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Engineered cardiac tissues (ECTs) are 3D physiological models of the heart that are
created and studied for their potential role in developing therapies of cardiovascular
diseases and testing cardio toxicity of drugs. Recreating the microenvironment of the
native myocardium in vitro mainly involves the use of cardiomyocytes. However, ECTs
with only cardiomyocytes (CM-only) often perform poorly and are less similar to the
native myocardium compared to ECTs constructed from co-culture of cardiomyocytes
and nonmyocytes. One important goal of co-culture tissues is to mimic the native heart’s
cellular composition, which can result in better tissue function and maturity. In this
review, we investigate the role of nonmyocytes in ECTs and discuss the mechanisms
behind the contributions of nonmyocytes in enhancement of ECT features.

Keywords: engineered cardiac tissues, 3D physiological models, cardiomyocytes, nonmyocytes, cell-cell
interactions, fibroblasts, endothelial cells, human induced pluripotent stem cell-derived cardiomyocytes

INTRODUCTION

Cardiovascular disease is the leading cause of death in the United States (Benjamin et al.,
2019). Despite improvements in acute treatment of cardiovascular disease, the incidence of
heart failure is increasing (Cahill and Kharbanda, 2017; Lesyuk et al., 2018). Available therapies
for heart failure include invasive procedures such as heart transplant or the implantation
of a mechanical assist device as a bridge to transplant; non-invasive therapies include drugs
aimed at improving contractility (Gheorghiade et al., 2016). Meanwhile, alternative therapies
are being investigated to repair and regenerate the damaged myocardium to restitute its
function; these alternative therapies under investigation include small molecules, growth factors,
gene (lentiviral, adenoviral, and adeno-associated viral vectors (AAVs) and cell therapies
(Talman and Kivelä, 2018; Kieserman et al., 2019). Challenges with the clinical translation
of novel therapies for the heart indicate an incomplete understanding of the underlying
biological mechanisms involved. Tissue engineering technologies are emerging as a method to
overcome these hurdles and develop human-specific models of the myocardium. Engineered
tissues may allow mechanistic study of the cellular interactions that enhance cardiac function
(Bursac et al., 2010). Human engineered cardiac tissues (hECTs) can serve to bridge the gap
between current animal models, providing a species-specific model of human myocardium,
and also overcomes limitations of the 2D culture systems (Vunjak Novakovic et al., 2014;
Greenberg et al., 2018). Human pluripotent stem cells now provide a nearly limitless supply of
differentiated human cardiomyocytes (CMs) (Lian et al., 2012; Bhattacharya et al., 2014), and
use of these cells to create 3-D hECTs allows direct measurement of twitch force and related
characteristics of cardiac muscle contractility, with extended time in culture (Turnbull et al., 2014).
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There has been a rapid growth in the field of tissue engineering
with constant improvements for the fabrication of a structural
and functional mature model of human myocardium (Ruan
et al., 2015; Feric and Radisic, 2016; Shadrin et al., 2017;
van den Akker et al., 2018; Ronaldson-Bouchard et al., 2019).
Their utility as in vitro test tools have been demonstrated
by their application for drug screening (Feric et al., 2019;
Keung et al., 2019). However, the engineered cardiac tissues
(ECTs) are immature and mostly resemble the fetal heart. While
techniques such as electrical stimulation, mechanical stress, and
longer time in culture improve tissue maturity, ECTs are not
as mature as adult myocardium (Mahowald et al., 2009; Nunes
et al., 2013; Schwach and Passier, 2019). Human induced-
pluripotent stem cell (hiPSC)-derived CMs are widely used in
cardiac tissue engineering. However, these cells have immature
fetal-like characteristics in terms of gene expression, sarcomere
organization, force of contraction, and action potentials (Yang
et al., 2014; Veerman et al., 2015). Most of the technologies
in cardiac tissue engineering have involved the use of CMs
(from neonatal rat hearts or derived from pluripotent stem
cells), with little or no contribution of other nonmyocyte cells.
While these approaches have contributed to great advances in the
field, the contribution of nonmyocytes requires more attention.
Understanding the intercellular signaling within the myocardium
is a relevant aspect in the development of new therapies with
impact on cardiac function.

Incorporating non-CMs can make the cellular composition
of the tissues better mimic natural myocardium. The heart
is composed of multiple cell types. The reported cellular
composition differs based on the methods used to identify the
cell types and quantify their abundance. Using flow cytometry
and immunohistochemical analysis, Pinto et al. (2016) found that
around 31% of cells in a mouse heart are CMs; the non-CM
population of the heart includes approximately 60% endothelial
cells (ECs), 5–10% hematopoietic-derived cells, and fibroblasts
(FBs) under 20%. Furthermore, using single nuclear RNA-
sequencing of samples from human donors, Tucker et al. (2020)
identified nine major cell types with CMs making up 35.9% of the
total population. An intricate network of interactions between the
distinct non-CM cell types and CMs support cardiac homeostasis
(Hirsch et al., 2014; Dunn and Palecek, 2018; Colliva et al., 2020).

While most therapies aimed at improving the contractile
function of the heart focus on the CMs, the role of
nonmyocytes is not negligible and requires further study,
with better understanding of their functional interplay (Tian
and Morrisey, 2012; Gambardella et al., 2017). Advancing
the maturation of ECTs is an ongoing area of research.
Consequently, multiple studies have investigated the effect of CM
co-culture with different nonmyocyte cell types. In this review,
we explore the contribution of nonmyocytes in cardiac tissue
engineering (Figure 1A).

FIBROBLASTS

Cardiac fibroblasts (FBs) play an important role in extracellular
matrix (ECM) modulation and also have an effect on cardiac

function; cardiac FB–CM heterocellular coupling influences
electrical conduction in the heart; gap junctions and intercellular
calcium signaling participate in this cell–cell communication
(Doppler et al., 2017). In multiple studies, the inclusion of FBs
in tissue fabrication improved electrophysiological properties of
engineered tissues (Radisic et al., 2008; Liau et al., 2011; Matsuura
et al., 2011; Saini et al., 2015; Iwamiya et al., 2016; Navaei
et al., 2016; Ronaldson-Bouchard et al., 2018; Beauchamp et al.,
2020). Cardiac spheroids with human embryonic cardiac FBs
constructed by Beauchamp et al. (2020) demonstrated higher
rate of contraction compared to spheroids with only hiPSC-CMs;
adding the fibroblasts did not induce any arrythmogenic effects.
Co-culture of fibroblast with CMs results in higher synchronous
tissue contractions compared to tissues with only CMs (Matsuura
et al., 2011; Iwamiya et al., 2016; Navaei et al., 2016). Navaei et al.
(2016) found denser and more uniform organization of F-actin
fibers in co-culture tissues that exhibited higher synchronous
contraction, suggesting that cytosketelon organization may play
a role in promoting synchronicity (Figure 1B). Radisic et al.
(2008) reported higher amplitude of contraction in tissues from
both concurrent neonatal rat CM-FB co-culture and tissues
pre-treated with fibroblasts; for pre-treatment, fibroblasts were
cultured on the scaffold prior to the addition of CMs; the pre-
treatment group displayed lower excitation threshold and higher
amplitude of contractions, out-performing CM-only ECTs and
ECTs made from concurrent culture of cardiomycoytes and
fibroblasts. Futhermore, fibroblast co-culture enhances structural
maturation of ECTs. CMs become elongated and exhibit better
alignment and cell-based network formation in co-culture
(Nichol et al., 2008; Radisic et al., 2008; Saini et al., 2015;
Beauchamp et al., 2020). In addition to improving morphology,
Nichol et al. (2008) observed 53% less neonatal rat CM apoptosis,
and Iwamiya et al. (2016) found a substantial increase in mouse
embryonic stem cell (ESC)-derived CM proliferation resulting
from the inclusion of fibroblasts in tissue fabrication. Fibroblast
co-culture enhances the expression of cardiac markers in CMs
(Radisic et al., 2008; Matsuura et al., 2011; Saini et al., 2015;
Navaei et al., 2016; Li et al., 2017; Ronaldson-Bouchard et al.,
2018). Despite the noted benefits of fibroblasts in ECTs, the
source and the age of fibroblast play an important role on how
fibroblasts affect the tissues. Li et al. (2017) found that tissues with
adult murine fibroblasts displayed slower conduction velocity,
higher stiffness, and decreased calcium transient amplitude
compared to those with murine fetal fibroblasts; in this case, the
adult fibroblasts induced pro-fibrotic effects on the engineered
tissue. Indeed, fibroblasts play a role in pathologic fibrotic
remodeling of the heart, and they have been included in ECT
to model cardiac fibrosis, with the addition of TGFβ as a
trigger for fibrosis (Sadeghi et al., 2017; Mastikhina et al., 2020)
and by modulating the CM:FB ratio, where 3:1 models normal
myocardium and 1:3 is fibrotic (Wang et al., 2019).

ENDOTHELIAL CELLS

Through intercellular communication, ECs, among other
functions, influence cardiac performance and remodeling; small
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FIGURE 1 | (A) Schematic of the effects observed in engineered cardiac tissues fabricated with the inclusion of non-CMs, and the potential mechanisms involved.
CMs, cardiomyocytes, FBs, fibroblasts, ECs, endothelial cells. (B–E) Histological representation of effects from co-culture in various types of 3D microenvironment.
(B) The cytoskeleton organization and analysis of F-actin fiber alignment within PNJ-Gelatin hydrogel 3D microenvironment. F-actin fibers (green) stained images in
monoculture of neonatal rat ventricular CMs and co-culture of CMs-CFs (2:1 ratio). Both culture groups representing the cytoskeleton organization at 20 and 40
magnifications; FFT images (inset) indicate fiber alignment within the formed 3D cardiac tissue. The magnified spots and related inset FFT images illustrate the local
alignment of F-actin fibers. (C) Cardiac fibroblasts promote structural maturation of hiPSC-CMs in microtissues. Representative transmission electron microscopy
images showing sarcomeres in different microtissues. Scale bar: 1 mm. Cellular composition of cardiac scaffold free 3-D microtissues as follows – CMECS: 85%
hiPSC-CMs +15% hiPSC-ECs; CMFs: 85% hiPSC-CMs +15% hiPSC-CFs; CMECFs: 70% hiPSC-CMs +15% hiPSC-ECs+15% hiPSC-CFs; CMEC ACFs: 70%
hiPSC-CMs +15% hiPSC-ECs+15% human adult cardiac fibroblasts (ACFs); CMEC SFs: 70% hiPSC-CMs +15% hiPSC-ECs+15% skin fibroblasts (SFs). (D–F)
“Tri-cell” cardiac patches containing hESC-derived cardiomyocytes, HUVECs, and mouse embryonic fibroblasts (MEFs) in 1:1:0.5 ratios, respectively;
(cardio-HUVEC-MEF patches) had more collagen fibrils compared with cardio-only and cardio-HUVEC patches. Patch sections were stained by using Sirius red
(collagen) and fast green (other tissue elements). Representative cardio-only (D) and cardio-HUVEC-MEF (E) patches. (F) Cardio-HUVEC-MEF patches had greater
than fivefold collagen per unit area than cardio-only or cardio-HUVEC patches. Adapted and reprinted with permission from (B) (Navaei et al., 2016), (C) (Giacomelli
et al., 2020, doi: 10.1016/j.stem.2020.05.004, https://creativecommons.org/licenses/by/4.0/), and (D–F) (Stevens et al., 2009).

molecules and peptides secreted by ECs play a critical role in
CM contractility (Brutsaert, 2003; Segers et al., 2018; Talman
and Kivelä, 2018). One of the goals of EC co-culture in tissue
engineering is to create vasculature. ECs are capable of forming
capillary-like structures in ECTs when co-cultured with CMs
(Narmoneva et al., 2004; Sekine et al., 2008; Garzoni et al.,
2009). These structures enhance CM organization and support

long-term survival in engineered tissues (Narmoneva et al.,
2004; Garzoni et al., 2009). Sekine et al. (2008) reported the
formation of greater number of capillaries in EC co-culture
tissues compared to neonatal rat CM-only; after transplantation
onto infarcted rat heart, capillaries from the tissues spread
into host heart and connected with host capillaries, this was
accompanied by recovery of cardiac function, documented by
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improvement in fractional shortening and reduced fibrosis in
the surrounding host myocardium; achieving vascularization
after engraftment is relevant when aiming to restore blood flow
in compromised areas of the ischemic heart. In the presence of
vascular structures formed by ECs, co-culture tissues have better
contractile properties (Narmoneva et al., 2004; Garzoni et al.,
2009). Compared to CM-only tissues and tissues made from
simultaneous EC and CM co-culture, Narmoneva et al. (2004)
found significantly larger areas of synchronized contraction in
tissues containing mouse CMs that were seeded on preformed EC
vascular networks. However, there are studies that reported no
significant difference in electrophysiological properties such as
QT and RR intervals (Giacomelli et al., 2017), force generation,
and calcium transients of hPSC-CMs (Burridge et al., 2014)
between EC co-culture and hPSC-CM-only tissues. In terms of
gene expression, Giacomelli et al. (2017) observed that addition
of ECs results in upregulation of genes associated with sarcomere
structure, ion channel, and Ca2+-handling. Burridge et al.
(2014) also reported significant increase in the expression of the
voltage-dependent L-type Ca2+ ion channel Cav1.2 and higher
expression (although not significant) of hESC-CM structural
genes. ECs also support maturation of hiPSC-CMs in co-culture
tissues through the secretion of endothelin-1 (EDN1) and nitric
oxide (NO) (Giacomelli et al., 2020). Furthermore, ECs in ECTs
may promote the expression of gap junction protein connexin-43
(Cx43) (Narmoneva et al., 2004; Giacomelli et al., 2020). While
Hussain et al. (2013) reported no visible Cx43 in neonatal rat-
CM-EC co-culture tissues, using immunostaining, Narmoneva
et al. (2004) observed notably higher Cx43 expression in mouse
CM-ECs co-culture tissues, indicating the presence of junctions
not only between CMs but also between ECs and CMs. The
differences in findings may be due to the varying methodology
used in these studies. Nevertheless, there is strong evidence to
suggest that ECs have a positive impact on CM survival and
proliferation in co-culture tissues (Narmoneva et al., 2004; Caspi
et al., 2007; Tulloch et al., 2011). In co-culture tissues, Caspi et al.
(2007) observed a significantly higher percentage of proliferating
CMs, shown by immunostaining for Ki67, compared to CM-only
tissues. CM proliferation may be stimulated by mitogens derived
from ECs, as suggested by findings from Tulloch et al. (2011)
where there was an increase in DNA synthesis rates in EC
co-culture tissues under all tested conditions: no stress, systolic
stress, and cyclic stress.

ENDOTHELIAL AND SMOOTH MUSCLE
CELLS CO-CULTURE

Smooth muscle cells (SMCs) play an important role in the heart;
they regulate the tone of blood vessels (Brozovich et al., 2016),
and at the molecular level, SMCs affect gap junctions and the
expression of Cx43 in CM (Zhou et al., 2020). Transplantation
of SMC, EC, and CM co-cultures improves heart function after
myocardial infarction (MI) in animal models (Ye et al., 2015; Gao
et al., 2018). Gao et al. (2018) found exomes released by tri-culture
tissues reduced hiPSC-CM apoptosis; after transplantation of
these tissue onto infarcted swine heart, improvements in left

ventricular (LV) wall stress, infarct size, and vascular density
was observed; these tissues also prevented the reduction in
phosphorylation of the sarcomere proteins ENH2 and cTnI after
MI. Reduced phosphorylation of sarcomere proteins may be
induced by MI (Peng et al., 2014), and it correlates with poor
contractility (van der Velden et al., 2004); therefore, stopping
phosphorylation reduction may improve heart function after MI.
Stromal cells, which have the potential to differentiate into SMCs
(Vater et al., 2011), also show enhancement in tissue properties
when co-cultured with ECs and CMs (Kreutziger et al., 2011;
Tulloch et al., 2011; Burridge et al., 2014; Giacomelli et al., 2020).
Tulloch et al. (2011) reported significant increase in vascular
structure formation after the addition of human marrow stromal
cells in EC-hESC-CM co-culture tissues. Similarly, Kreutziger
et al. (2011) observed vessel formation after transplantation
of stromal cell co-culture tissue onto uninjured rat heart;
stromal cells in these tissues produce ECM components such as
fibrillar collagen, hyaluronan, and versican. Furthermore, studies
involving co-culture of mural cells show positive impact on
vessel formation (Caspi et al., 2007; Masumoto et al., 2016).
Caspi et al. (2007) found α-smooth muscle actin positive cells
derived from embryonic mouse fibroblasts that integrated into
the blood vessels in the tissues. These findings indicate that
stromal cells play a crucial role in the formation of vasculature in
ECTs. In addition to the formation of graft-derived vasculature
after tissue engraftment onto rat heart, Masumoto et al. (2016)
found indications of hiPSC-CM sarcomere maturation and better
alignment facilitated by mural cells. For translational purposes,
Ishigami et al. (2018) produced clinical-scaled engineered cardiac
sheets composed of iPSC-CM, EC, and mural cells; these
were transplanted onto the heart of mini-pigs after myocardial
infarction, resulting in functional and structural improvements.
Since all mentioned studies include ECs in the co-culture tissues,
the role of SMCs in the observed tissue improvements requires
further investigation.

FIBROBLAST AND ENDOTHELIAL CELL
CO-CULTURE

As previously described, tissues from CM-EC and CM-FB co-
cultures have better properties than CM-only tissues. Here,
we discuss the impact of CM-FB-EC co-cultures in ECTs.
Compared to tissues with neither FBs nor ECs, tri-culture
tissues have enhanced contractile function (Naito et al., 2006;
Giacomelli et al., 2020). Giacomelli et al. (2020) observed longer
contraction duration and higher contraction amplitude in tri-
culture tissues; along with electrophysiological maturation, tri-
culture tissues also displayed sarcomeric maturation relative to
hiPSC-derived CM-EC and CM-FB co-cultures (Figure 1C).
Multiple studies revealed that tri-culture enhances the formation
of vessel-like structures (Naito et al., 2006; Caspi et al., 2007;
Stevens et al., 2009; Lesman et al., 2010; Kreutziger et al., 2011;
Tulloch et al., 2011). Higher level of vasculature in tri-cultures
suggests ECs promote vasculature regardless of the inclusion of
FBs. Vasculature formation may improve ECT features. Stevens
et al. (2009) created tissues from co-culture of hESC-CMs with
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human umbilical vein endothelial cells (HUVECs) and mouse
embryonic fibroblasts (MEFs) that developed significantly more
vessel structures and collagen content (Figures 1D–F) than CM-
only tissues; these tri-culture tissues displayed passive mechanical
properties with greater resemblance to native myocardium
(neonatal pig and rat cardiac tissue), and transplantation onto
naïve rat heart resulted in improved CM survival and larger graft
formation. The vessels in tri-culture tissues can function after
transplantation and are perfused by host circulation (Stevens
et al., 2009; Lesman et al., 2010). Furthermore, the presence of FBs
in the tri-culture improves EC survival and proliferation (Caspi
et al., 2007). Despite the noted benefits of including FBs and ECs
in ECTs, the methods and cellular composition used to create
co-culture tissues may affect ECT features. For example, Iyer
et al. (2009) constructed tissues from simultaneous co-culture
of murine CMs, ECs, and FBs that failed to exhibit contractile
activity, while the CM-only tissues displayed superior functions;
however, CMs seeded on preformed networks of ECs and FBs
resulted in contractile tissues.

MECHANISMS

The co-culture of nonmyocytes and CMs in ECTs enhanced
many tissue properties (Table 1). Here, we describe potential
mechanisms behind the observed tissue improvements
(Figure 1A). As discussed earlier, multiple studies reported
better electrophysiological properties in tissues containing FBs
compared to CM-only tissues. In FB-CM tissues, enhanced
contractility may be due to a higher expression of Cx43, which
allows ions and solutes to pass between cells (Saini et al., 2015). In

addition to increased Cx43 expression, FBs support maturation
of CMs via cAMP (cyclic adenosine monophosphate) signaling
(Giacomelli et al., 2020). FBs also promote CM proliferation;
Iwamiya et al. (2016) found that mouse neonatal cardiac FBs in
ECTs expressed vascular cell adhesion molecule-1 (VCAM-1),
and treatment of mouse ESC- derived CMs with VCAM-1
increased CM population in monoculture; therefore, it is likely
that FBs enhance CM proliferation through VCAM-1 signaling.
Furthermore, FBs affect CM morphology in ECTs via matrix
metalloprotease-2 (MMP-2) expression; Nichol et al. (2008)
observed significant higher expression of MMP-2 in FB co-
culture tissues that exhibited greater neonatal rat CM alignment,
and inhibition of MMP-2 eliminated the increased alignment in
co-culture tissues.

A notable feature of EC co-culture tissues is the presence of
vascular networks. ECs form blood vessels through angiogenesis;
in spheroids, angiogenic sprouting is stimulated by vascular
endothelial growth factor (VEGF) (Garzoni et al., 2009).
Increased vasculature formation in co-culture correlates with
the greater production of VEGF, basic fibroblast growth factor
(bFGF), and hepatocyte growth factor (HGF) (Sekine et al., 2008).
Caspi et al. (2007) found that addition of mouse embryonic
fibroblasts significantly increases endothelial vessel network
formation, along with the expression of VEGF, platelet-derived
growth factor (PDGF)-B, and angiopoietin 1 (Ang-1); VEGF
may also be responsible for the enhanced EC viability observed
in co-culture tissues. Furthermore, a study with neonatal rat
ventricular myocytes in 2D cell culture demonstrated that VEGF
promotes the expression of Cx43 (Pimentel et al., 2002). However,
Narmoneva et al. (2004) observed no change in apoptosis or
Cx43 expression when ECs and mouse CMs were co-cultured

TABLE 1 | Summary of the effects of non-cardiomyocytes on engineered cardiac tissues.

Cell composition CM + Fib + EC CM + Fib CM + EC

Increased contractile force X (Giacomelli et al., 2020) X (Radisic et al., 2008; Liau et al., 2011;
Ronaldson-Bouchard et al., 2018)

X (Masumoto et al., 2016)

Enhanced alignment and
sarcomeric banding

X (Iyer et al., 2009; Lesman et al., 2010;
Giacomelli et al., 2020)a

X (Nichol et al., 2008; Radisic et al., 2008; Liau et al.,
2011; Saini et al., 2015; Iwamiya et al., 2016; Navaei
et al., 2016; Ronaldson-Bouchard et al., 2018)b

X (Narmoneva et al., 2004;
Masumoto et al., 2016)

Upregulation of maturation
genes

X (Caspi et al., 2007) X (Masumoto et al., 2016)

Promote electrical maturation X (Giacomelli et al., 2020)

Increase synchronicity X (Liau et al., 2011; Hussain et al., 2013; Saini et al.,
2015; Navaei et al., 2016)

X (Narmoneva et al., 2004)

Increase conduction velocity X (Liau et al., 2011)

Faster spontaneous beat rate X (Liau et al., 2011; Saini et al., 2015)c

Promote vascular network
formation

X (Caspi et al., 2007; Stevens et al.,
2009; Lesman et al., 2010; Kreutziger
et al., 2011; Tulloch et al., 2011)d

X (Narmoneva et al., 2004;
Sekine et al., 2008; Garzoni
et al., 2009; Tulloch et al., 2011)

Increase CM survival X (Stevens et al., 2009) X (Narmoneva et al., 2004)

Increase CM proliferation X (Caspi et al., 2007) X (Iwamiya et al., 2016) X (Caspi et al., 2007; Tulloch
et al., 2011)

CM, cardiomyocytes, Fib, fibroblasts, EC, endothelial cells.
aEffect observed in pre-culture, but not in co-culture (Iyer et al., 2009).
bEffect observed with the addition of cardiac fibroblasts, but not with dermal fibroblasts (Iwamiya et al., 2016).
c Increase by culture day 5, with gradual decrease to 0 Hz by day 14 (Saini et al., 2015).
dThis includes stromal cells in addition to CM + Fib + EC (Kreutziger et al., 2011; Tulloch et al., 2011).
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with and without neutralizing VEGF antibody. Although the
differences in findings may be due to the distinct methods used in
these studies, it suggests that VEGF-related mechanism in ECTs
requires further investigation.

Two methods of engineered tissue culture, (1) concurrent
co-culture and (2) CMs seeded on pre-culture of nonmyocytes
(pre-culture or pre-treatment), with similar cellular composition
result in strikingly different ECTs. Compared to concurrent
co-culture, the pre-culture group exhibited better contractile
properties, along with enhancement of other features, in tissues
with FBs (Radisic et al., 2008), ECs (Narmoneva et al., 2004),
or both (Iyer et al., 2009). Pre-culture of the nonmyocyte
cells before seeding CMs may have allowed them to deposit
greater ECM components, enabling better CM attachment and
survival (Radisic et al., 2008; Iyer et al., 2009). Radisic et al.
(2008) found increased expression of prolyl-4-hydroxylase, which
plays a crucial role in collagen synthesis (Pihlajaniemi et al.,
1991), in pre-culture group with FBs, suggesting enhanced
collagen deposition by FBs in pre-culture tissues. The favorable
environment created by the pre-culture of nonmyocytes through
ECM deposition likely improved tissue function in these studies.

SUMMARY AND PERSPECTIVES

While there is evidence of beneficial effects from including non-
CMs in the cellular mix of ECT fabrication; in some instances,
non-CMs were not beneficial or contributed to model disease.
The heterogeneity of results points to the need to further
investigate cardiac cell–cell interactions to achieve the ideal ECT
of multicellular composition that reliably mimics the native
myocardium. Our perspective is the fabrication ECT containing
iPSC-CM and iPSC derived nonmyocytes (FBs, ECs, and SMCs)
at different ratios; maintaining the iPSC-CM at 70% or more
of the cellular composition (Sekine et al., 2008; Giacomelli
et al., 2017, 2020; Wang et al., 2019). Investigating different
cell compositions will allow identification of the ratio needed
to yield ECTs with optimal structure and function. Eventually,
these cell mixtures could be tested in the development of bio-
inks for 3D printing (de Santis et al., 2021). Additional strategies
include treatment of the nonmyocyte population to harness their
potential benefits. For example, treatment of fibroblasts with
TGFβ inhibitors to prevent their transition into myofibroblast
(Figtree et al., 2017; Cáceres et al., 2018), and thus avoid the
pathologic fibrotic phenotype. Also, cell preconditioning can be
applied to exploit their autocrine effects; Borosch et al. (2017)
found that extracellular vesicles derived from hypoxia-treated
fibroblasts favored cell migration and significantly enhanced

scratch area reduction. Fabrication of ECT with a diverse
combination of hiPSC-derived cell types provides a platform to
systematically interrogate human cell–cell crosstalk and advance
our understanding of cell–cell interaction in the human heart.
The application of ECT in the clinical setting requires further pre-
clinical testing in large animal models, overcoming challenges for
the fabrication of larger engineered tissues while maintaining cell
survival for engraftment and enhanced function.

CONCLUSION

Engineered cardiac tissue have translational potential which can
be broadly divided into two applications. The first is as surrogate
of human myocardium that may serve as a platform for modeling
heart disease and investigate novel therapies; for this end, the
use of iPSCs furthermore provides the opportunity to apply the
ECT for personalized medicine. The second, for transplant, is
to repair damaged myocardium. Every effort to produce ECTs
that better represent the native myocardium will be beneficial to
both applications.

Studies show nonmyocytes contribute to structural and
functional maturity of ECTs. However, the studies discussed
in this review used an extensive variety of cell types and
composition. They also collected a wide range of data, thus
making it difficult to find multiple studies with similar
methodologies and objectives. Studies often report the
observed effect of nonmyocytes on engineered tissues without
experimentally identifying the mechanisms. Therefore, the
mechanisms behind the interactions between non-CMs and
CMs in engineered tissue remain largely unexplored. Further
investigations with CMs and nonmyocyte cells from a single
source would reduce the variability in methods and help reveal
mechanisms that may aid in the development of better tissues
and therapies for cardiovascular disease.
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