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Abstract: Background: Migraine is one of the most common disorders and its pathophysiological
mechanisms are still under research, oxidative stress being emphasized as an important contributor.
This study aimed to analyze the retinal nerve fiber layer (RNFL) thickness and oxidative/anti-oxidant
balance in migraine patients. Methods: Two groups of subjects were evaluated: a group of patients
with migraine and a control group of healthy volunteers. RNFL thickness was assessed for all
subjects by the ocular coherence tomography spectral domain (OCT-SD). The oxidative stress
parameter, namely nitric oxide (NOx), malondialdehyde (MDA), and total oxidative stress (TOS) were
assessed. The antioxidant capacity of plasma was evaluated by assessing the level of catalase, and total
anti-oxidative (TOS) capacity. Migraine severity was graded using the Migraine Disability Assessment
Score (MIDAS) questionnaire. Results: All the oxidative stress parameters (NOx, MDA, and TOS) were
significantly increased, and both parameters for anti-oxidative status were significantly decreased in
the migraine group compared with the control group (p < 0.0001). Significant correlations with all
the quadrants and different oxidative stress parameters were found, most involved being temporal
quadrant. A significant positive correlation between catalase and macular RNFL thickness (inner ring,
temporal quadrant) in migraine patients, for both eyes, was observed (p = 0.014 for the right eye and
p = 0.12 for the left eye). Conclusion: The assessment of the oxidative stress/anti-oxidative balance
together with RFLN thickness can constitute a promising method to evaluate the progression of
the diseases. It can also contribute to the estimation of the efficiency of various therapies targeting
oxidative stress and associated inflammation.

Keywords: retinal nerve fiber layer (RNFL) thickness; migraine; optical coherence tomography
(OCT); oxidative stress

1. Introduction

Migraine is a common chronic disorder characterized by an episodic headache accompanied
by various neurological, gastrointestinal and/or autonomic disturbances. A relevant percent of the
population (up to 21% of women and 6% of men) suffer from migraine attacks associated with activity

Antioxidants 2020, 9, 494; doi:10.3390/antiox9060494 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0001-7748-382X
https://orcid.org/0000-0003-0613-9575
https://orcid.org/0000-0002-2342-4311
https://orcid.org/0000-0002-3222-6448
http://www.mdpi.com/2076-3921/9/6/494?type=check_update&version=1
http://dx.doi.org/10.3390/antiox9060494
http://www.mdpi.com/journal/antioxidants


Antioxidants 2020, 9, 494 2 of 13

impairment and disability [1]. According to the World Health Organization, headache disorders
constitute one of the ten most disabling conditions for both genders, while, for women, they rank
among the five most disabling states [1]. Approximately 30% of migraine patients experience transient,
fully reversible, neurological, or visual symptoms (aura) preceding the attack [2,3]. In both types of
migraine patients, with or without aura, there is more extensive responsiveness to light stimulation in the
visual cortex [4,5]. During attacks, the activity of the visual cortex is increased as a response to increasing
intensities of light stimulation [6]. Different pathophysiological mechanisms had been proposed to
explain the migraine, but the issue is still far from being fully clarified. One of the most relevant
pathophysiological mechanisms of migraine is the increase in oxidative stress [7]. The neurovascular
system also remains one of the most important mechanisms involved in the pathogenesis of migraine,
and, consecutive, hypo-perfusion might involve other areas besides the brain, such as the retina,
leading to axonal loss and changing of the retinal nerve fiber layers thickening [8–10]. Hemodynamic
changes (characterized by hypo-perfusion), hypercoagulability status and altered endothelial functions
are between pathophysiological mechanisms that are suggested to be associated with migraine [11,12].
Experimental and clinical studies showed that inflammation triggered and amplified by oxidative
stress could constitute other mechanisms associated with migraine attacks [13–15]. Oxidative stress
enhancement during migraine attacks can arise from different mechanisms, including a high rate
of energy production by the mitochondria, calcium overload into the cells, neuronal excitotoxicity,
neuroinflammation, the activation of microglia, or the activation of neuronal nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [7]. Proinflammatory cytokines such as IL-1β, IL-6,
and TNF-α proved to have high concentrations in serum in patients with migraine, indicating that
inflammation plays a significant role in migraine pathogenesis [16]. During a migraine attack,
sensitization of the trigeminal vascular system (TGVS), including the network of intra- and extracranial
meningeal blood vessels and ocular structures, affecting the vascular tone and the transmission of pain
signals, is observed [17–19]. The hypo-perfusion of the eyes’ structures occurring during a migraine
attack (due to cerebral vessels vasoconstrictions) and repetitive attacks can lead to permanent damage
of the brain and eye structures, including retina [20,21].

Since its introduction in the clinical practice, optical coherence tomography (OCT) represents one
of the most reliable methods for the evaluation of morphological changes in retinal and optic nerve
structure [22]. OCT changes can indicate the retrograde trans-synaptic neuronal degeneration (RTSD) of
the retinal ganglion cells (RGCs) [23], being useful for the evaluation of the neurodegenerative process
associated with various neurological diseases, such as multiple sclerosis [24], Alzheimer’s disease [25],
Parkinson’s disease [26], and various type of headache, including migraine [23]. OCT provides
information about the axonal and neuronal loss in the retina, and consequently, offers information in
the visual afferent pathways and central nervous system, facilitating the diagnosis and the management
of neuro-ophthalmological diseases [27]. Spectral domain OCT technology (SD-OCT) provides an
individual assessment of retinal layers. SD-OCT now replaces the previous technology represented by
the time domain OCT (TD-OCT). SD-OCT can give information about the peripapillary retinal nerve fiber
layer (RNFL), macular ganglion cell layer, macular volume, and optic nerve [28]. The SD-OCT can assess
the irreversible neuronal loss in vivo, adding a new perspective to approaching the pathophysiological
mechanism associated with neuro-ophthalmological conditions, including migraine. Patients with
neurodegenerative diseases have a significant decrease in the peripapillary RNFL thickness, as reported
by Kwon et al. [29]. Since macula consists mainly of retinal neuron bodies and glial cells, the neuronal
loss can also be determined by the assessment of the volume of the macula or macula thickness on
OCT [30]. OCT is correlated with perimetry, which is the visual field test examination that can detect
dysfunction in central and peripheral vision that may be caused by various medical conditions, such as
ocular or neurological conditions. As compared to perimetry, OCT is more precise, highly sensitive,
and easier to use in the follow-up of the patients to assess the progression of the diseases [28].
Optical coherence tomography uses interferometry to interpret reflectance data and measure RNFL
thickness [10]. Macular thickness is defined as the mean thickness within the central 1000-µm diameter
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area [10]. The changes of RNFL thickness in migraine patients proved to be associated with the
history of disease onset (number of years), the severity of disease (Migraine Disability Assessment
Score (MIDAS)), the involvement of different retinal quadrants or chronic migraine onset [9,31–34].
This study aimed to assess peripapillary RNFL thickness and macula thickness by OCT examination,
oxidative stress parameters, and the relationship between oxidative stress and OCT results in migraine
without aura patients and with no prophylactic medication.

2. Materials and Methods

A prospective, comparative, and analytical study was performed on a migraine group as
compared to an age-matched group of healthy volunteers. The study protocol was approved by the
Institutional Ethics Committee of the Rehabilitation Hospital, Cluj-Napoca, Romania (IECGH 4/2018).
All participants included in the study signed prior to clinical examination, blood sampling, and OCT
examination the written informed consent. The patients were recruited from the Neurology Clinic
of Rehabilitation Hospital, Cluj-Napoca, Romania, from January to December 2018. The controls
were recruited from the same hospital in the same period of time among the subjects that call for a
visual check after the exclusion of those who recall migraine attacks. The Declaration of Helsinki
specifications were followed. All the participants signed informed consent for participation in this
study. The assessment was made in the first 24 h after the migraine attack onset.

The neurological and ophthalmological examination was done to all subjects included in the study.
In the neurological examination, all the patients in the study group were selected following diagnostic
criteria established by the International Headache Society (ICHD-2) [35]. Migraine severity was
assessed by the neurologist using a Migraine Disability Assessment Score (MIDAS) questionnaire [36].
MIDAS score was divided into four grades: grade I (infrequent disability, score from 0 to 5), grade II
(mild disability, score from 6 to 10), grade III (moderate disability, score from 11 to 20), and grade IV
(severe disability, score >20). The duration of disease expressed in years and the number of attacks per
month were established by anamnesis. After the neurological examination, patients with epilepsy,
cerebrovascular or cardiovascular diseases, neurodegenerative diseases, hypertension, or diabetes
mellitus were excluded. Patients have undergone a complete ophthalmological examination at the
Ophthalmological Department of the Rehabilitation Hospital. The ophthalmologic examination
included best-corrected visual acuity tested with Snellen chart, slit lamp biomicroscopy, dilatated
fundus examination, intraocular pressure measurement, and visual field examination by automated
perimeter (Humphrey Visual field Analyzer 750i, Zeiss, Germany). Ophthalmological examination
excluded patients with glaucoma, optic nerve diseases, retinal vascular diseases, pre-proliferative or
proliferative diabetic retinopathy, macular degeneration, hereditary retinal dystrophy. None of the
patients with migraine had prophylactic medication prior to the presentation, and they only used
triptans for migraine attacks. Other exclusion criteria included obesity, oral contraceptive medication,
glucocorticoid medication, and anti-oxidant agents’ treatments.

2.1. Retinal Fiber Layer Thickness Assessment by Optical Coherence Tomography

All patients and controls who met the neurological and ophthalmological criteria have been
examined with ocular coherence tomography spectral domain (OCT-SD) (DRI Triton, Topcon, Tokyo,
Japan) after pupillary dilatation, for both eyes. The software automatically recognizes eight retina
layers. Peripapillary retinal fiber layer thickness (RNFL) and macular thickness (M) were assessed.
Using macular thickness analysis mode and through a software algorithm, the device automatically
constructed a topographic surface map (central field—1 mm centered on the fovea, inner ring bounded
by 1 to 3 mm concentric circles, and outer ring bounded by 3 to 6 mm concentric circles). All fields
were examined for both eyes: peripapillary RNFL thickness (superior, temporal, inferior and nasal
quadrant), foveal thickness, inner macular thickness (superior, temporal, inferior, and nasal quadrant),
and outer macular thickness (superior, temporal, inferior and nasal quadrant). The average macular
thickness was manually determined [37].
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2.2. Oxidative Stress Parameters

Blood samples were taken from all the subjects included in the study, in the morning, after fasting
for 12 h, in the first 24 h after admission into the hospital for a migraine attack. The samples were assessed
regarding the oxidative status and antioxidant capacity of plasma. The oxidative status evaluation
consisted of the determination of total oxidative stress (TOS) using the method of Erel et al. [38],
malonyl dialdehyde (MDA) using the method of Ohkawa et al. [39] and nitric oxide (NOx) using the
method of Giustarini et al. [40]. Total NOx levels were used as a surrogate marker for serum nitric oxide
levels [40]. The antioxidant capacity of plasma was assessed by measuring the level of catalase [41],
and total anti-oxidative (TOS) capacity [42]. Spectroscopic measurements assessed the oxidative stress
parameters. A Jasco V-350 UV-VIS spectrophotometer (Jasco International Co., Ltd., Tokyo, Japan) was
used for all measurements. All the chemical substances were purchased from Sigma-Aldrich.

2.3. Statistical Analysis

Statistical analysis was done with Statistica program (v. 8, StatSoft, Tulsa, OK, USA), and p-values
less than 0.05 were considered statistically significant. The numerical data were assessed for normal
distribution and were summarized as mean (standard deviation) if normally distributed, respectively,
and median (Q1 to Q3) (where Q is the quartile) otherwise. An independent t-test or Mann–Whitney
test was used to evaluate differences between groups according to data distribution. The qualitative
data were reported as a number, percentage and 95% confidence intervals (values provided in squared
brackets) calculated with an exact method [43] and analyzed by the Chi-square test. For correlation
analysis, Pearson’s or Spearman’s methods were used according to the distribution of data.

3. Results

Seventy-seven patients, forty-one with migraine and thirty-six controls, were investigated.
The investigated sample comprise subjects aged from 22 to 47 years old, without significant
differences between groups (median (IQR) migraine vs. control group = 39 (35–41) vs. 35.5 (29–42),
Z-stat (Mann–Whitney test) = 1.3, p = 0.1878).

Twenty-nine (70.7%) women were included in the group with migraine and twenty-three (63.9%)
in the control group, without significant differences between groups (χ2 = 0.4, p = 0.5223).

The time in years from the migraine diagnostic varied from 3 to 8 years with a median of 5 years
(IQR = (4–6) in the group with migraine. The frequency of migraine attacks per month varied from 2 to
8, with a median of 4 (3–6).

A different pattern was observed according to genders regarding the MIDAS score,
with significantly higher frequency of MIDAS I and II score among men, and MIDAS III and IV
score among women (Fisher exact test; p = 0.0006).

A different pattern of oxidative stress parameters was observed between groups with significantly
higher values of NOx, MDA, and TOS, and, respectively, significantly lower values of catalase and
TAC among the migraine group as compared to the control group (Table 1). No significant differences
regarding the investigated oxidative stress parameters were observed between genders, neither in the
migraine group (Mann–Whitney test, p > 0.18) nor in the control group (Mann–Whitney test, p > 0.31).

The thickness of the peripapillary retinal nerve fibers proved to be, without any exceptions,
significantly smaller in the migraine group as compared to the control group (Table 2).

The averages of macular RNFL thickness for the outer and inner ring were significantly reduced
in patients with migraine compared with the control group with a few exceptions: an inferior quadrant
of the outer ring of the fovea for the left eye, an inferior quadrant of the inner ring and a superior
quadrant of the outer ring of the fovea for the left eye (Table 3).

The most frequent significant relationships were observed with catalase, and the most involved
quadrant in these correlations was the temporal quadrant that showed a strong positive correlation
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with macular RNFL thickness, inner ring in both eyes (Table 4). The strongest positive correlation was
also found for catalase, and peripapillary RNFL thickness nasal quadrant left eye (p = 0.007) (Table 4).

Table 1. Oxidative stress parameters by groups.

Migraine Group (n = 41) Control Group (n = 36) t-Stat. (p)

NOx (µmol/L) 28.3 (<0.001)
Mean (SD) 43.0 (3.1) 26.4 (1.8)

(Min to Max) 36.0–49.0 23.0–30.0
MDA (nmol/L) 57.8 (<0.001)

Mean (SD) 6.2 (0.3) 2.6 (0.2)
(Min to Max) 5.8–6.9

TOS (µmol H2O2/L) 70.6 (<0.001)
Mean (SD) 34.4 (1.6) 13.4 (0.9)

(Min to Max) 30.0–37.0 11.4–15.1
Catalase (U/ml) −50.2 (<0.001)

Mean (SD) 34.5 (2.3) 68.4 (3.6)
(Min to Max) 31.0–40.7 60.7–74.2

TAC (mmol trolox/L) −14.5 (<0.001)
Mean (SD) 1.0 (0.2) 1.8 (0.3)

(Min to Max) 0.6–1.4 1.1–2.5

Table 2. Peripapillary retinal nerve fiber layer thickness (µm) by groups.

Migraine Group (n = 41) Control Group (n = 36) t-Stat. (p)

Right Eye Quadrants
Superior 103.0 (5.9) 118.3 (5.7) −11.5 (<0.001)
Temporal 58.0 (6.4) 80.8 (5.2) −16.9 (<0.001)
Inferior 110.1 (5.4) 122.2 (4.1) −10.9 (<0.001)
Nasal 78.1 (3.8) 81.1 (4.6) −3.00 (0.003)

Left Eye Quadrants
Superior 109.9 (7.1) 118.1 (5.3) −5.7 (<0.001)
Temporal 59.4 (2.8) 76.9 (2.5) −28.4 (<0.001)
Inferior 116.6 (4.6) 120.5 (4.4) −3.8 (0.001)
Nasal * 80.0 (79.0–85.0) 85.0 (80.0–88.3) −2.5 (0.010)

Student t-test was applied for normally distributed measurements (reported as mean (standard deviation)).
Excepting those with * (reported as median (Q1–Q3), where Q is the quartile) when Mann-Whitney test was applied.

Table 3. Macular retinal nerve fiber layer (RNFL) thickness (µm) analysis by groups.

Migraine Group (n = 41) Control Group (n = 36) t-Stat. (p)

Right eye quadrants
Fovea 251.5 (9.9) 270.2 (6.8) −9.6 (<0.001)

Inner ring
Superior 277.9 (9.5) 283.0 (7.8) −2.6 (0.012)
Temporal 230.0 (9.6) 283.2 (6.5) −28.1 (<0.001)
Inferior 260.1 (7.0) 267.3 (6.1) −4.8 (<0.001)
Nasal 282.6 (11.3) 290.9 (9.2) −3.5 (0.001)

Outer ring
Superior 236.9 (6.8) 241.7 (6.5) −3.1 (0.003)
Temporal 216.2 (5.1) 239.3 (4.6) −20.7 (<0.001)
Inferior 262.2 (8.1) 264.3 (9.2) −1.0 (0.313)
Nasal 272.1 (9.1) 278.1 (8.7) −3.0 (0.004)

Macular volume 8.3 (0.5) 8.7 (0.6) −3.8 (<0.001)

Left eye quadrants
Fovea 247.4 (7.9) 284.4 (11.2) −16.9 (<0.001)

Inner ring
Superior 271.0 (8.6) 279.2 (11.3) −3.6 (0.001)
Temporal 224.0 (9.6) 278.3 (11.3) −22.7 (<0.001)
Inferior 263.5 (9.2) 267.6 (10.0) −1.8 (0.071)
Nasal 281.1 (10.8) 289.3 (11.8) −3.2 (0.002)

Outer ring
Superior 244.0 (8.5) 247.2 (8.8) −1.7 (0.102)
Temporal 218.2 (13.0) 242.6 (9.1) −9.4 (<0.001)
Inferior 259.2 (6.7) 263.3 (10.2) −2.1 (0.039)
Nasal 267.1 (10.4) 273.0 (11.5) −2.4 (0.021)

Macular volume 7.8 (0.6) 8.7 (0.4) −7.4 (<0.001)
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Table 4. Pearson’s rank correlations (r) among patients with migraine.

Characteristics r (p)

Peripapillary thickness (µm)
MDA & Peripapillary RNFL thickness-S-LE 0.31 (0.048)
TOS & Peripapillary RNFL thickness-T-LE 0.41 (0.009)
Catalase & Peripapillary RNFL thickness-N-LE 0.41 (0.007)
TAC & Peripapillary RNFL thickness-S-LE −0.34 (0.029)

Macular thickness (µm)
Catalase & Fovea-LE 0.31 (0.044)
NOx & Macular RNFL thickness-InnerRing-I-RE 0.39 (0.013)
MDA & Macular RNFL thickness-InnerRing-T-LE −0.37 (0.017)
Catalase & Macular RNFL thickness-InnerRing-T-RE −0.38 (0.014)
Catalase & Macular RNFL thickness-InnerRing-T-LE −0.39 (0.012)
TAC & Macular RNFL thickness-InnerRing-N-LE 0.40 (0.010)
NOx & Macular RNFL thickness OuterRing-I-RE 0.34 (0.028)
TOS & Macular RNFL thickness OuterRing-S-RE 0.39 (0.011)
TAC & Macular RNFL thickness OuterRing-N-RE −0.34 (0.031)

r = Pearson’s rank correlation coefficient, TOS = total oxidative stress, NOx = nitric oxide, TAC = total anti-oxidative
capacity, MV = macular volume, MDA = malonyl dialdehyde, LE = left eye, RE = right eye, T = temporal quadrant,
N = nasal quadrant, S = superior quadrant, I = inferior quadrant.

4. Discussion

Our study identified increased values of the oxidative stress parameters (NOx, MDA, and TOS),
decreased values of both parameters for anti-oxidative status, decreased peripapillary retinal nerve
fiber layer thickness as well as macular RNFL thickness among those with migraine as compared
to those without migraine. Furthermore, several significant correlations were identified between
oxidative stress parameters and, respectively, catalase on the one hand and peripapillary and macular
thickness, on the other hand.

A higher percentage of women with migraine was observed in our study and this result is expected
since female sex is considered a risk factor for migraine onset as well as for its transformation into a
chronic disorder [44]. The prevalence of migraine in the general population is reported as three-times
more in women than in men, especially during the reproductive years [45], our results being closed to
this ratio. Furthermore, a more significant disability associated with female gender is reported [46],
this also being observed in our study with a higher disability according to MIDAS score among women
as compared to men. The role of estrogens in migraine risk and clinical characteristics, with decreasing
levels in the premenstrual period associated with menstrual-related migraine, had already been
demonstrated [45]. Gender is also associated with differences in oxidative stress, women appear to be
less susceptible to oxidative stress due to the antioxidant properties of the estrogens [47,48].

4.1. Migraine and Oxidant/Antioxidant Balance Assessment

Oxidative stress is a plausible unifying principle behind the types of migraine triggers encountered
in clinical practice [49]. All of the parameters that reflect the oxidant/anti-oxidant balance in our study
(NOx, MDA, TOS, catalase, and TAC) were found to be significantly modified in migraine patients
compared with the control group (Table 1). Endogenous reactive species such as reactive oxygen species
(ROS) and reactive nitrogen species (RNS) are emerging as molecules that can mediate cell signaling
responses with the activation of Ca2+-permeable membrane channels, encoded by the transient receptor
potential (TRP) gene superfamily that are characterized by a wide variety of activation triggers that
act from outside and inside on the cells [50]. Members of one class of TRP channels have emerged
as sensors not only for reactive oxygen species (ROS), or reactive nitrogen species (RNS) but also
for reactive carbonyl species (RCS), and gaseous messenger molecules including molecular oxygen
(O2), hydrogen sulfide (H2S), and carbon dioxide (CO2) [51]. Transient receptor potential ankyrin-1
(TRPA1) ion channels, found on pain-sensitive nerve endings in the dura mater, play the role of
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nociceptor and reacts to environmental oxidative stress, transducing it into a neural signal, resulting in
pain perception [50]. An associated neurogenic inflammation will also result, and will amplify the
nociception process [52] reflected by pain-related disability (MIDAS score). Endogenous ROS can cause
damage to DNA, mitochondria, membrane lipids, and proteins and, consequently, can contribute to
neuronal cell loss in migraine patients [48,53,54] that were assessed in our study by OCT examination
(Tables 2 and 3). There is a selective sensitivity of neurons in the central nervous system to oxidative
stress [53], some of these regions being involved in the pathophysiology of a migraine attack (for
example, functional connectivity between the hypothalamus and brainstem was found to be altered
during a migraine attack, leading to the hypothesis that this network change might be the real driver
of migraine attacks [55]). According to these data, we can also hypothesize that the vulnerability of
specific neuronal networks to oxidative stress can initiate and maintain the migraine attacks. However,
the oxidative stress during migraine attacks may constitute a physiologic environment conducive
to stem cells [56]. Still, migraine attack is followed by the neuronal loss [57] and, as a consequence,
the neuroplasticity phenomena can initiate an integrated mechanism for neural repair [49]. The balance
between neuronal loss during migraine attack and neuronal repair stimulation after migraine attack has
to be controlled in order to be used as a beneficial phenomenon for using it as a therapy for facilitating
the survival, proliferation, migration, and differentiation of stem cells according to Borkum theory [49].

One of the most important molecules for reactive species is nitric oxide, the smallest signaling
molecule known, that will enhance nitro-oxidative stress due to its increased production. Increasing
NO production can be a result of the activation of three isoforms of NO synthase (NOS): neuronal NOS
(nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) [57]. Their activation can exert various
effects: nNOS activation contributes to synaptic plasticity in the central nervous system (CNS), central
regulation of blood pressure, smooth muscle relaxation, and vasodilatation, iNOs activation contributes
to the pathophysiology of inflammation, and eNOS activation has an important role for vasodilatation
and vasoprotective effect [58]. Our results demonstrate a significantly increased NO molecule in
migraine patients compared with control subjects (Table 1). Increased NO production can result
from the activation of all of the three NOS isoforms. The NO excess reacts with superoxide, leading
to the creation of peroxynitrite, a damaging product [58,59]. Several isoforms of O2

•−-producing
NADPH oxidase exists in the vascular wall [60]. Many types of vascular diseases appear as being
associated with the up-regulation of NADPH oxidase [57] and evidence suggested that migraine
pathophysiology is connected with vascular reactivity [61,62]. Endothelial NOS (eNOS) appears mainly
involved in migraine pathophysiology. NO produced by eNOS that has been activated by serotonin
(released by activated platelets), contributes to the vasodilation of migraines and associated neurogenic
inflammation by stimulating the release of substance P that is an important molecule involved in
neurogenic inflammation [63,64]. eNOS is also involved in endothelium, releasing VEGF and BDNF
that are implicated in central sensitization during migraine attacks [65].

Among the constituents that contribute to increased oxidative stress in migraine patients, compared
with the control group, malondialdehyde (MDA) is the constituent that features in our study (Table 1).
A significantly increased MDA reflects an intense lipid peroxidation as an important contributor to
oxidative stress and neuronal loss since neuronal membranes are rich in polyunsaturated fatty acids and
are particularly susceptible to oxidative stress [66]. TOS was significantly increased and TAS was found
to be significantly decreased in migraine patients compared to controls by our study, a result similar to
the Yigit et al. [67] but opposite to the study conducted by Geyik et al. who reported no significant
difference [68]. The age of the investigated patients can explain our different results regarding the
oxidative stress changes as compared to Geyik et al. for our migraine group [68] aging itself being
an essential contributor to increased oxidative stress [69]. Similar to our findings, Alp et al. reported
significantly decreased TAC in migraine patients [70]. Several studies also reported that different types
of headache are associated with decreased antioxidant defenses mechanisms [71–73]. As in our study
(Table 1), the catalase level, as a contributor to the antioxidant system, was reported to be significantly
decreased in migraine patients [74,75]. The persistence of oxidative stress and increasing the frequency
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of migraine attacks can lead to a chronic migraine [2]. Adding all of these pieces of evidence to our
study, regarding the oxidative stress in migraine patients, we are considering that the disturbances of
oxidant/antioxidant system balance has an important contribution in migraine pathogenesis.

4.2. Migraine and RNFL Thickness Assessment

The retinal nerve fiber layer (RNFL) contains the axons of the retinal ganglion cells. Therefore,
measurement of the RNFL thickness by OCT is expected to provide information for monitoring the
progressive loss of ganglion cells and axons in migraine patients [23].

Our study demonstrated that retinal fiber layers are significantly decreased in patients with
migraine (peripapillary RNFL thickness for migraine group was decreased for all quadrants) (Table 2).
For the macular region, fovea RNFL thickness was significantly decreased for both eyes (Table 3).
Our hypothesis is that oxidative stress contributes to RFLN thickness changes, and can be an effect of
each recurrent attack since there are significant differences between the control group and migraine
patients. Despite the inconsistent significant modification of macular thickness for various quadrants,
macular volume significantly decreased in both eyes in migraine patients compared with the control
group (Tables 2 and 3). Previous OCT studies had also demonstrated a significant decrease in RNFL
thickness in various quadrants in patients with migraine. Assessing migraine patients by TD-OCT (time
domain optical coherence tomography), different results were reported. Reduced RNFL thickness in
the nasal sector was found by Sorkhabo et al. in a case-control study [34]. Martinez et al. found thinner
TD-OCT RNFL in the temporal sector in migraine patients compared with healthy volunteers [76].
Colak et al. found on migraine patients using SD-OCT (spectral domain optical coherence tomography)
no significant difference in the RNFL thicknesses of the temporal and nasal quadrants compared with
control subjects but a significant difference of the superior and inferior quadrants [77]. In the same
study, foveal, temporal, and nasal choroidal thickness measurements were significantly lower in the
migraine group than in the control group [76]. Decreased thickness of RNFL in nasal sectors in patients
with migraine (assessed by SD-OCT) was also found by different studies [78,79].

4.3. Correlation Between Oxidant/Antioxidant Balance and RNFL Thickness

Oxidative stress may be a final common pathway, signaling several unfavorable conditions in
the brain, including neuronal degeneration and apoptosis [58]. Studies regarding retinal neuronal
fiber layer involvement in migraine patients revealed a possible connection between the thickness of
RNFL and migraine pathophysiology, even if different studies report discrepancies in the involved
quadrants. Our results show a statistically significant correlation between the reduction in RNFL in the
peripapillary region in different quadrants with different oxidative stress/anti-oxidative parameters
with the strongest positive significant correlation (p < 0.007) between peripapillary thickness in nasal
quadrants and catalase, in migraine patients (Table 4). Furthermore, a significant correlation for all
quadrants with different stress oxidative parameters were also identified most often, the temporal
quadrant being correlated for peripapillary and macular thickness with MDA, TOS, and catalase
(Table 4). Our results suggest the absence of an identifiable rule regarding the involved quadrants
of RNFL thickness and various oxidative parameters tested. However, the results obtained on this
pilot study must be first validated on a larger sample, and if are reproducing, the mechanisms must
be assessed. Reported results regarding the correlation of RNFL thickness with various parameters
also showed associations that are not following a precise pattern. Abdellatif et al. [80] found that the
duration of migraine is significantly correlated with the thickness of the ganglion cell layer, retinal nerve
fiber layer, and all choroidal quadrants. The severity of migraine was only significantly correlated with
the thickness of the ganglion cell layer and the retinal nerve fiber layer [79]. The duration of a migraine
attack is the most important determinant factor for the decrease in the thickness of the superior retinal
nerve fiber and in all the choroidal quadrants, while the severity of migraine is the most important
determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants and the inferior
ganglion cell layer [79]. Also using a spectral-domain optical coherence tomography assessment,
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some researchers found that inferior and superior quadrant RNFL thickness was significantly thinner
in patients with migraine compared with the control [81]. Comparing both eyes in migraine patients
with control subjects, the nasal RNFL thicknesses were significantly thinner on the right side in our
study, while Gunes et al. reported a similar result but on both sides [82]. Other different significant
correlations between RNFL thickness and migraine characteristics were also reported: the length of
the history of a migraine [21], the migraine disability score [34], or visual disturbances amplitudes [83].

Consequently, we believe that the OCT-based evaluation of RNFL thickness could offer a
non-invasive method for evaluating axonal loss in migraine patients. From our knowledge, this is the
first study investigating the association between the oxidative stress parameters and RNFL thickness,
a mechanism that could be an essential step for migraine treatment, targeting oxidative stress molecules.
In light of this fact, personalized therapy could be applied according to which specific oxidative
stress/antioxidant molecule is increased in each patient.

4.4. Study Limitation and Perspectives

Several limitations to our study could be listed. First, the presented study was designed as a
pilot study on a small sample of patients having migraines without aura. The observed pattern of
association between RNFL thickness in different quadrants and various oxidative stress parameters
must be validated on larger sample sizes. Furthermore, the assessment of these associations among
men and women on a larger sample size could be of scientific interest. Second, we evaluated patients
with migraine with no prophylactic medication, but insufficient data were collected regarding the
prophylaxis (such as were the medications never used or interrupted, were they interrupted recently
or since a prolonged interruption, which medications were used, what doses were given and for how
long, etc.). Third, the assessment of the group with migraine was made in the first 24 h after the
migraine attack onset. Migraine attacks are known to be accompanied by oedema of the forearm,
eyelids, and cheeks. The evaluation of the retinal parameters between attacks, out of painful periods,
could bring more insights into how these parameters change during attacks and free of symptoms
periods, allowing for a better assessment of the disease evolution. Fourth, we only evaluated the
persons with migraines without aura. An evaluation also conducted on patients with migraine with
aura could identify the same pattern or a different pattern of changes and associations between RNFL
thickness and various oxidative stress parameters. Fifth, the results reported in correlation analysis
must be interpreted with caution, because some statistically significant correlation could be observed,
by chance, considering the number of the ocular coherence tomography spectral measurements.

5. Conclusions

Decreasing the RNFL thickness in migraine patients, in different quadrants, can be associated with
an imbalance between oxidative stress and antioxidants by increasing oxidative stress or by reducing
the antioxidant mechanisms, contributing to the axon degeneration in retinal layers. Because retina
contains axons associated with ganglion cell neurons, and the RNFL is abundant in axonal tissue
and has no myelin, the OCT assessment of RNFL thickness can be a potentially useful biomarker of
axonal loss in the central nervous system. The association of RNFL thickness with various oxidative
stress parameters in migraine patients can constitute an essential step for personalized therapy focused
on targeting reducing oxidative stress molecules. However, the role of oxidative stress in migraine
pathophysiology is not yet completely and worldwide established. This is a pilot study, and more
exhaustive studies are needed to produce evidence for clinical practice.
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