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Electrochemiluminescence Mechanisms Investigated with
Smartphone-Based Sensor Data Modeling, Parameter
Estimation and Sensitivity Analysis
Elmer Ccopa Rivera,[a] Rodney L. Summerscales,[b] Padma P. Tadi Uppala,[c] and
Hyun J. Kwon*[a]

The present study introduces a unified framework combining a
mechanistic model with a genetic algorithm (GA) for the
parameter estimation of electrochemiluminescence (ECL) ki-
netics of the Ru(bpy)3

2+/TPrA system occurring in a smart-
phone-based sensor. The framework allows a straightforward
solution for simultaneous estimation of multiple parameters
which can be, otherwise, time-consuming and lead to non-
convergence. Model parameters are estimated by achieving a
high correlation between the model prediction and the
measured ECL intensity from the ECL sensor. The developed

model is used to perform a sensitivity analysis (SA), which
provides quantitative effects of the model parameters on the
concentrations of chemical species involved in the system. The
results demonstrate that the GA-based parameter estimation
and the SA approaches are effective in analyzing the kinetics of
the ECL mechanism. Therefore, these approaches can be
incorporated as analysis tools in the ECL kinetics study with
practical application in the calibration of mechanistic models
for any required sensing condition.

1. Introduction

Recently, the smartphone-based electrochemiluminescence (ECL)
sensor have been presented as a fast, low-cost and accurate
alternative to expensive traditional instrumentation (such as the
photomultiplier tube-based detectors) for analytical detection.[1,2]

Smartphones devices are equipped with increasingly powerful
processors for storage and analysis of data and have powerful
data transmission capability. The use of these devices combined
with certain accessory attachment (e.g., signal detectors) and
advanced processing algorithms is a growing platform for different
studies and applications, which in recent years, have focused on
the prevention and monitoring of health.[3,4] For instance,
smartphone-based sensors have been used for simultaneously
detection of glucose and uric acid,[5] and glucose and blood

ketone[6] for disease diagnostic and treatment. More recently,
literature has highlighted the significant role that these sensors
can play in the detection of analytes confirming a viral infection,
and in the vaccine development processing during pandemics.[7]

The Ru(bpy)3
2+/TPrA (Tris (2,2’-bipyridine) ruthenium(II)/tripro-

pylamine) system whose ECL mechanism have been well
established[8] is one of the most widely studied luminophore/
coreactant systems in the field of ECL sensors. Optimizing the ECL
performance (closely related to enhancement of the signal
intensity) of smartphone-based sensors can be achieved by
developing systematic methodologies to optimize the kinetic
performance of existing luminophores and coreactants and also to
design new ones. Therefore, it is necessary to study the kinetics of
the Ru(bpy)3

2+/TPrA system occurring in a smartphone-based
sensor to improve their ECL performance.

The kinetics of the ECL mechanism is investigated experimen-
tally and through modeling, or a combination thereof with the
help of different electrochemical techniques such as
voltammetry[9–11] or chronoamperometry.[1,12,13] In these techniques,
a time-varying waveform potential is applied to the working
electrode, and the current and ECL time-series data can be
measured. The applied potential triggers a series of reactions
involving the ground state and intermediate species in the system.
For modeling study, it is necessary to define suitable mathematical
representation of reaction rates along with their parameters. As
ECL intensity is strongly dependent on the sensing conditions, any
changes in these conditions can influence all the parameters.
Thus, it is necessary to estimate a set of optimal parameters
simultaneously for each sensing condition. For this, it is ideal to
generate the experimental measurements of all the chemical
species involved in ECL reaction. Nevertheless, concentrations are
often not amenable to experimental corroboration with the
exception of uncommon studies such as the work of Danis
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et al.,[14] in which concentration of Ru(bpy)3
2+ was monitored

in situ via spectroelectrochemistry and then it was used for
modeling purposes. Difficulty arises as ECL intensity is the only
observable output variable in the system.

Numerical studies to explore the kinetics of the ECL mecha-
nism typically use ordinary or partial differential equations that
constitute mechanistic models. This modeling approach is suitable
for the mathematical description of reaction rates leading to the
ECL generation. Recent literature presents some mechanistic
models for the ECL mechanism with relevance and practical use in
analytical electrochemiluminescence.[10,14,15] However, in most mod-
eling works the parameters were not adjusted to the conditions
studied, and only in a few studies the parameter estimation is
carried out using trial-and-error methods. There is certainly a need
for more systematic approaches.

The parameter estimation procedure for mechanistic models
simulating the kinetics of the ECL mechanism can be very difficult
to solve. The parameters need to be estimated simultaneously to
effectively explain their effect on the kinetics of the ECL
mechanism. Other challenges are related to the computational
load to run multiple simulations for the parameter estimation
procedure and other related techniques such as sensitivity analysis
(SA). The high computational load of the space-time mechanistic
models from literature can lead to extremely slow convergence
times,[16] or non-convergence during the parameter estimation
procedure and SA.

An accurate estimation of the parameters for mechanistic
models naturally leads to a nonlinear optimization problem (NLP)
containing nonlinear equations and continuous variables. For the
study of the kinetics of the ECL mechanism, the aim of the NLP
solving by an optimization algorithm can be to search for the
optimum parameters that produces the best fit between the
transient profile of the ECL measurements and that of the
predicted luminophore excited state.[17] The optimization algo-
rithms are an essential part of the parameter estimation
techniques and they have been successfully applied in other
branches of analytical chemistry such as electrochemical kinetics.
For instance, the quasi-newton (QN) algorithm, a gradient-based
algorithm[18] and the genetic algorithm, a stochastic algorithm
(derivative-free)[19,20] greatly improved the parameter estimation
accuracy in electrochemical mechanistic models.

In addition to estimating the optimal values of the model
parameters, determining the identifiable influence of the parame-
ters on the model outputs (time-course concentrations of the
species) is essential to enhance the understanding of the ECL
mechanism of the Ru(bpy)3

2+/TPrA system. A parameter is
identifiable if it has a unique observable influence on the model
outputs. The problem of parameter identifiability can be ad-
dressed using sensitivity analysis (SA).[21] This type of analysis can
provide relevant information on the sensitivity of the model
outputs for a range of variation of the parameters. Recent
literature shows that SA is being used as part of modeling tools in
different fields of electrochemistry.[21–24] However, to the best of
the authors' knowledge, just as the optimization algorithms, the
formal sensitivity analysis applied to mechanistic models describ-
ing the ECL mechanism has not been reported in the literature. A
common approach to sensitivity analysis of mechanistic model

parameters is the one-at-a-time (OAT) approach (mathematically it
is expressed using partial derivatives), in which only one parameter
is changed at a time keeping others fixed at their nominal values.
OAT can be computationally efficient, but the parameters are
varied around a single set of parameter values, which is not
suitable for the simultaneous analysis of all the parameters
governing the reaction rates of the ECL mechanism. An alternative
to the OAT local sensitivity analysis approach is the global
sensitivity analysis approach such as fractional factorial design
(FFD).[25] In FFD the effects of parameters on the model outputs
are assessed by varying the parameters simultaneously over a
large range of values.

The objectives of this study are two-fold. First, the estimation
of the optimal values of the parameters governing the reaction
rates behind the ECL mechanism under a particular sensing
condition are carried out. For this, a unified framework is used,
which combines a mechanistic model with a genetic algorithm
and utilizes experimental measurements from a low-cost smart-
phone-based ECL sensor. Secondly, through a sensitivity analysis
(SA), a deep understanding of the ECL mechanism of the Ru
(bpy)3

2+/TPrA system is obtained by examining the influence of
the parameters on the model outputs (the transient profiles of the
concentrations of all the species). The fractional factorial design is
selected to perform the SA because it is a multivariate approach
that can show global sensitivities of individual parameters. The
proposed methodology shows the potential benefits of genetic
algorithm-based parameter estimation and the SA in the kinetic
study of the ECL mechanism occurring in a smartphone-based
sensor.

Experimental Section

Sensor Apparatus and Chemicals

Measurements of sequences of ECL imaging were performed using
a smartphone-based ECL sensor apparatus. The sensor design
interfaces with a custom compact potentiostat (in a three-electrode
set-up) and a smartphone with a custom-made app controlling the
potentiostat parameters and the phone camera. Disposable screen-
printed carbon electrodes (DropSens, DRP-110) were used. Details
of the sensor apparatus, the operation of the compact potentiostat
circuit, and chemicals used have been described elsewhere.[1,13]

ECL Experimental Data Generation

This study used intensity data from measurements carried out with
the smartphone-based ECL sensor for estimating the mechanistic
model parameters. The ECL data were determined using the
chronoamperometric technique where a square waveform potential
was applied to the carbon working electrode with 50 μL of Ru
(bpy)3

2+/TPrA sample solution. The potential of 1.2 V vs. Ag/Ag+

produced ECL intensity from the triggering of the reactions of the
chemical species in the Ru(bpy)3

2+/TPrA system. Details of the
chronoamperometric technique are presented elsewhere.[1,13] ECL
images were recorded for different concentrations of Ru(bpy)3

2+

distributed in a range of 0.625 to 5.0 μM. From this data, a key
feature was identified; the decay kinetics of ECL intensity, which
was used for estimating the model parameters following a
simulation-optimization framework described in the next section.
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2. Results and Discussion

2.1. Modeling and Parameter Estimation

2.1.1. ECL Mechanism and Theoretical Aspects

This section provides the mathematical development of the
charge-transfer reactions and homogeneous reactions considered
in the mechanistic model and the ordinary differential equations
(conservation equations) relating the concentrations of Ru(bpy)3

2+,
Ru(bpy)3

3+, Ru(bpy)3
+, TPrA, TPrA*+, TPrA* and Ru(bpy)3

2+* (in mM)
involved in the reactions. The mechanistic model accounted for
the transient-state of the involved species in a homogeneous
diffusion layer of the electrolyte solution. Figure 1 shows a
schematic representation of the ECL mechanism of the Ru(bpy)3

2+

/TPrA system[8] taking place in the smartphone-based ECL sensor.
The electrochemiluminescence and its related mechanism are

being extensively investigated due to its important application as
a platform of light-emitting sensors and an analytical detection
technique.[11,15,26,27] This study does not intend to deepen theoret-
ical studies of the ECL mechanism of the Ru(bpy)3

2+/TPrA system,
but rather to illustrate that the parameter estimation procedure of
a complex system can be a straightforward task. Thus, this study
used the reaction mechanisms originally proposed by Miao et al.,[8]

which are described in Eqs. (1)–(6). These reactions have been
used for simulation purposes in several theoretical studies.[10,15,28]

2.1.1.1. Charge-Transfer Reactions

The charge-transfer reactions through an oxidizing potential were
assumed to convert Ru(bpy)3

2+ into Ru(bpy)3
3+, and the neutral

form of TPrA to a strong oxidant, the cation radical TPrA*+, as
shown in Eqs. (1) and (2), respectively.[8,28]

Ru bpyð Þ2þ3 � e
�

k1
�! Ru bpyð Þ3þ3 (1)

TPrA� e�
k2
�! TPrA.þ (2)

2.1.1.2. Homogeneous Reactions

TPrA*+ is assumed to be irreversibly deprotonated to form a
free radical, TPrA* as shown in Eq. (3).[8,15]

TPrA.þ� Hþ
k3
�! TPrA.

(3)

The electrogenerated radical TPrA* undergoes an electron
transfer oxidation with Ru(bpy)3

2+, thus reducing Ru(bpy)3
2+

into Ru(bpy)3
+. At the electrode surface TPrA* can also be

oxidized into its corresponding iminium cation Im+. This
reaction is assumed to follow Eq. (4).[8,15,28]

Ru bpyð Þ2þ3 þ TPrA
.

k4
�! Ru bpyð Þþ3 þ Im

þ (4)

The luminophore electronically excited state Ru(bpy)3
2+*,

(Eq. (5)) is generated when Ru(bpy)3
3+ formed by Eq. (1) reacts

with Ru(bpy)3
+ formed by the reaction between Ru(bpy)3

2+ and
TPrA* (Eq. (4)).[8,10,15,28]

Ru bpyð Þþ3 þ Ru bpyð Þ3þ3
k5
�!

Ru bpyð Þ2þ*3 þ Ru bpyð Þ2þ3
(5)

Then, Ru(bpy)3
2+* returns to the ground state specie Ru

(bpy)3
2+ by emitting a visible photon energy hv, as shown in

Eq. (6).[8,10,15,28]

Ru bpyð Þ2þ*3

k6
�! Ru bpyð Þ2þ3 þ hv (6)

Current efforts at mechanistic modeling of the Ru(bpy)3
2+/

TPrA system require simultaneous treatment of the reaction
mechanisms shown in Eqs. (1)–(6).

2.1.1.3. Conservation Equations

The conservation equations relating the concentrations of Ru
(bpy)3

2+, Ru(bpy)3
3+, Ru(bpy)3

+, TPrA, TPrA*+, TPrA* and Ru
(bpy)3

2+* (in mM) involved in the charge-transfer and homoge-
neous reactions are presented by Eqs. (7)–(14).

dRu bpyð Þ2þ3
dt ¼ R1 þ R5 þ R6 � R4 (7)

dRu bpyð Þ3þ3
dt

¼ � R1 � R5 (8)

dRu bpyð Þþ3
dt ¼ R4 � R5 (9)

dTPrA
dt ¼ R2 (10)

dTPrA�þ

dt
¼ � R2 � R3 (11)

Figure 1. Schematic representation of the ECL mechanism taking place in
the smartphone-based ECL sensor. The sensor apparatus is described in
detail elsewhere.[1,13]
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dTPrA�

dt ¼ R3 � R4 (12)

dRu bpyð Þ2þ*3

dt
¼ R5 � R6 (13)

dhvECL
dt ¼ R6 (14)

In Eqs. (7)–(14), R1 and R2 represent the charge-transfer
reaction rates expressed by Eqs. (15) and (16), respectively,
whereas R3 to R6 represent the homogeneous reaction rates
expressed by Eqs. (17)–(20), respectively (mM/s).

R1 ¼ k1f � Ru bpyð Þ3þ3 �

k1b � Ru bpyð Þ2þ3
(15)

R2 ¼ k2f � TPrA
�þ � k2b � TPrA (16)

R3 ¼ k3 � TPrA�þ (17)

R4 ¼ k4 � Ru bpyð Þ2þ3 � TPrA� (18)

R5 ¼ k5 � Ru bpyð Þþ3 � Ru bpyð Þ3þ3 (19)

R6 ¼ k6�Ru bpyð Þ2þ*3 (20)

In this study, the parameters kf
1, kb

1, kf
2 and kb

2 in Eqs. (15)
and (16) are modeled using the Butler-Volmer-type Eqs. (21) to
(24), respectively.

k1f ¼ k1 � e
� a�f� E� E0ð Þð Þ (21)

k1b ¼ k1 � e
1� að Þ�f� E� E0ð Þð Þ (22)

k2f ¼ k2 � e
� a�f� E� E0ð Þð Þ (23)

k2b ¼ k2 � e
1� að Þ�f� E� E0ð Þð Þ (24)

where k1 and k2 (s
� 1) are the electron transfer rate parameters

for the charge-transfer reactions shown in Eqs. (1) and (2),
respectively, α is the charge transfer coefficient taken as 0.5, f=
F/RT (38.92 V� 1), E is the applied potential (1.2 V vs. Ag/Ag+),
and E0 is the standard potential taken as 1.06 V vs. Ag/Ag+ for
Eqs. (21) and (22) and 0.9 V vs. Ag/Ag+ for Eqs. (23) and (24).
The mechanistic model simulating the ECL mechanism of the
Ru(bpy)3

2+/TPrA system is formed using Eqs. (7)–(24). The model
should allow the estimation of the parameters, k1 to k6
governing the reaction rates R1 to R6.

2.1.2. Parameter Estimation Using Genetic Algorithm

A major issue in the development of a mechanistic model for
the ECL mechanism is the accurate estimation of its parameters.
In this study, the procedure to estimate the parameters (k1–k6)

is formulated as a nonlinear optimization problem (NLP) as
shown in Eq. 25.

NLP : Min yðqÞ

Subject to

Eqs: ð7 � 24Þ, qlb � q � qub

(25)

where ψ is the objective function, and θlb and θub are the lower-
and upper-bound vectors, respectively for the parameter vector
θ. The aim of the parameter estimation procedure is to search
for the optimum values of the parameters (θoptimum) that
produce the best fit between the transient profile of the
measured ECL intensity (normalized to values of the order of
magnitude of the predicted concentration of the excited state
Ru(bpy)3

2+*) and the corresponding computed transient profile
of the concentration of Ru(bpy)3

2+* from the mechanistic model
while minimizing ψ(θ) given by Eq. (26). The normalization of
the ECL intensity was based on previous observations by Danis
et al.[17] that showed a close alignment between the transient
profile of the measured ECL intensity and the predicted
appearance of the transient profile of the luminophore excited
state.

qð Þ ¼
XNp

j¼1

yexp tj
� �
� ysim tj

� �� �2

y2exp maxð Þ

(26)

In Eq. (26), θ is a vector containing all the parameters, yexp(tj) is
the measured ECL intensity (normalized values) at sampling time j,
ysim(tj) is the concentration of the luminophore excited state
computed by the mechanistic model, yexp(max) is the maximum
measured ECL intensity, and Np is the number of sampling points.

Since parameter estimation problem in Eq. (25) is nonlinear,
nonconvex and has many unknown parameters, conventional
gradient-based optimization methods can only guarantee con-
vergence to a local solution. Also, the parameter estimation using
conventional methods largely depends on the initial guesses of
the parameter values, which can also lead to convergence issues.
As an alternative to gradient-based optimization methods, this
study investigated a derivative-free search approach based on
genetic algorithm (GA) to solve Eq. (25). This approach, shown in
Figure 2, combines a mechanistic model with a GA within a unified
framework. A thorough exploration of the search space (θlb�θ�
θub) is performed by the GA toward the optimal solution, which
consists in determining the optimum values for the parameters
(θoptimum). In this study, the GA based on the MyGA subroutine

[29]

was evaluated.
Figure 2 (in blue) shows the procedure used by the GA to

estimate the parameters of the mechanistic model. First, a random
population of individuals (chromosomes) was generated, which
represents the parameters of the model within the search space.
The search space is defined by the lower and upper limits on the
parameters to be estimated. In this study, each chromosome is
constituted by six genes, i.e., one numerical value for each
parameter. The total number of chromosomes represents the
population size in a generation. All generated individuals of the
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population representing different alternative models are simulated
to estimate their fitness function defined by Eq. (26). This
information is used to assign high scores for individuals with high
fitness and low scores for individuals with low fitness. Individuals
with low values for Eq. (26) are chosen for reproduction by
crossover or mutation. Also, elitism is applied to copy the best
individuals directly across to next generation. The reproduction
consisting of the crossover and mutation operations is performed.
The crossover operation exchanges genetic information (i.e.,
parameter values) from two parent individuals to generate two
offspring individuals. Mutation changes one or more gene values
in a parent individual to maintain genetic diversity. The crossover
and mutation are carried out according to the crossover
probability and mutation probability, respectively. The conver-
gence criterion is the maximum number of generations. The
optimal solution for the parameter estimation problem in the last
generation reports the set of parameters (θoptimum) that produce
the lowest value of the fitness function, Eq. (26).

The nonlinear optimization problem (NLP) shown in Eq. (25)
was implemented in a FORTRAN routine on an Intel(R) Core(TM)
i7-7500 CPU @ 2.7 GHz. With these CPU characteristics, the time to
solve the NLP was about three minutes for 2000 generations.

2.2. Sensitivity Analysis using Fractional Factorial Design

For sensitivity analysis (SA) purposes, the identifiable influence of
the model parameters (k1–k6) on the model outputs, concen-
trations of Ru(bpy)3

2+, Ru(bpy)3
3+, Ru(bpy)3

+, TPrA, TPrA*+, TPrA*

and Ru(bpy)3
2+* were evaluated by using a 26� 1 fractional factorial

design (FFD).[30] In the FFD, the simulations involve systematically
varying all parameters within �20% of optimal values calculated
by the parameter estimation procedure. Statistical analysis of the
data obtained in the FFD was performed using the software
Statistica 10.0 (Statsoft Inc., USA).

The Pareto graph was used to evaluate the SA simulation
results, which shows each of the estimated effects of the
parameters on the model outputs. In this graph the size of each
bar is relative to the standardized effect, calculated by dividing the
estimated effect by its standard error, which represents a t-statistic.
The size of the bars greater than the critical t-value was considered
statically significant at the 95% significance level.

2.3. Kinetics Study Results of the ECL Mechanism

A series of chronoamperometric measurements were carried
out using the smartphone-based ECL sensor. The ECL was
measured at concentrations of Ru(bpy)3

2+ of 5.0, 2.5, 1.25 and
0.625 μM in an electrolyte solution with TPrA fixed at 20 mM.
The concentrations of Ru(bpy)3

2+ were in a range of practical
use.[1,13]

To measure the ECL data for each concentration of Ru(bpy)3
2+,

the sensor apparatus was set to apply a potential of 0 V vs. Ag/
Ag+ for 1 s, followed by � 1.2 V vs. Ag/Ag+ for 1 s (stabilization
period), and finally followed by 1.2 V vs. Ag/Ag+ for 1 s (oxidation
period) as shown in Figure 3A. The ECL intensity recorded over the
course of the stabilization and oxidation periods are shown in
Figures 3B–E (red circles). These data clearly demonstrate that the
ECL intensity exhibits a strong increase, reaches a peak, and then
progressively decreases over time representing a decay kinetics.
Understanding the kinetics of the ECL mechanism of this transient
behavior is one of the main contributions of this study.

The genetic algorithm (GA) was used to estimate the model
parameters (k1–k6). GA is able to find optimal or near-optimal
solutions for parameter estimation problems with a wide search
range. However, the use of an extremely large search space for a
high-dimensional estimation problem (several parameters being
optimized simultaneously) weakens the effects of the GA
operators (crossover and mutation), producing premature con-
vergence towards a local optimum. In premature convergence the

Figure 2. Framework that combines a mechanistic model with a genetic algorithm for the estimation of the parameters of the model simulating the kinetics
of the ECL mechanism.
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GA loses the diversity of the population of individuals during the
optimization process. As a way to alleviate this problem, the
present study used information from previous theoretical
studies[10,11,15,16] to define the search range, which assisted the GA
to perform well in terms of the rate of convergence. The literature
does not explicitly show search ranges that may be used by the
GA. However, certain key features such as the order of magnitude
of the parameter values used in previous studies were taken into
account for the definition of a relatively wide search range as
shown in Table 1. The other GA operators/parameters were
defined as follows: the initial population of the GA was set to
10 individuals or chromosomes (each chromosome is made up of

six genes, that is, a numerical value for each parameter), the
maximum number of generations was 2000, the crossover
probability was 0.8 and the mutation probability was 0.03. With
the search space and GA operators defined, the GA performed an
exhaustive exploration to estimate the optimal values of the
parameters (k1–k6) such that Eq. (26) was minimized. The result of
the parameter estimation yielded the establishment of the
reaction rates constituting the mechanistic model for the specific
sensing conditions of this study. Table 1 also shows the optimal
values of the parameters with initial concentration of Ru(bpy)3

2+

of 5.0 μM. These optimal values were slightly fine-tuned to

Figure 3. Electrochemiluminescence measurements and simulations: (A) Potential vs. time applied on carbon working electrode, and (B)–(E) comparison
between the transient profile of the ECL experimental measurements (red circles) and the transient profile of the luminophore excited state Ru(bpy)3

2+

predicted by the model (blue lines) at initial concentrations of Ru(bpy)3
2+ of 5.0, 2.5, 1.25 and 0.625 μM, respectively.

Table 1. Search ranges for the genetic algorithm-based parameter estimation procedure and optimal values calculated for the model parameters.

Parameter Unit Search range for optimization Optimal value Reaction
Lower bound Upper bound

k1 (s� 1) 0 0.0012 0.00048295 Eq. (1)
k2 (s� 1) 0 0.036 0.0018325 Eq. (2)
k3 (mM� 1 s� 1) 0 3222 1747.107 Eq. (3)
k4 (mM� 1 s� 1) 0 5.00×105 2.941×105 Eq. (4)
k5 (mM� 1 s� 1) 0 500.0 225.329 Eq. (5)
k6 (s� 1) 0 9.509×104 5.253×104 Eq. (6)
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improve the prediction of the model for the experimental data
with different initial concentrations of Ru(bpy)3

2+.
Figures 3B–E illustrate that the transient profile of the ECL

experimental measurements matched well with the transient
profile of the concentration of the excited state Ru(bpy)3

2+*. The
corresponding assessment using the correlation coefficient, R2

established that the model predictions were particularly accurate.
These results demonstrate that the mechanistic model (Eqs. (7)–
(24)) can be used to predict the kinetic behavior of the observable
ECL intensity. Further, the present study demonstrates that the
unified framework that combines the mechanistic model with a
genetic algorithm can be straightforward, and it can be applied to
any required detection conditions. This approach is an alternative
to the trial-and-error method based in literature values, frequently

used in ECL theoretical studies.[11,15,16] The values of the parameters
of a mechanistic model can vary significantly according to sensing
conditions. The particular conditions of this study required a re-
estimation of parameters, which was carried out satisfactorily
using the proposed framework.

The model with the optimal values of the parameters is
used to simulate the transient profiles of the concentrations of
Ru(bpy)3

2+, Ru(bpy)3
3+, Ru(bpy)3

+, TPrA, TPrA*+, TPrA* and Ru
(bpy)3

2+* represented by the black lines in Figures 4A–G. The
green shading shows the region covered by the concentration
profiles generated from the simulations of the sensitivity
analysis addressed in the next section.

For the simulations results shown in Figure 4, it was assumed
that the system was submitted to a potential pulse of 0 V vs. Ag/

Figure 4. Simulations of the transient profiles of the concentrations of (A) Ru(bpy)3
2+, (B) Ru(bpy)3

+, (C) Ru(bpy)3
3+, (D) TPrA, (E) TPrA

*+, (F) TPrA
*

, and (G) Ru
(bpy)3

2+*. Black lines show the transient profiles of the concentrations calculated using the model with the optimal values from Table 1. The green shading
shows the region covered by the thirty-two transient profiles of the concentrations of the species generated from the model simulations according to the
fractional factorial design.
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Ag+ for 1 s, followed by � 1.2 V vs. Ag/Ag+ for 1 s, and finally
followed by 1.2 V vs. Ag/Ag+ for 1 s (Figure 4A). Also, the
modeling assumed a homogeneous diffusion layer of the electro-
lyte solution; thereby, the model derivatives were exclusively
integrated with respect to time. Svir et al.[26] showed that simplified
ECL models are computationally much faster than the detailed
models (with time-space derivatives) for the optimization proce-
dures. The same authors also demonstrated that a simplified
model achieved similar performance to a detailed model when
ECL transient profile was simulated. The strategy of integrating the
model with respect to time adopted in this study allowed the
simulations to show exclusively and explicitly the transient
behavior of the concentrations of the species during the potential
sweep as discusses below.

From Figures 4A–C and G it can be seen that the total
concentration of the ruthenium species (i.e., an initial concen-
tration [Ru(bpy)3

2+]0 of 0.005 mM) was mostly distributed between
the Ru(bpy)3

2+ and Ru(bpy)3
+ species, which had extremely high

reaction rates at early stage. The sum of the concentration of these
species during the potential sweep was always nearby to [Ru
(bpy)3

2+]0, since Ru(bpy)3
3+ and Ru(bpy)3

2+* (highly unstable
intermediates) have extremely negligible concentrations as
pointed out by Daviddi et al.[16] Indeed, the model predicted values
of concentrations of Ru(bpy)3

3+ and Ru(bpy)3
2+* of up to about

6.5×10� 8 and 2.0×10� 12 mM as shown in Figures 4C and 4G,
respectively. Figure 4D shows a progressive decrease of the
concentration profile of TPrA in its neutral form (from an initial
concentration [TPrA]0 of 20 mM) during the potential sweep
applied to the carbon electrode. This specie was irreversibly
oxidized to generate the short-live cation radical TPrA*+.[26] The
oxidation rate for TPrA neutral form shown in Figure 4 can vary
significantly if electrodes with different materials are used as noted
by Zu and Bard.[31] The TPrA*+ specie deprotonates rapidly and
irreversibly to form the strong reductant TPrA*, whose concen-
tration profile calculated by the model is shown in Figure 4F.
Figures 4D and F show that the sum of the concentration of TPrA
neutral form and TPrA* throughout the potential sweep was
always nearby to [TPrA]0, since the TPrA

*+ intermediate specie
rapidly deprotonated.[8] The model predicted TPrA*+ concentra-
tions of up to about 1.0×10� 2 mM as shown in Figure 4E. The
TPrA* specie undergoes a reaction with Ru(bpy)3

2+ thereby
reducing it to Ru(bpy)3

+, it reacts with Ru(bpy)3
3+ to form the

excited state luminophore, Ru(bpy)3
2+* (Figure 4G).[15] Finally, Ru

(bpy)3
2+* deactivates through the emission of a visible photon

energy.
The model with optimal values of the parameters from

Table 1 is also used to perform a sensitivity analysis (SA) where
the identifiable influence of the parameters k1–k6 on the model
outputs were assessed.

2.4. Sensitivity Analysis Results

In this study the identifiable influence of the parameters (k1–k6) on
the model outputs was determined using a 26� 1 fractional factorial
design (FFD). The parameters of the model were selected as
factors and the model outputs were the transient profiles of the

concentrations of Ru(bpy)3
2+, Ru(bpy)3

3+, Ru(bpy)3
+, TPrA, TPrA*+,

TPrA* and Ru(bpy)3
2+* Table 2 presents these factors and their

corresponding values for each level. These values are �20% of
the optimal values of the parameters in Table 1. Thirty-two-run
were defined according to the 26� 1 FFD. The results of the
transient profiles of the model outputs for all runs are presented
in Figures 4A–G, respectively. In these figures, the green shading
shows the region covered by the thirty-two concentration profiles
generated from the model simulations. From these data, a key
feature was selected; the slope of the concentration profile, which
was considered as the numerical response in the FFD.

The responses obtained from the statistical analysis of the FFD
were evaluated by using Pareto graphs (Figures 5A–G). For
ruthenium species (Ru(bpy)3

2+, Ru(bpy)3
3+, Ru(bpy)3

+ and Ru
(bpy)3

2+*), the Figures 5A–C and G show that the effects of k1, k2,
k4 and k5 are statically significant (at 95% significance level) on all
these model outputs. The parameter k3 appeared significant only
for Ru(bpy)3

+, Ru(bpy)3
3+ and Ru(bpy)3

2+*, whereas k6 is significant
only for Ru(bpy)3

2+*. Figure 5 also shows that the significance
ranking of the parameters was different for each model output.
For instance, Figure 5G, in addition to showing that all parameters
are significant on Ru(bpy)3

2+*, also shows that the parameter k5
governing reaction in Eq. (5) has an effect between three to six
times greater on the referred model output than the parameters
k2–k4. The effects of parameters k1 and k6 have a similar order of
magnitude and their effects are about 25% lower than the effect
of k5. These results show that the reaction between Ru(bpy)3

+ and
Ru(bpy)3

3+ to form the excited state Ru(bpy)3
2+* (reaction in

Eq. (5)) is the most critical reaction among those involving
ruthenium species.

The study of the parameters influence on the transient
profiles of the ruthenium species concentrations described
above is important to understand the reactivity of this
luminophore in the ECL mechanism of the Ru(bpy)3

2+/TPrA
system.

The Pareto graphs in Figures 5D–F show that the effects of
k2 are statistically significant for the transient profiles of all
tripropylamine species in the system. The parameter k3
appeared significant only for TPrA*+. The crucial role that the
cation radical TPrA*+ plays in the Ru(bpy)3

2+/TPrA system is
discussed below based on the simulation results of this study
and from the literature.

The color matrix in Figure 6 can be used to display the
parameter effects and combinations thereof on the model
outputs at a glance. In this figure, all parameters were ranked
by the brightness of the green color; the darker brightness

Table 2. Level of the parameters for sensitivity analysis using fractional
factorial design.

Model Parameter Level
� 1 1

k1 0.00038636 0.00057954
k2 0.00146603 0.00219904
k3 1397.685 2096.528
k4 2.35261×105 3.52892×105

k5 180.264 270.395
k6 4.20234×104 6.30350×104
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means the higher ranking, that is, the most significant
parameter. The results show that the parameter k2 that governs
the oxidation reaction of TPrA to produce the cation radical
TPrA*+ (Eq. (2)) is significant, at different magnitudes, on the
transient profiles of all species in the system, including the
electrochemical generation of the excited state Ru(bpy)3

2+*.
This finding implies the importance of the presence of TPrA*+

(and consequently the presence of the product of its deproto-
nation TPrA*) in the system for the electrochemical generation
of Ru(bpy)3

2+*, which emits a visible photon energy, when it
decays to the ground state Ru(bpy)3

2+. These results are
supported by previous studies showing that the radicals TPrA*+

and TPrA* are key species that should be present at the same
time in the system for the electrochemical generation of the
excited state Ru(bpy)3

2+*.[32] In other work,[33] 3D imaging
approach showed that maximum ECL intensity occurs where
concentrations of TPrA*+ and TPrA* are locally the highest. On
the other hand, a weaker ECL signal is consequence of the
presence of oxygen-containing surface species which reduce
the lifetime of TPrA*+, and therefore TPrA* would be susceptible
to higher oxidative consumption subsequently (oxidation of
TPrA* on the electrode). A recent work[34] focused on optimizing
ECL signal performance, adopted a strategy to minimize oxygen
and defects in the electrode surface with the goal of increasing
the conductivity of the electrode and minimizing the oxidation
of TPrA* on the electrode.

In this work, the sensitivity analysis, along with the genetic
algorithm-based parameter estimation procedure, drive the
systematic development of a reliable mathematical model for
the ECL mechanism of the Ru(bpy)3

2+/TPrA system ocurring in a
smartphone-based sensor.

Figure 5. Pareto graphs of effects of the parameters on the model outputs: transient profiles of the concentrations of (A) Ru(bpy)3
2+, (B) Ru(bpy)3

+, (C) Ru
(bpy)3

3+, (D) TPrA, (E) TPrA
*+, (F) TPrA

*

, and (G) Ru(bpy)3
2+*.

Figure 6. Parameter sensitivity ranking on the model outputs simulating the
kinetics of the ECL mechanism.
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3. Conclusions

This article introduces a unified framework that combines a
mechanistic model with a genetic algorithm to estimate the
parameters governing the ECL mechanism of the Ru(bpy)3

2+/
TPrA system. This approach overcomes the current limitations
related to the complex nature and high computational load of
the models. All ECL measurements, extracted from a low-cost
smartphone-based ECL sensor, were in a close alignment with
the simulated values. The results demonstrate that proposed
framework is capable of establishing a well-adjusted mecha-
nistic model, which simulates the kinetics of the ECL mechanism
under specific sensing conditions. Further, the rapid conver-
gence of the parameter estimation procedure (about three min
for 2000 generations) can contribute to its practical application
in the calibration of mechanistic models for any required
sensing condition. The sensitivity analysis (SA) reveals the
influence of the parameters on the model outputs and it
demonstrates that the parameter k2 is particularly important in
generating the excited state Ru(bpy)3

2+*. In future work, the
proposed approach can be used to explore the kinetics of the
quenching mechanism of Ru(bpy)3

2+/TPrA electrochemilumi-
nescence by economically relevant analytes such as phenolic
compounds.
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