndGBM PFS-2 months: 46.2%
PFS-3 months: 25.4%

(Liau et al., 2018)
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et al., 2014). The ReACT and ACT III are two phase II trials that
have tested rindopepimut efficacy in targeting GBM. In the
ReACT trial, combined treatment with rindopepimut and
bevacizumab was tested against placebo in rGBM patients and
found to have increased PFS at 6 months (27 vs 11%) (Reardon
et al., 2015). The ACT III trial found promising PFS of 66% at
5.5 months and OS of 26% at 36 months in patients treated with
rindopepimut and adjuvant TMZ after resection of EGFRvIII+

GBM (Schuster et al., 2015). However, the follow-up ACT IV
phase III trial testing rindopepimut versus control did not find
increased overall survival in ndGBM patients (Weller et al., 2017).

The isocitrate dehydrogenase 1 (IDH1) mutation is another
target of interest due to its expression in over two-thirds of all
low-grade gliomas (Sun et al., 2013). Vaccines designed with
peptides containing the R132H mutation have elicited mutation-
specific CD4+ responses in mice expressing human MHC class I
and II (Schumacher et al., 2014). A similar peptide vaccine against
R132H was safely tested in a phase I trial of grade III and IV
astrocytoma patients and demonstrated 82% PFS at 2 years in
patients with immune responses (Platten et al., 2021).

Heat shock proteins (HSP) have also been utilized to stimulate
anti-tumor immune responses due to their intrinsic ability as
molecular chaperones to carry peptides that are subsequently
cross-presented to the immune system (Shevtsov and Multhoff,
2016). Heat shock protein-peptide complexes (HSPPC) have
been developed using tumor-derived HSP to successfully
generate CD4+ and CD8+ responses in mouse models of
mammary and lung tumors (Manjili et al., 2003) (p110),
(Wang et al., 2003), In GBM, HSPPC-96 is one such vaccine
designed with gp96, a multifunctional HSP capable of inducing
both innate and tumor-specific adaptive immunity (Schild and
Rammensee, 2000). A phase I trial in ndGBM patients
demonstrated a higher median OS for patients with high
tumor-specific immune responses (>40.5 months) after
receiving HSPPC-96 compared to patients with low responses
(14.6 months), as well as a PFS at 6 months of 89.5% (Ji et al.,
2018). Patients with rGBM who received HSPPC-96 in a phase II
trial were found to have a median OS of 42.6 weeks, with 90.2 and
29.3% of patients alive at 6 and 12 months respectively. (Bloch
et al., 2014).

Dendritic Cell Vaccines
DC vaccines utilize the cell’s potent antigen presentation
capabilities to elicit anti-tumor immune responses (Filley and
Dey, 2017). Autologous DCs are harvested from the patient and
stimulated with tumor antigens ex vivo before re-infusion
(Tacken et al., 2007). DCs can be pulsed with one or multiple
antigens – both approaches have been explored in clinical trials.

Two phase I trials that pulsed DCs with Wilms’ tumor 1
(WT1) and six GBMTAAs respectively have found these vaccines
to be safe in rGBM and ndGBM patients (Phuphanich et al., 2013;
Sakai et al., 2015). In the latter study utilizing multiple antigens,
six patients remained tumor-free at 40 months follow-up
(Phuphanich et al., 2013). A phase II trial testing α-type 1
polarized DCs also demonstrated a sustained response in one
rGBM patient and PFS at 12 months in nine out of 22 patients
(Okada et al., 2011). The use of cytomegalovirus phosphoprotein

65 RNA (CMV pp65) to prime DCs is also an active area of
interest given the expression of pp65 in human glioma samples
(Cobbs et al., 2002). DCs pulsed with cytomegalovirus
phosphoprotein 65 RNA (CMV pp65) have been tested in
ndGBM patients, achieving a median PFS and OS of 25.3 and
41.1 months respectively with four out of eleven patients staying
progression-free at 59 months (Batich et al., 2017).

DCVax-L is another DC-based vaccine that pulses dendritic
cells with autologous tumor lysate. A phase I and II trial testing
autologous DC-tumor vaccine therapy in both recurrent and
newly diagnosed GBM patients achieved a median survival of
525 days with lymphopenia and reversible elevations in AST/ALT
as the only two reported adverse effects (Chang et al., 2011). As a
result, a phase III trial was conducted that combined DCVax-L
with SOC for 331 ndGBM patients, which revealed a median
overall survival of 23.1 months from surgery and a 3-years
survival of 46.4% (Liau et al., 2018).

Adoptive T Cell Therapy (Table 3)
The adoptive transfer of tumor infiltrative lymphocytes (TIL) has
been extensively studied in GBM. Resected tumor specimen and
lymphocytes are taken out of the patient and co-cultured in vitro,
and lymphocytes reactive against TAAs are selected for as TILs
and subsequently expanded prior to infusion back into the patient
(Wang et al., 2020). The safety of this method was established in a
study of six recurrent glioma patients who received autologous
TILs that were expanded in vitro with recombinant IL-2. In this
study, the only complications were low grade fevers,
asymptomatic hydrocephalus, and asymptomatic cerebral
swelling, and half of the patients had a partial response at
6 months while 1 patient had complete response at 45 months
(Quattrocchi et al., 1999). Although TILs are not typically
genetically modified at baseline in adoptive transfer, there is
also an ongoing phase I trial evaluating the safety of using
TILs transduced to express PD1 antibody in glioma patients
(MD YY, 2021). Other than TILs, the adoptive transfer of
lymphokine-activated killer (LAK) cells, which are peripheral
mononuclear blood cells (PBMC) incubated with IL-2 in vitro,
has revealed higher median survival rates for rGBM patients
compared to those that undergo reoperation for recurrence
(Dillman et al., 19972004). The use of LAKs to treat GBM is
also currently being studied in a phase II trial (Hoag Memorial
Hospital Presbyterian, 2013).

Chimeric antigen receptor (CAR)-modified T cells have
emerged in recent years as a promising avenue of individualized
immunotherapy. Autologous T cells are taken from the patient and
are engineered to express a synthetic chimeric receptor that can
recognize target cells independent of antigen processing and MHC
restriction (Maus et al., 2014). CAR T-cell therapy targeting CD19
has demonstrated efficacy in treating acute lymphoblastic leukemia
(Maude et al., 2014), and it is currently being studied for use in
GBM. HER2-specific CAR T cells have demonstrated antitumor
activity in preclinical patient-derived xenografts (Ahmed et al.,
2010) and shown to be safe in phase I trials using autologous
HER2-specific CAR virus-specific T cells in CMV seropositive
patients with HER2-positive rGBM (Ahmed et al., 2017). Other cell
surface markers such as EGFRvIII and ephrin-A2 (EphA2) have
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been found to be efficacious targets for CAR T cells in xenograft
models of GBM (Chow et al., 2013; Sampson et al., 2014; Johnson
et al., 2015). In patients, CAR T cells targeting EGFRvIII in a phase
I trial led tomarked expansion of tumor-infiltrating T cells but also
increased expression of inhibitory regulatory T cells and
upregulation of immunosuppressive markers indoleamine 2,3-
dioxygenase 1 (IDO1) and PDL1 (O’Rourke et al., 2017). CAR
T cells targeting IL13Rα2 have been shown to be well tolerated via
intracranial delivery in 3 patients with rGBM (Brown et al., 2015)
and led to regression of multifocal rGBM in both brain and spine
for 7.5 months in a patient who received both intracavitary and
intraventricular infusions of CAR T cells targeting IL13Rα2
(Brown et al., 2016). To overcome the inherent heterogeneity in
GBM, there has also been work studying the use of a trivalent CAR
T cell that targets IL13Rα2, EphA2, and HER2 that has
demonstrated increased and sustained response in patient-
derived xenografts (Bielamowicz et al., 2016).

Oncolytic Virotherapy (Table 4)
Oncolytic viruses (OV) have demonstrated much promise in
eliciting therapeutic responses in several cancers including GBM.
The premise of using OVs is twofold in their ability to selectively

infect tumor cells and induce tumor cell lysis while also releasing
tumor antigens that elicit an anti-tumor immune response.
(Foreman et al., 2017).

Herpes Simplex Virus
The first OV therapy approved by the FDA in the United States
was talimogene laherparepvec (tvec), an oncolytic herpesvirus,
for advanced melanoma in 2015 (Conry et al., 2018), paving the
way for the use of a host of mutated herpesviruses to treat GBM.
Many of these mutated constructs are designed to allow
preferential infection and lysis of tumor cells, allowing for
viral propagation and stimulation of an immune response via
release of tumor antigens (Yin et al., 2017). Two main HSV
mutants tested in clinical trials for GBM are G207, capable of
replicating in only dividing cells, and HSV1716, which can
replicate in both dividing and nondividing cells (Immidisetti
et al., 2021). There have been three phase I trials that
demonstrated the safety and tolerability of G207 in rGBM and
ndGBM patients (Markert et al., 2000; Markert et al., 2009;
Markert et al., 2014), and similarly, three phase I trials have
shown HSV1716 to be tolerable in ndGBM and rGBM patients
(Rampling et al., 2000; Papanastassiou et al., 2002; Harrow et al.,

TABLE 3 | Past and present phase I/II clinical trials with adoptive T cell transfer in glioblastoma.

Clinical trial Duration Phase T Cell Control Indication Objective response References

NCT00331526 1999–2008 II Autologous LAK (n � 33) None ndGBM NR (Dillman et al., 2009)
NCT01109095 2010–2018 I HER2-CAR CMV-T cells (n � 16) None rGBM 8/16 (50%) (Ahmed et al., 2017)
NCT02209376 2014–2018 I EGFRvIII-CAR T cells (n � 10) None rGBM 1/10 (10%) (O’Rourke et al., 2017)
NCT00730613 2002–2011 I IL13Rα2-CAR CTL (n � 3) None rGBM 2/3 (66%) (Brown et al., 2015)
NCT02208362 2015–2022 I IL13BB- CAR Autologous T cells (n � 1) None rGBM 1/1 (100%) (Brown et al., 2016)

TABLE 4 | Past and present phase II/III clinical trials with oncolytic virotherapy in glioblastoma.

Clinical
trial

Duration Phase Virus
type

Treatment Control Indication Outcome References

NCT04482933 2021- II Herpes
simplex virus

HSV G207 None Recurrent high
grade glioma

NR (MD GKF,
2021)

NCT02798406 CAPTIVE/
KEYNOTE 192

2016–2021 II Adenovirus DNX 2401 +
pembrolizumab
(n � 49)

None rGBM Median OS:
12.5 months

BioSpace
Press release

NCT02986178 2017- II Poliovirus PVS-RIPO (n � 122) None rGBM NR (UHSCC,
2021)

NCT04479241 LUMINOS-
101

2020- II Poliovirus PVS-RIPO +
pembrolizumab
(n � 30)

None rGBM NR (Sloan et al.,
2021)

NCT01174537 NA I/II Newcastle
disease virus

NDV-HUJ (n � 14) None rGBM PFS range:
2–37 weeks OS
range: 3–66 weeks

(Freeman et al.,
2006)

NA Published
1998

I/II Replicating
Retrovirus

HSV-tk (n � 12) None rGBM OS-12: 25% (Klatzmann
et al., 1998)

NA Published
1999

I/II Replicating
Retrovirus

HSV-tk (n � 48) None rGBM OS-12: 27% (Shand et al.,
1999)

NA Published
2004

III Replicating
Retrovirus

HSV-tk + SOC
(n � 124)

SOC
(n � 124)

ndGBM OS-12: 50 vs 55%
(treatment vs control)

(Rainov, 2000)

NCT02414165 2015–2019 II Replicating
Retrovirus

Toca 511 (n � 201) SOC
(n � 202)

ndGBM &
rGBM

Median OS: 11.1 vs
12.2 mth (treatment
vs control)

(Cloughesy
et al., 2020)
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2004). Additionally, there was a phase I trial testing intratumoral
and peritumoral injection of HSV1716 after resection in pediatric
patients with recurrent gliomas that was terminated due to low
recruitment (Pediatric Brain Tumor Consortium, 2016).
HSV1716 is currently undergoing testing in a phase II trial for
children with recurrent high grade glioma (MD GKF, 2021). An
alternate version of G207 named G47Δ is currently undergoing
phase I and II studies in rGBM patients in Japan (JPRN-
UMIN000002661). There is also a phase I trial currently
underway testing M032, a genetically engineered HSV
expressing IL12 transgene, in rGBM patients (MD JM, 2021).

Adenovirus
Genetically manipulated adenovirus has also become a popular
form of viral therapy in treating GBM. ONYX-015 is an
adenovirus construct attenuated via deletion at the E1b locus
that was one of the first such constructs to be tested in humans
(Kirn, 2001). It was investigated in a 2004 phase I study of 24
rGBM patients who received intratumoral injections with a
median survival of 6.2 months (Chiocca et al., 2004). However,
attention ultimately shifted to other forms of adenovirus
constructs for multiple reasons, including a lack of response to
ONYX-015 as a single agent for solid tumors in multiple trials
(Kirn, 2001).

There is now much work surrounding DNX-2401, a
replication-competent adenovirus that is unable to bind
healthy cells with intact retinoblastoma pathways and thus
selectively binds tumor cells (Philbrick and Adamson, 2019)
(p2401). A phase I trial for DNX-2401 tested dose escalation
protocols via either single intratumoral injection or permanently
implanted catheter followed by tumor resection for both groups
and resulted in 5 (20%) patients with over 3 years of survival in
the first group and 2 (17%) patients with over 2 years of survival
in the second group (Lang et al., 2018). DNX-2401 has been
demonstrated to promote a shift towards the M1 macrophage
phenotype in the CSF of treated GBM patients compared with
controls, suggesting a treatment-mediated protumoral shift in the
immune landscape (Van den Bossche et al., 2018). A phase Ib trial
has been completed testing the use of DNX-2401 alone versus in
combination with interferon gamma (IFN-γ); while IFN-γ did
not provide additional survival benefit, DNX-2401 alone
appeared to provide an OS-12 of 33% across 27 patients (Lang
et al., 2017). The recently completed phase II CAPTIVE/
KEYNOTE 192 trial testing DNX-2401 in combination with
pembrolizumab in rGBM patients has reported positive results
with a median OS of 12.5 months (DNAtrix, 2021).

Poliovirus
PVS-RIPO is a replication-competent polio-rhinovirus chimera
that selectively infects cells expressing CD155 and demonstrates
attenuated neurovirulence via substitution of the native internal
ribosome entry site (IRES) for that of rhinovirus (Gromeier and
Nair, 2018). Preclinical studies have demonstrated that PVS-
RIPO infection may induce dendritic cell and neutrophilic
recruitment to the tumor site in vivo (Gromeier and Nair,
2018; Mosaheb et al., 2020). A phase I trial testing
intratumoral injection of PVS-RIPO in 61 rGBM patients

demonstrated a higher OS rate of 21% at 36 months compared
to historical controls, with 2 patients surviving for more than
70 months (Desjardins et al., 2018). The favorable results from
phase I have led to two ongoing phase II trials testing PVS-RIPO
alone in 122 rGBM patients (UHSCC, 2021) and testing PVS-
RIPO in combination with pembrolizumab in 30 rGBM patients
in the LUMINOS-101 trial. (Istari Oncology, 2021).

Newcastle Disease Virus
NDV, like much of the viruses discussed here, is capable of
selectively infecting and inducing lysis in tumor cells from a
variety of cancers (Matveeva et al., 2015). There have been three
strains developed and tested in clinical trials over the years:
MTH-68, NDV-HUJ, and Ulster. The first reported use of the
MTH-68 strain to treat CNS tumors occurred in 1999 in pediatric
patients with rGBM. This was followed up with a 2004 study that
tested MTH-68 in four patients with high grade glioma that
resulted in survival rates ranging from five to 9 years (Csatary and
Bakács, 1999; Csatary et al., 2004). NDV-HUJ was tested in a 2006
phase I/II trial of 14 rGBM patients that had been refractory to
treatment, with minimal Grade I and II toxicities only and three
long-term survivors who all eventually progressed either clinically
or radiologically (Freeman et al., 2006). In 2001, Schneider et al.
tested autologous tumor cells infected with Ulster NDV and
subsequently irradiated in 11 patients after surgical resection and
found comparable survival compared to patients who received
chemotherapy instead of virotherapy (Schneider et al., 2001). A
similar approach was taken in 23 ndGBM patients who
underwent maximal resection and received ATV-NDV, an
anti-tumor vaccine infected with the Ulster NDV strain; the
results demonstrated significantly increased rates of OS-1 (91
versus 45%) and OS-2 (39 versus 11%) compared to the control
group (Steiner et al., 2004).

Reovirus
Reovirus is a double-stranded RNA virus that preferentially
infects and lyses tumor cells in part via overactivated Ras
signaling pathways that enhance proteolytic viral disassembly
in malignant cells (Coffey et al., 1998; Norman et al., 2004; Alain
et al., 2007). The application of reovirus for treating tumors was
first accomplished via phase I studies on prostate cancer and
cutaneous metastases from systemic cancer before eventually
being tested on malignant gliomas by Forsyth et al. (2008)
Nine of 12 patients were treated for GBM in a dose escalation
protocol with no observable adverse events and survival ranging
from 6 to 63 weeks (Forsyth et al., 2008). Similar findings were
replicated by Kicielinski et al. when applying Reolysin, a wild-type
reovirus, to malignant gliomas in a phase I study (Kicielinski
et al., 2014). Results were promising, with survival ranging from
14 to 141 weeks, which prompted the designation of orphan drug
status to Reolysin for the treatment of malignant glioma by the
FDA in 2015 (Jaime-Ramirez et al., 2017). In vitro studies have
demonstrated that reovirus administration induces DC
maturation, stimulates proinflammatory cytokine production,
including IFN-alpha, TNF-alpha, and IL-6, and increases NK
cell cytolytic activity on tumor cells (Errington et al., 2008).
Human studies have confirmed the capacity for reovirus to
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generate a pro-inflammatory environment, with intravenous
delivery of reovirus to brain tumor patients being associated
with increased CD8+ T cell tumor infiltration, likely attributed to
the observed increase in CCL3, CCL4, and ICAM expression,
which mediate migration to sites of inflammation (Samson et al.,
2018). However, tumors from reovirus-treated patients were also
noted to have greater expression of PD-1 and PD-L1 immune
checkpoint proteins, highlighting a potential response
mechanism by the tumor to counteract the stimulated
immune system. While reovirus harbors significant therapeutic
utility for the treatment of GBM, further characterization of the
tumor’s response to infection is required, as well as consideration
for combinatorial treatment with immune checkpoint blockades,
such as anti-PD-1/PD-L1. As such, reovirus is no longer being
investigated as a monotherapy, and further investigation with
other treatment modalities is currently underway (Müller et al.,
2020).

Parvovirus
Parvovirus, specifically H-1 parvovirus (H-1PV), became the
focus of many decades of cancer research after discovering that
it possesses a natural tropism for human cancer cells in 1961
(Toolan, 1961). The rat is the natural host of H-1PV, and H-1PV
has been shown to be nonpathogenic to humans by failing to
produce new virus particles and induce cell lysis in normal, non-
transformed cells (Angelova et al., 2015). However, it has been
shown to infect and cause cell death in a wide range of cancers,
including tumors of the bone, brain, breast, colon, lung,
pancreas, and skin, as well as hematological disease such as
Burkitt lymphoma, cutaneous T-cell lymphoma, and diffuse
large B-cell lymphoma (Angelova et al., 2017; Bretscher and
Marchini, 2019). The oncotropism of H-1PV involves a myriad
of processes, including but not limited to factors essential for
viral entry (PKCalpha, CDK1), replication (cyclin A/CDK2,
E2F), and maturation (XPO1, PKB, PKC), as well as
deficiency of mechanisms necessary to counter viral infection
(type I IFN stress response), in tumor cells (Angelova et al.,
2015). In vitro studies of H-1PV found selective killing of glioma
cells via a cathepsin-mediated mechanism, which translated to
prolonged survival in glioma-bearing rats treated with
intratumoral, intravenous, and intranasal H-1PV inoculation,
again via elevated cathepsin activation and activity (Di Piazza
et al., 2007; Geletneky et al., 2010). The first clinical trial for
GBM was then initiated by Geletneky et al., who found H-1PV
(ParvOryx01) to be an immunogenic stimulus in patients with
recurrent GBM (Geletneky et al., 2017). Treated patients were
found to have strong leukocytic infiltration, predominantly
CD8+ T cells and, to a lesser degree, CD4+ T cells.
Additionally, a promising finding was that the increased
CD8+ T cell population did not coincide with a responsive
increase in tumor-invading Tregs that is typical of GBM. This is
in line with in vitro studies that have found H-1PV to capable of
suppressing the activity of Tregs (Moralès et al., 2012). Given
these findings, in addition to a case series of patients successfully
treated with a combination of NDV, parvovirus, and vaccinia
virus, further characterization of the anti-tumor and immune
sensitizing effects of H-1PV and investigation of its clinical

effects in GBM through a randomized controlled trial is
required (Gesundheit et al., 2020).

Retrovirus
Replicating retroviral vectors have been harnessed for their ability
to deliver ‘suicide genes,’ or genes that encode for proteins
capable of converting non-toxic into toxic drugs upon delivery
of a prodrug (Li et al., 2021). This was the basis of a retroviral
vector encoding for HSV thymidine kinase (HSV-tk), which
could convert ganciclovir (GCV) into GCV triphosphate, an
inhibitor of DNA replication. HSV-tk was tested in 15 GBM
patients who received intratumoral injection of HSV-tk followed
by intravenous GCV administration, with 1 long-term survivor at
220 weeks (Ram et al., 1997). Twelve rGBM patients exhibited no
serious adverse events in a phase I/II study after receiving
intratumoral injection of HSV-tk cells intra-operatively, with
25% of patients living longer than 12 months (Klatzmann
et al., 1998). A similar study in 13 ndGBM patients
demonstrated significantly elevated soluble Fas ligand and IL-
12 levels in serum of HSV-tk treated patients versus controls but
did not find increased tumor-infiltrating lymphocytes at the
resection cavity or activation of T or NK cells (Rainov et al.,
2000). Another phase I/II clinical trial in 48 rGBM patients who
received intracerebral injection of HSV-tk demonstrated no
serious adverse events or evidence of virus in the serum or
tissue at time of repeat resection (Shand et al., 1999).
However, a phase III trial studying the effects of HSV-tk and
GCV treatment in 248 ndGBM patients found no significant
difference in PFS and median survival between treated and
control patients, which was hypothesized to be due to poor
transduction efficiency (Rainov, 2000).

Toca 511 is a replication-competent retroviral vector that
delivers cytosine deaminase (CD) to convert prodrug 5-
fluorocytosine (5-FC) to antineoplastic agent 5-fluorouracil (5-
FU) (Huang et al., 2013). Toca 511 was tested in 45 high grade
glioma patients in a phase I trial that demonstrated a significantly
longer OS of 13.6 months compared to control (Cloughesy et al.,
2016). These favorable results led to a phase II trial testing Toca
511 to SOC in GBM patients and demonstrated no significant
difference in median survival between the two groups (Cloughesy
et al., 2020).

Mechanisms of Resistance
Despite the successes seen with immunotherapy against GBM
in preclinical models, these results have not translated well in
the clinical setting, as fewer than 10% of GBM patients have
been shown to respond to immunotherapy (McGranahan
et al., 2019) (p2401). As such, it is important to understand
the intrinsic and adaptive forms of resistance exhibited in
GBM (Table 5).

Intrinsic (Primary) Resistance
Several factors contribute to immune evasion in GBM. Unlike
other cancers, GBM has been known to display extensive
intratumoral heterogeneity (Patel et al., 2014), which
confounds efforts to identify high-quality clonal neoantigens
regardless of the form of immunotherapy trialed. While GBM
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has traditionally been classified into proneural, classical,
mesenchymal, and neural subsets, single cell RNA-sequencing
has revealed cross-over among the subtypes within the same
tumor and the presence of hybrid cellular states (Patel et al.,
2014). Genomic studies of GBM heterogeneity have revealed the
presence of a CD133+ chemo- and radio-resistant cancer stem cell
(CSC) population responsible for tumor initiation and found to
have higher expression in recurrent tumors (Bao et al., 2006; Liu
et al., 2006; Tamura et al., 2013; Qazi et al., 2017), but even then,
CD133+ has failed to be a universal marker of CSCs given the
discovery of similarly functioning CD133- cell populations (Chen
et al., 2010).

In addition to the extensive phenotypic heterogeneity of cells
within a tumor, there is a strong immunosuppressive
microenviroment within GBM tumors that remains a major
barrier to immunotherapy efficacy (Moserle and Casanovas,
2013). At baseline, GBM patients exhibit a lower number of
circulating T cells despite being treatment-naïve
(Chongsathidkiet et al., 2018). This phenomenon has been
attributed to T cell sequestration in the bone marrow in the
setting of GBM as well as other intracranial tumors, due to tumor-
mediated internalization of G-protein coupled receptor
sphingosine-1-phosphate receptor 1 (S1P1) (Chongsathidkiet
et al., 2018). The same study demonstrated reversal of T cell
sequestration in murine models of GBM upon inhibiting S1P1
internalization (Chongsathidkiet et al., 2018).

The circulating T cells that are available in the setting of GBM
often display dysfunctional phenotypes including but not limited
to tolerance and exhaustion (Brooks et al., 1977; Woroniecka
et al., 2018). The exhausted phenotype is commonly seen in
chronic viral infections and various cancers and has recently been
suggested to be irreversible in spite of antigen clearance due to a
novel concept referred to as ‘epigenetic scarring’ (Abdel-Hakeem
et al., 2021). Persistent proliferation in the setting of chronic
antigenic exposure can also lead to shortening of telomeres
resulting in T cell senescence (Woroniecka et al., 2018).
Importantly, GBM utilizes naturally occurring mechanisms of
immune tolerance to promote FasL-mediated peripheral deletion
of T cells and recruitment of Tregs via expression of IDO1 on
dendritic cells and T cell immunoglobulin- and mucin domain-
containing molecule 4 (TIM4) on macrophages (Xu et al., 2011;
Choi et al., 2012; Woroniecka et al., 2018). Beyond lymphocytes,
the presence of myeloid-derived suppressor cells (MDSC) in both
peripheral blood and intracranially has been shown to contribute

to immune suppression and tumor progression via expression of
arginase, inducible nitric oxide synthase, and reactive oxygen or
nitrogen species (Bronte and Zanovello, 2005; Gabrilovich and
Nagaraj, 2009; Marvel and Gabrilovich, 2015). Tumor-associated
macrophages (TAM) have been similarly implicated via secretion
of immunosuppressive cytokines IL10 and TGFβ secondary to
induction by CSCs. (Wu et al., 2010; Zhou et al., 2016).

While the central nervous system (CNS) is known to be a site
of immune privilege secondary to naturally occurring
mechanisms of immune homeostasis such as the blood brain
barrier (BBB) and resident microglia (Desland and Hormigo,
2020), the immunosuppression intrinsic to GBM and
independent of location in the CNS is clear when comparing
the microenvironment and immunotherapeutic results of GBM
to that of brainmetastases (Friebel et al., 2020). Single cell analysis
has revealed that the GBM microenvironment has higher
expression of tissue-resident microglia while the metastatic
tumor environment has higher expression of tissue-invading
leukocytes (Friebel et al., 2020). At the same time, 80% of the
leukocytes expressed in the GBM microenvironment were found
to be classically immunosuppressive TAMs while most leukocytes
found in the metastatic tumor environment were T cells (Friebel
et al., 2020). These dichotomous immune findings may help
explain why ICIs have seen more success in treating patients with
brain metastases from melanoma or NSCLC compared to those
with GBM (Goldberg et al., 2016; Tawbi et al., 2018; Kluger et al.,
2019).

Adaptive (Secondary) Resistance
GBM has been shown to acquire forms of secondary resistance
in the setting of recurrence and treatment. Patients with rGBM
who initially responded to anti-PD1 immunotherapy have
been found to have loss of neo-epitopes and delayed
upregulation of immunosuppressive genes upon recurrence
(Zhao et al., 2019). Despite the expression of EGFRvIII in 19%
of ndGBM, a vaccine trial targeting EGFR found that 82% of
tumors had lost EGFRvIII expression upon recurrence
(Sampson et al., 2010; Brennan et al., 2013).

The current standard of care for GBM can also further
exacerbate immune evasion. Dexamethasone, which is
commonly used to reduce peri-tumoral edema and
temporarily improve neurological symptoms, has been shown
to upregulate expression of CTLA-4 on T cells and subsequently
dampen patient response to checkpoint blockade (Giles et al.,

TABLE 5 | Mechanisms of immunotherapy resistance in glioblastoma.

Category of
resistance

Example of resistance References

Primary CNS immune privilege: 1. BBB 2. CNS lymphatics 3. Resident microglia (Carson et al., 2006)
Intrinsic tumor heterogeneity: 1. Classical subtypes 2. Non-classical hybrid cellular states (Patel et al., 2014)
Immunosuppressive tumor microenvironment: 1. T cell dysfunction & exhaustion 2. Monocyte/
macrophage populations

(Woroniecka et al., 2018) (Marvel and
Gabrilovich, 2015)

Secondary SOC-induced changes: 1. Lymphopenia secondary to TMZ 2. Immunosuppressive cell
populations upregulated secondary to dexamethasone

(Gustafson et al., 2010) (Karachi et al., 2018)

Immunotherapeutic pressure: 1. Expression of alternative checkpoints (TIM3) 2. Epigenetic
changes secondary to chronic IFN-γ 3. Loss of tumor antigen expression

(Koyama et al., 2016) (Benci et al., 2016)
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2018). A unique phenotype of altered monocytes (CD14+ HLA-
DR-) has also been identified to represent an immunosuppressive
population whose levels increase in response to dexamethasone
treatment (Gustafson et al., 2010). TMZ treatment may also result
in profound lymphopenia, and in GBM patients, TMZ-induced
lymphopenia is worsened by both the absence of a compensatory
increase in proliferation-inducing cytokines and the failure of
adoptive transfer to increase T cell counts (Karachi et al., 2018).
Radiotherapy alone promotes secretion of classically
immunosuppressive cytokines IL-6, IL-8, IL10 (Tabatabaei
et al., 2017; Authier et al., 2015) but when combined with
chemotherapy as in the current SOC, the combination has
been shown to severely deplete CD4+ and CD8+ T cells and
increase the proportion of Tregs (Fadul et al., 2011). In a study of
96 patients with high grade gliomas, patients with CD4+ counts
under 200 at 2 months after therapeutic initiation were found to
have significantly shorter survival than those with higher counts
(13.1 vs 19.7 months), highlighting the importance of
understanding the effects of treatment in contributing to drug
resistance in GBM (Grossman et al., 2011).

The use of immunotherapeutic agents discussed here may also
contribute to secondary resistance. In melanoma patients treated
with anti-PD1 blockade who subsequently relapsed, genomic
analysis of paired primary and recurrent tumor revealed
alterations in β2 microglobulin and JAK1/2 genes that were
the main drivers of acquired PD1 resistance (Shin et al., 2017).
It has also been shown in lung cancer that downregulation of one
checkpoint may lead to subsequent upregulation of other
checkpoint molecules, such as the upregulation of TIM3 in the
setting of anti-PD1 blockade (Koyama et al., 2016). In
glioblastoma, the use of CAR T cells targeting EGFRvIII has
been linked to a compensatory influx of immunosuppressive
Tregs into the tumor microenvironment as well as loss of
EGFRvIII expression in surgically resected tumors post-
treatment (O’Rourke et al., 2017). Similarly, the use of CAR
T cells targeting IL13Rα2 was shown to lead to improved survival
in preclinical murine models, but recurrent gliomas post-
treatment experienced downregulation of the target antigen,
suggesting that the use of CAR T cells targeting a singular
antigen may select for GBM cells that lack expression and
subsequently allow for disease progression (Krenciute et al.,
2017).

OVERCOMING RESISTANCE
MECHANISMS TO IMMUNOTHERAPY
(TABLE 6)
The limited clinical success seen in the use of immunotherapeutic
agents against GBM is likely due to a multifactorial process of
immunosuppression, local immune cell dysfunction, and tumor
cell heterogeneity, as highlighted by the aforementioned
mechanisms of tumor resistance. As a result, adjuvant
approaches that prime the tumor microenvironment for a
robust, antitumor immune response have been the focus of
active investigation (Lim et al., 2018). In this final section, we
will highlight strategies that remodel the tumor

microenvironment for immunotherapy by downregulating its
immunosuppressive qualities and upregulating its cytolytic
potential, as well as their potential and/or observed adverse
effects.

Anti-CD47
Many efforts have been directed towards targeting the myeloid
compartment, specifically M2-type TAMs and MDSCs, given
their wide variety of immunosuppressive functions and dense
abundance in the tumor mass (Glass and Synowitz, 2014). CD47,
a ubiquitously expressed protein on the surface of GBM cells,
interacts with signal-regulatory protein alpha (SIRPα) on the
membranes of macrophages to inhibit phagocytosis by
promoting M2 polarization through the PI3K/AKT signaling
pathway (Lin et al., 2018; Liu et al., 2020). Inhibiting the
CD47/SIRPα anti-phagocytic and pro-M2 axis in GBM has
shown promising results by shifting macrophages towards the
antitumorigenic M1 phenotype, reducing tumor burden by
enhancing macrophage-mediated phagocytosis, and improving
survival in xenograft mousemodels (Zhang et al., 2016; Gholamin
et al., 2017). While anti-CD47 monotherapy has since been
shown to be inefficient in immune competent hosts,
combinatorial treatment of CD47 blockade and TMZ has led
to augmented PD-1 blockade responses and improved survival in
murine models (von Roemeling et al., 2020). Its potential and
preliminary success as a target for combination anti-PD-1
immunotherapy is hypothesized to be due to increased
phagocytosis of tumor cells and induction of the endoplasmic
stress response that results in more efficient T cell priming (von
Roemeling et al., 2020).

CD47 inhibitors have been tested in several phase I/II clinical
trials for hematological and advanced solid malignancies (Jalil
et al., 2020). While preclinical studies in mice have shown good
tolerance with minimal signs of toxicity, clinical trials have
encountered issues regarding hematological toxicity including
anemia, leukopenia, and thrombocytopenia (Gholamin et al.,
2017; Li et al., 2018). CD47 is ubiquitously expressed by non-
cancerous cells of the hematopoietic system, which makes them
an alternative binding site for systemically delivered anti-CD47
antibodies (Ishikawa-Sekigami et al., 2006; Hu et al., 2020).
Consequently, non-tumor binding of antibodies was found to
induce unintentional FcR-mediated phagocytosis of red blood
cells leading to toxic anemia (Zhang et al., 2020). Studies have
experienced success in mitigating hematological toxicity by
delivering a low, priming dose of anti-CD47 antibodies to
induce a predictable, transient anemia and compensatory
reticulocytosis for non-Hodgkin’s lymphoma (Advani et al.,
2018). However, future investigations of applying anti-CD47
treatment to GBM must still consider the possibility of
hematological toxicity and develop effective strategies to
bypass it.

Anti-CSF-1R
Similar to CD47, colony stimulating factor-1 receptor (CSF-1R), a
member of the receptor protein tyrosine kinase (rPTK) family,
has also been implicated in the differentiation of myeloid cells
into M2 macrophages (Dai et al., 2002). In GBM xenograft
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models, CSF-1R inhibition decreases M2 markers on TAMs but
does not deplete the cell population due to tumor-secreted
factors, notably GM-CSF and IFN-c (Pyonteck et al., 2013).
However, blockade of CSF-1R has also been shown to increase
expression of key chemotactic factors that promote the influx of
tumor-infiltrating lymphocytes, a finding consistent with other
cancer types (Mok et al., 2014; Ries et al., 2014; Antonios et al.,
2017). When inhibition was performed in conjunction with anti-
PD-1 and DC vaccination, TIL dysfunction was reversed,
suggesting that the development of immune resistance to
active vaccination in GBM can be abrogated by combinatorial
inhibition of CSF-1R and PD-1 (Antonios et al., 2017). Clinical
trials with cabiralizumab, an anti-CSF-1R monoclonal antibody,
are currently underway for malignant glioma in conjunction with
the anti-PD-1 antibody nivolumab (Brahmer et al., 2016). They
have also been performed for other cancers, with a recent phase 1
study in anti-PD-L1 resistant patients with melanoma, kidney
cancer, or non-small lung cancer exhibiting low clinical response
rates but safe upregulation of pro-inflammatory cytokines and
chemokines (Weiss et al., 2021). Overall, CSF-1R inhibitors have
been generally well-tolerated, increasing its promise for
combinatorial immunotherapy strategies (Cannarile et al.,
2017). However, short-lived, asymptomatic elevations in liver
enzymes, notably alanine transaminase, aspartate
aminotransferase, creatine kinase, and lactate dehydrogenase,
have been observed across multiple different studies for
different cancers, including GBM (Butowski et al., 2014;
Papadopoulos et al., 2017; von Tresckow et al., 2015).
Hepatotoxicity is believed to be due to partial depletion of
CSF-1R + macrophages/Kupffer cells of the liver leading to
reduced physiologic clearance (Ries et al., 2014). While no

functional or structural liver damage has been associated with
anti-CSF-1R treatment, careful monitoring will be required in
future studies.

Anti-CD73
In addition to targeting the polarization of M2 macrophages,
potential adjuvant treatments have also aimed to target the
function of M2-type macrophages. Specifically, CD73, an
ectonucleotidase preferentially expressed on M2 polarized
macrophages, interacts with its upstream signaling molecule
CD39 to facilitate the production of adenosine from
extracellular ATP (Zanin et al., 2012; Antonioli et al., 2013).
Adenosine is a known promoter of tumor proliferation and
angiogenesis, and in the case of GBM, it has been implicated
in the development of TMZ chemoresistance and CD8+ T cell
dysfunction via the A2B adenosine receptor (Takenaka et al., 2019;
Yan et al., 2019). CD73 expression on myeloid cells has also been
correlated with higher co-expression of the immunosuppressive
and protumorigenic CCR2, CCR5, ITGAV, and CSF-1R
chemokine receptors (Goswami et al., 2020). Clinical trials
targeting these chemokine receptors are underway, but CD73
may be amore relevant target given its high co-expression and the
limited success observed thus far. A preliminary study that
induced prolonged survival in CD73 knockout models of
GBM treated with dual blockade of PD-1 and CTLA-4
highlights the potential of CD73 for combination therapy and
need for further investigation (Goswami et al., 2020). Given that
clinical trials focusing on targeting CD73 in GBM have yet to
commence or are ongoing in other malignances, there is limited
awareness of its associated adverse events beyond results from
animal studies (Jin et al., 2021). While studies in mice have shown

TABLE 6 | Immunotherapy sensitization strategies in glioblastoma.

Target
molecule

Target cell Combinatorial
treatments
for maximal

effect

Expected blockade
effect

Potential adverse
events

Clinical trial Phase

CD47 GBM Anti-PD1 (von Roemeling
et al., 2020)

Reduce tumor burden by stimulating
M1 macrophage-mediated
phagocytosis

Hematological Toxicity (Jalil et al.,
2020)

NA NA

CSF-1R Macrophage Anti-PD1 (Antonios et al.,
2017)

Functionally reprogram
macrophages from M2 to M1
polarization

Hepatotoxicity (Butowski et al.,
2014; Papadopoulos et al., 2017;
von Tresckow et al., 2015)

NCT02526017
(Brahmer et al., 2016)

I

CD73 Macrophage Anti-PD1 and Anti-CTLA-
4 (Goswami et al., 2020)

Inhibit production of tumorigenic
adenosine from M2 macrophages

NA NA NA

PGE2 MDSC Anti-PD1 (Hou et al.,
2016)

Inhibit the expansion of MDSCs Autoimmunity (Yang et al., 2017) NA NA

CCL2 MDSC Anti-PD1 (Flores-Toro
et al., 2020)

Reduce the recruitment of MDSCs
into the tumor microenvironment

Neutropenia (Brana et al., 2015;
Gschwandtner et al., 2019)

NA NA

MIF MDSC Anti-PD1 (Alban et al.,
2020)

Inhibit the induction of MDSCs in the
tumor microenvironment

Gastrointestinal Distress (Rolan
et al., 2008; Fox et al., 2018)

NCT03782415
(MediciNova, 2021)

I/II

IL-6 MDSC CD40 Stimulation Anti-
PD1 Anti-CTLA4 (Yang
et al., 2021)

Reduce the recruitment of MDSCs
and prevent polarization of myeloid
cells towards M2 phenotype

Neutropenia and thrombocytopenia
(Wright et al., 2014)(p6), (Smolen
et al., 2013)

NCT04729959
(National Cancer
Institute NCI, 2021)

II

GITR Tregs Anti-PD1 (Wu et al.,
2019) (p)

Reprogram Tregs into CD4+ T cells Autoimmunity (Sakaguchi et al.,
2006)

NCT04225039
(University of
Pennsylvania, 2021)

II

Abbreviations; OS, overall survival; PFS, Progression-free survival; NR, not reported; RT, radiotherapy; TMZ, temozolomide; ndGBM, newly diagnosed GBM; rGBM, recurrent GBM; NA,
not applicable.
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that CD73 plays a role in platelet aggregation and protection of
the heart, kidney, and lungs from ischemia, animal studies have
shown good tolerability to CD73 blockade (Stagg, 2012; Antonioli
et al., 2016; Azambuja et al., 2020). However, these results should
not be used to extrapolate responses in humans, and a better
understanding of the safety of targeting CD73 will be had
following the conclusion of ongoing clinical trials.

Cyclooxygenase-2 (COX-2) Inhibitors
Myeloid-derived suppressor cells (MDSC), a heterogenous
population of CD11b+ CD33+ HLA-DR- myeloid cells found
in the peripheral blood and tumor mass of GBM patients, have
also emerged as a potential target for sensitizing the tumor
microenvironment to immunotherapy given their myriad
immunosuppressive functions associated with poor
prognosis (Almand et al., 2001; Alban et al., 2018). MDSCs
have been implicated in GBM tumor progression through the
inhibition of T cells, NK cells, dendritic cells, and
macrophages, the expansion and differentiation of T
regulatory cells, and the promotion of immunosuppressive
B cells (Raychaudhuri et al., 2011; Mi et al., 2020). To control
their tumorigenic activity, approaches have attempted to target
the infiltration, expansion, and activation of MDSCs.
Prostaglandin E2 (PGE2) and C-C motif chemokine ligand
2 (CCL2) have both been associated with the recruitment of
MDSCs to tumor tissue, while macrophage migration
inhibitory factor (MIF) signaling through the chemokine
ligand 2 (CXCL2) and MIF/C-X-C motif chemokine
receptor 2 (CXCR2) axis has been linked to the
differentiation of myeloid cells into MDSCs (Simpson et al.,
2012; Chang et al., 2016).

In preclinical models, inhibition of PGE2 production through
COX2 inhibitors, specifically acetylsalicylic acid and celecoxib,
led to both the suppression of gliomagenesis and reduction of
MDSCs in the tumor microenvironment through a decrease in
CCL2 (Fujita et al., 2011; Shono et al., 2020). Furthermore, COX2
inhibition in GBM has also garnered interest for its
radiosensitizing effects in vivo (Ma et al., 2011). While the
enthusiasm for COX2 as a therapeutic target has stagnated
due to multiple cohort studies and clinical trials that inversely
correlated COX2 inhibitors with survival, its efficacy as an
immunotherapeutic adjuvant has yet to be thoroughly
investigated and warrants further study (Qiu et al., 2017).
Alternatively, it may also be appropriate to shift focus towards
PGE2 as a therapeutic target rather than COX2 itself, especially
given the broad range of well-known adverse effects associated
with COX2 inhibition such as hypertension, congestive heart
failure exacerbation, renal impairment, and other cardiovascular
events (Mukherjee et al., 2001; Wright, 2002). There are currently
no clinical trials focused on targeting PGE2. However, an
oncolytic vaccina virus was recently designed to inactivate
PGE2 and successfully reduce the number of MDSCs and T
regulatory cells in a mouse tumor model as well as potentiate the
response to anti-PD1 therapy (Hou et al., 2016). Thus, the safety
associated with targeting PGE2 is currently unknown beyond
those associated with COX2 inhibition, however, downregulating
MDSCs will pose the risk of autoimmune side-effects such as

autoreactive T-cells, more so than traditional immunotherapies
given the wider spectrum of activity in MDSCs than targeted
immune checkpoint inhibitors (Yang et al., 2017).

Anti-CCL2
CCL2 inhibition through anti-CCL2 monoclonal antibodies
(mAb) has also experienced success in reducing the
population of MDSCs and improving survival in GBM
xenograft models (Zhu et al., 2011). Additionally, inhibition of
the CCL2 receptor (CCR2) in conjunction with PD-1 checkpoint
inhibition extended survival in GBM-bearing mice, highlighting
its ability to augment immunotherapy (Flores-Toro et al., 2020).
Clinical trial using carlumab monotherapy, a human IgG1k
monoclonal antibody against CCL2, had little success in
patients with advanced solid tumors and metastatic prostate
cancer, however, results from CCL2 blockade with immune
checkpoint blockade have yet to be reported (Pienta et al.,
2013; Sandhu et al., 2013). While carlumab clinical trials were
well-tolerated with mild-to-moderate adverse events,
neutropenia occurred commonly in a multicenter phase 1b
study, which may be due to the elimination of CCL2’s anti-
apoptotic effect in neutrophils and increase the risk of infection in
patients (Brana et al., 2015; Gschwandtner et al., 2019).

The MIF signaling axis has also recently garnered interest as a
target given the high levels of the MIF non-cognate receptor
CXCR2 expressed on MDSCs and the enhanced CD8+ T cell
activity observed in the tumor microenvironment following
treatment with ibudilast, an inhibitor of MIF-CD74
interactions (Alban et al., 2020). Ibudilast is currently being
investigated in clinical trials as an adjuvant to TMZ, given its
ability to sensitize GBM cells to TMZ, safely penetrate the BBB,
and confer minimal adverse events, with phase 1 studies and
clinical trials for other neurological diseases such as multiple
sclerosis reporting gastrointestinal side effects, headaches, and
depression as the most concerning (Rolan et al., 2008; Fox et al.,
2018). However, given the preliminary findings of increased
lymphocyte activation, additional clinical trials pairing
ibudilast with immune checkpoint inhibitors like anti-PD-1 to
maximize cytolytic activity against tumor cells should also be
considered.

Anti-IL-6
IL-6 drives myeloid-based immunosuppressive activity through
the induction of PD-L1 expression on MDSCs (Lamano et al.,
2019). While IL-6 neutralization has been shown to enhance
T cell tumor infiltration, it alone does not sensitize the tumor to
immune checkpoint blockade via anti-PD-1 or anti-CTLA-4
(Yang et al., 2021). However, CD40 stimulation in conjunction
with IL-6 inhibition and PD-1 and CTLA-4 immune checkpoint
blockade did produce clinically relevant responses in syngeneic
GBM models, notably the reversal of macrophage-mediated
immune suppression and extended survival Yang et al., 2021.
This finding supporting dual-targeting of IL-6, CD40, and
multiple immune checkpoints emphasizes the paradigm shift
towards strategically selecting multiple interrelated targets that
increase the possibility of a successful response to
immunotherapy. An ongoing clinical trial investigating the
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addition of tocilizumab, a monoclonal antibody against IL-6,
alongside atezolizumab and fractionated stereotactic radiation
therapy in recurrent GBM will shed more light on the clinical
efficacy of concurrent IL-6 and PD-L1 blockade in GBM. Given
the use of tocilizumab for other conditions such as rheumatoid
arthritis, adverse effects are minimal, acceptable, and promising
for utilization in GBM treatment. Complications mainly consist
of neutropenia and rare thrombocytopenia given IL-6 receptors
on neutrophils that may bind monoclonal antibodies and lead to
opsonization and neutrophil phagocytosis (Wright et al., 2014)
(p6), (Smolen et al., 2013).

Anti-Glucocorticoid-Induced TNFR-Related
Protein
In addition to cells from the myeloid compartments, cells derived
from the lymphoid lineage also possess immunosuppressive
functions and serve as potential therapeutic targets, most
notable of which are Tregs. Tregs are characterized as a
CD25+ FOXP3+ subset of CD4+ cells that divert immune
responses away from cytotoxic Th1-mediated responses and
towards Th2-mediated responses in part through increasing
the expression of CTLA-4 and decreasing the secretion of IL-2
and IFN-c (Jonuleit et al., 2001; Cosmi et al., 2004). To improve
the antitumor immune response, Treg depletion therapy has been
attempted in GBM models through combinatorial anti-CXCR4
and anti-PD1 immunotherapy, which have improved survival
rates via decreased levels of Tregs and MDSCs, improved CD4+/
CD8+ ratios, and increased levels of pro-inflammatory cytokines
(Wu et al., 2019). However, systemic Treg depletion through
antibody therapies pose the risk of autoimmunity (Sakaguchi
et al., 2006). Thus, recent findings targeting GITR, a surface
immunomodulatory receptor highly expressed on GBM Tregs
but lowly expressed on systemic Tregs, are especially encouraging
for Treg depletion therapies. When targeting GITR, murine Tregs
were reprogrammed into CD4+ Th1 cells capable of producing
IFN-c and engaging in cytotoxic activity against GBM cells
(Amoozgar et al., 2021). Furthermore, anti-GITR and anti-
PD1 combinatorial treatment was capable of prolonging
survival in multiple GBM murine models, with a subset
experiencing complete tumor eradication and immune
memory following tumor re-challenge (Miska et al., 2016;
Amoozgar et al., 2021). Dual radiation and anti-GITR therapy
has also been associated with improved survival via increased
CD4+ effector T cell infiltration and IFN-c, IL-2, and TNF-α
secretion, suggesting that the two modalities synergize and
highlighting the immune sensitizing effects of radiotherapy on
the tumor microenvironment (Patel et al., 2016). A clinical trial
investigating the use of anti-GITR, anti-PD1, and stereotactic
radiosurgery in recurrent GBM was recently initiated and will
provide valuable insight into how and to what extent the tumor
immune microenvironment responds to treatment.

Other Forms of Sensitization
Despite its immunosuppressive mechanisms documented
earlier, radiotherapy can also sensitize the immune
response via its ability to increase MHC-1 expression on
the surface of tumor cells, leading to better antigen
presentation and recognition by cytotoxic T cells (Rajani
et al., 2019; Sevenich, 2019). Antiangiogenic therapies have
also been considered as a treatment option for overcoming
resistance to immune checkpoint therapies in GBM. Dual
blockade of VEGF and Ang-2 with concurrent anti-PD-1
treatment has been shown to extend survival, increase
cytotoxic T lymphocyte infiltration, and decrease MDSC
and Treg abundance (Fukumura et al., 2018; Di Tacchio
et al., 2019).

Overall, clinical trials investigating multimodal therapies in
GBM that integrate conventional treatments, such as
radiotherapy and anti-angiogenic therapy, with novel
immunotherapies and strategies for bypassing tumor resistance
are currently underway. This combinatorial approach to
treatment exemplifies the new frontier of GBM
immunotherapy that leverages strategic combinations of
multiple treatments to reverse immunosuppression within the
microenvironment and maximize the potential of
immunotherapy.

CONCLUSION

Much progress has been made in the landscape of
immunotherapies designed to treat glioblastoma. Several
immune checkpoint inhibitors have been adopted from other
cancer trials for use in glioblastoma, and although the uniquely
resistant environment of glioblastoma has prevented similar
successes seen in other cancers, several advances have been
made in introducing new vaccine, adoptive T cell, and
oncolytic virotherapies to induce both tumor lysis and an anti-
tumor immune response. New forms of sensitization to overcome
primary and adaptive resistance include myeloid and lymphoid-
targeting strategies, as well as the introduction of multimodal
treatments integrated with conventional standard of care.
Looking forward, it is important to recognize the intrinsic
differences between glioblastoma and other cancers that the
aforementioned therapies have been trialed in, in order to
design more targeted treatments that can overcome the
uniquely immunosuppressive environment of GBM.
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