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Abstract

The treatment of complex diseases often relies on combinatorial therapy, a strategy where

drugs are used to target multiple genes simultaneously. Promising candidate genes for com-

binatorial perturbation often constitute epistatic genes, i.e., genes which contribute to a phe-

notype in a non-linear fashion. Experimental identification of the full landscape of genetic

interactions by perturbing all gene combinations is prohibitive due to the exponential growth

of testable hypotheses. Here we present a model for the inference of pairwise epistatic,

including synthetic lethal, gene interactions from siRNA-based perturbation screens. The

model exploits the combinatorial nature of siRNA-based screens resulting from the high

numbers of sequence-dependent off-target effects, where each siRNA apart from its

intended target knocks down hundreds of additional genes. We show that conditional and

marginal epistasis can be estimated as interaction coefficients of regression models on per-

turbation data. We compare two methods, namely glinternet and xyz, for selecting

non-zero effects in high dimensions as components of the model, and make recommenda-

tions for the appropriate use of each. For data simulated from real RNAi screening libraries,

we show that glinternet successfully identifies epistatic gene pairs with high accuracy

across a wide range of relevant parameters for the signal-to-noise ratio of observed pheno-

types, the effect size of epistasis and the number of observations per double knockdown.

xyz is also able to identify interactions from lower dimensional data sets (fewer genes), but

is less accurate for many dimensions. Higher accuracy of glinternet, however, comes at

the cost of longer running time compared to xyz. The general model is widely applicable

and allows mining the wealth of publicly available RNAi screening data for the estimation of

epistatic interactions between genes. As a proof of concept, we apply the model to search

for interactions, and potential targets for treatment, among previously published sets of

siRNA perturbation screens on various pathogens. The identified interactions include both

known epistatic interactions as well as novel findings.
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1 Introduction

Genetic interactions are also referred to as epistasis, a term that originates from the field of sta-

tistical genetics and describes genetic contributions to the phenotype that are not linear in the

effects of single genes [1, 2]. Considering two genes at a time, positive and negative epistasis

refer to a greater and smaller effect, respectively, of the double mutant genotype than expected

from the two single mutant genotypes relative to the wild type. In genetics, the phenotype of

primary interest is the reproductive success of a cell, which is commonly termed fitness [3]. In

this context, a fitness landscape is the mapping of each combination of possible configurations

of gene mutations to a fitness phenotype [4].

The knowledge of fitness landscapes is highly relevant for personalized disease treatment

[5]. In cancer, for example, genetic aberrations result in cells with increased somatic fitness,

for instance, by evading apoptosis or gaining the ability to metastasise. This increase subse-

quently promotes post-metastatic tumour development [6]. A major challenge in cancer ther-

apy is the fact that many genes with driving mutations cannot be adequately targeted for

inhibition due to toxic side effects and rapid development of drug resistance [7, 8]. To over-

come this challenge, a strategy based on the inhibition of genes that interact with genes with

cancer driving alterations was proposed [9]. This strategy is based on the principle of synthetic

lethality [5, 10, 11], the extreme case of negative epistasis, where single mutants are compatible

with cell viability but the double mutant results in cell death. Identifying synthetic lethal gene

interactions allows targeting cancer cells in which one of the two genes is mutated, by using

drugs that affect the other. In the presence of this drug, the cancer cell lineage will no longer be

viable [12].

The identification of fitness landscapes is however a very challenging task, simply due to

the exponential growth of the space of interactions. For yeast, for example, it has been shown

to be feasible to experimentally perform 75% of all pairwise knockouts [13]. Similarly, [14, 15]

study fitness landscapes with a small number of genes in which all or nearly all genotypes of

interest have been measured. However, in humans, with approximately 20,000 protein-coding

genes, this would constitute to almost 200 million experiments to test all pairwise interactions.

An approach that has been successfully applied to identify synthetic lethality in vitro is large-

scale perturbation screening of human cancer cell lines using RNA interference [16–19]. How-

ever, this strategy only allows cataloguing synthetic lethal gene pairs where one gene is always

specific to the screened cell line. While these methods may be sufficient for the identification

of a few promising targets for cancer therapy, they do not allow us to estimate general pairwise

gene interactions at the human exome scale. To our knowledge, there are currently no meth-

ods for inferring gene interactions at this scale. We therefore focus on demonstrating that our

approach is sound, rather than comparing to existing methods.

Short-interfering RNAs (siRNAs), the reagents used in RNAi perturbation screening,

exhibit strong off-target effects, which results in high numbers of false positives rendering the

perturbations hard to interpret [20]. While this is usually conceived as a problem, here we take

advantage of this property for the estimation of genetic interactions [21–23]. We propose a

novel approach for the second order approximation of a human fitness landscape by inferring

the fitness of single gene perturbations and their pairwise interactions from RNAi screening

data (Fig 1). Our approach is not restricted to interactions with mutant genes of a specific cell

line or explicit double knockdowns. We leverage the combinatorial nature of sequence-depen-

dent off-target effects of siRNAs, where each siRNA in addition to the intended on-target

knocks down hundreds of additional genes simultaneously. Not distinguishing between on-

and off-targeted genes, we consider each siRNA knockdown as a combinatorial knockdown of

multiple genes. Hence, every large-scale RNAi screen, though unintended, contains large
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numbers of observations of high-order combinatorial knockdowns and provides a rich source

for the extraction of pairwise epistasis. These off-target effects have previously been used to

improve inference of signalling pathways among a small number (on the order of a dozen)

genes [22, 23]. Here, however, we attempt to use it to discover epistatic gene pairs in a

genome-wide fashion (i.e. among tens of thousands of genes). Our approach is formulated as a

regularized regression model. It can also be deployed for the estimation of epistasis from phe-

notypes other than fitness, such as for instance phenotypes that measure the activity of disease-

relevant pathways, e.g. for pathogen entry [24], TGFβ-signalling [25], or WNT-signalling [26].

Long term, the identification of disease-relevant epistatic gene pairs may allow the design or

re-purposing of agents for combinatorial therapy with the potential to improve the efficacy of

drugs.

In solving this model, we adapt two recent statistical learning methods, namely glinter-
net [27] and xyz [28] to select genes and gene-pairs with non-zero effects on fitness, and

Fig 1. RNAi fitness landscape model. Black arrows indicate outputs that are actually produced. Red arrows indicate

theoretical output.

https://doi.org/10.1371/journal.pone.0254491.g001
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evaluate both models on simulated data from real RNAi libraries. We vary the signal-to-noise

ratios, number of true gene–gene interactions, number of observations per double knockdown

and effect size for epistasis. We find that, within ranges that are realistic to real RNAi data,

both approaches are capable of inferring pairwise epistasis with favourable precision and sensi-

tivity when only a small number of genes are involved in interactions. In several tests glin-
ternet continued to infer correct interactions up to several thousand genes, however the

run time prohibits more thorough testing. To demonstrate the model on a real data set, we use

the perturbation data from [24]. Using glinternet, we search for interactions between

kinases, and report the most significant results.

Our simulations are performed using R, and the source code is available at: https://github.

com/bioDS/xyz-simulation.

2 Methods

We fix the binary alphabet S = {0, 1} representing the two possible states in a perturbation

experiment. The value zero denotes the normal state of the gene (unperturbed wild type),

whereas the value one indicates knockdown of the gene (perturbed). For p genes we denote by

Sp the set of binary sequences of length p, indicating the perturbation status of each gene. Any

subset P � Sp is called a perturbation space and its elements are called perturbation types. If

the perturbations are genetic mutations, then the perturbation types are genotypes.

2.1 Fitness landscapes and epistasis

In the following, we focus on fitness landscapes, but would like to note that the theory also

holds for any mapping of perturbation type to phenotype. A fitness landscape is a mapping f :

P ! Rþ from perturbation type space to non-negative fitness values. Genetic interactions are

a property of the underlying fitness landscape [29]. For p = 2 genes, the perturbation type

space P ¼ f0; 1g
2

contains the wild-type 00, two single perturbations 01 and 10, and the dou-

ble perturbation 11. The fitness landscape f : f0; 1g
2
! Rþ can be written as

f ð0; 0Þ ¼ b0

f ð1; 0Þ ¼ b0 þ b1

f ð0; 1Þ ¼ b0 þ b2

f ð1; 1Þ ¼ b0 þ b1 þ b2 þ b1;2

for parameters bi 2 R. β0 is called the bias, β1 and β2 main effects, and β1,2 the interaction.

Epistasis is defined as

ε ¼ f ð0; 0Þ þ f ð1; 1Þ � f ð0; 1Þ � f ð1; 0Þ ð1Þ

It measures the deviation of the fitness of the double knockdown from the expectation under a

linear fitness model in the main effects. We see that ε = β1,2.

2.1.1 Fitness landscape model. It is challenging to generalize the notion of epistasis (Eq

1), because in higher dimensions, many more types of genetic interactions exist [29], even

when restricting to pairwise interactions. In general, it will be impossible to estimate all inter-

actions encoded in the fitness landscape reliably from data. In the following, we show how to

assess marginal and conditional pairwise epistasis. For p� 1 genes, we consider the Taylor

expansion of the fitness landscape

f ðx1; . . . ; xpÞ ¼ b0 þ
X

i

xibi þ
X

i<j

xixjbi;j þ
X

i<j<k

xixjxkbi;j;k þ . . . ð2Þ
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Ignoring interactions of order 3 and higher we obtain the more computationally tractable

approximation:

f ðx1; . . . ; xpÞ � b0 þ
X

i

xibi þ
X

i<j

xixjbi;j ð3Þ

We show in Appendix A in S1 Appendix that in the fitness landscape model (Eq 3), which

contains all main effects and pairwise interactions, but no interactions of higher order, the

interaction terms βi,j alone determine conditional and marginal epistasis of the fitness land-

scape. Note that although we are discussing the Taylor approximation of the fitness function,

the resulting pairwise epistasis definition is identical to that in [15].

2.2 Estimation of epistasis from RNAi perturbation screens

In in vitro RNAi experiments cells are perturbed by reagents, such as siRNA, shRNA, and

dsRNA [30], each targeting a specific gene for knockdown. In recent years, it has been shown

[20] that siRNAs exhibit strong sequence-dependent off-target effects, such that, in addition to

the intended target gene, hundreds of other genes are knocked down. Thus, we can regard

siRNA perturbation experiments as combinatorial knockdowns affecting multiple genes

simultaneously. On the basis of the fitness landscape model (Eq 3), we propose a regression

model for the estimation of epistasis from RNAi data. This inference is only feasible because of

the unintended combinatorial nature of siRNA knockdowns.

2.2.1 Perturbation type space. For an RNAi-based perturbation screen, the perturbation

type space P ¼ fg1; . . . ; gng is represented as the n × p matrix X that contains gi in row i.
Based on the nucleotide sequences of the reagents, perturbations can be predicted by models

for micro RNA (miRNA) target prediction [31]. We use X1, . . ., Xp to denote the p column vec-

tors of X for genes 1, . . ., p and denote by Xi � Xj the column vector consisting of the element-

wise products of the entries of Xi and Xj. As a measure of fitness, we use the vector Y 2 Rn
þ

,

denoting the number of cells present after siRNA knockdown.

2.2.2 Regression model. We aim to estimate the conditional epistasis βi,j between the ð p
2
Þ

pairs of genes (i, j) 2 {1, . . ., p}2 from all combinatorial gene perturbations in the screen repre-

sented in the n × p matrix X, and the n × 1 vector of fitness phenotypes Y. Based on (Eq 3) we

regress phenotype Y on perturbations X,

E½Y j X� ¼ b0 þ
X

i

Xibi þ
X

i<j

ðXi � XjÞbi;j ð4Þ

The estimated βi,j are interpreted as the expected change in the response variable Y per unit

change in the predictor variable (Xi � Xj) with all other predictors held fixed [32]. From Corol-

lary 1 it follows that estimates for marginal epistasis εi,j can be obtained by multiplication of βi,j
with the constant 2p−2.

2.2.3 Inference. We aim to infer the regression parameters β = (β0, β{i:i>0}, β{i,j:i<j}). Since

it is infeasible to directly perform least squares linear regression on the matrix containing all

ð p
2
Þ interactions, we use a two-stage process. First, we use either the group lasso regularisation

package glinternet [27], or the xyz interaction search algorithm [28] to select non-zero

interactions. This variable selection step is the main computational challenge.
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When using glinternet, we infer parameters β = (β0, β{i:i>0}, β{i,j:i<j}) by minimising

the squared-error loss function

LðY; X; bÞ ¼
1

2
Y � b0 þ

X

i

Xibi þ
X

i<j

ðXi � XjÞbi;j

 !�
�
�
�
�

�
�
�
�
�

2

2

ð5Þ

under the strong hierarchy constraint

bi;j 6¼ 0 if and only if both bi 6¼ 0 and bj 6¼ 0: ð6Þ

This constraint allows conditional epistasis between gene i and j, i.e., βi,j 6¼ 0, only if both sin-

gle-gene effects βi and βj are present and constrains the search space. Lim and Hastie ([27])

show that this model can be formulated as a linear regression model with overlapped group

lasso (OGL) penalty [33], where, in contrast to the group lasso [34], each predictor can be pres-

ent in multiple groups.

To perform the variable selection, xyz searches for pairs (i, j) that maximise YT Xi Xj.
These are the interaction effects that account for the largest component of the response Y.

While xyz can be used directly to find the largest interactions, we used xyz_regression
to estimate all interactions. xyz_regression solves the following elastic-net problem [28]

min
ðb0 ;bÞ2Rpþ1 ;y2Rpðp� 1Þ=2

1

2n

XN

i¼1

ðyi � b0 � x
T
i b � w

T
i yÞ

2
þ lðPaðbÞ þ PaðyÞÞ

" #

; ð7Þ

where

W 2 Rn�pðp� 1Þ=2
¼ ðX1 � X2;X1 � X3; . . . ;X1 � Xp;X2 � X3; . . . ;Xp� 1 � XpÞ ð8Þ

is the matrix of interactions, and y 2 Rpðp� 1Þ=2 is the vector of regression coefficients for pair-

wise combinations of columns in W.

PaðbÞ ¼ ð1 � aÞ
1

2
jjbjj

2

‘2
þ ajjbjj‘1

ð9Þ

is the elastic-net penalty.

The parameter α decides the compromise between the ridge-regression penalty (α = 0) and

the lasso penalty (α = 1). We left the default value of α = 0.9. The solution is found iteratively,

with only a particular set of beta values are allowed to be non-zero at each iteration. In every

iteration, the beta values that violate the Karush–Kuhn–Tucker conditions (Eq 10) are added

to this set.

KKT Conditions : XTðY � XbÞ ¼ ls; si 2

f1g if bi > 0

f� 1g if bi < 0

½� 1; 1� if bi ¼ 0

8
>>><

>>>:

ð10Þ

Rather than being computed directly, these beta values are found using the xyz algorithm

(See Appendix C in S1 Appendix for details). We followed the recommendation in [28] and

used L ¼ ffiffiffipp projections to find the strong interactions. Our own tests in Appendix D in S1

Appendix also suggest that further projections do not improve performance.

Second, once the non-zero effects have been estimated using either glinternet or xyz,

we construct a matrix X0 with all elements of the set {Xi|Xi 6¼ 0} [ {Xi � Xj|Xi � Xj 6¼ 0} as col-

umns, in an arbitrary order. We then fit Y* X0β using R’s lm least squares linear regression
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to calculate the coefficient estimates and corresponding p-values, the latter being whether the

value significantly deviates from zero according to a t-test with n − k − 1 degrees of freedom,

where k is the number of effects predicted to be non-zero and including in the final regression

step. We adjust the p-value to control the false discovery rate with the method of [35], and

refer to this adjusted value as the q-value. Given this two-step procedure, we do not expect

these values to be the same as if they were calculated using the complete interaction matrix

and it should be noted that these may be biased estimates [44].

2.3 Software

The overlapped group lasso for strongly hierarchical interaction terms is implemented in the

R-package glinternet 1.0.10 by Lim and Hastie [27] and available through the Compre-
hensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages/glinternet/.

The xyz algorithm is implemented in xyz 0.2 by Gian-Andrea Thanei [28] available at

https://cran.r-project.org/web/packages/xyz/. The simulations are run using a version of this

software that also contains a trivial bug fix, available at https://github.com/bioDS/xyz-

simulation. For the data simulation, analysis and visualisation, we used the R-packages

Matrix 1.2.6, dplyr 0.4.3, tidyr 0.4.1 and ggplot2 2.1.0. All simulations are performed

using R 3.2.4.

2.4 Simulation of RNAi data

The data simulation followed a three-step procedure. First, we simulate the siRNA–gene per-

turbation matrix X based on real siRNA libraries. Second, main effects βi and conditional epis-

tasis between pairs of genes βi,j are sampled. Based on X and β, we then sample fitness

phenotypes Y from our model (Eq 3) and add noise to match specific signal-to-noise ratios

[36]

SNR ¼
Var ðE½Y j X�Þ

Var ðY � E½Y j X�Þ
: ð11Þ

Details for each step including parameter ranges are as follows.

We simulate siRNA–gene perturbation matrices based on four commercially available

genome–wide libraries for 20822 human genes from Qiagen with an overall size of 90000 siR-

NAs. First, we predict sequence dependent off-targets using TargetScan [37] for each siRNA as

described in [21]. We threshold all predictions to be 1 if larger than zero and 0 otherwise.

Then, we sample n = 1000 siRNAs from {1, . . ., 90000} and p = 100 genes from {1, . . ., 20822}

without replacement and construct the n × p binary matrix X. Hence, each row Xi� then con-

tained the perturbation type gi = (xi,1, . . ., xi,p).
We simulate q 2 {5, 20, 50, 100} non-zero conditional epistasis terms βi,j between genes i

and j from all observed combinatorial knockdowns, i.e. if the simulated screen contained siR-

NAs that target both genes. This is a necessary condition for the identifiability of βi,j, as other-

wise, according to the model (Eq 4), βi,j will be multiplied by a zero vector Xi � Xj = 0. The

effect size of the βi,j is sampled from N(0, 2). In order to maintain a strong hierarchy, we subse-

quently simulate for each interaction βi,j both main effects βi and βj. Further, we add r 2 {0, 20,

50, 100} additional main effects. The effect sizes of the main effects are sampled from N(0, 1),

so that the variance in the response fitness phenotypes are split in a ratio of 1:2 between main

effects and interactions.

In order to model synthetic lethal pairs, interactions with effect strength of −1000 (on log

scale) are added to the simulated data. Since lethal interactions may occur with little or no

main effect present [10], we allow these pairs to violate the strong hierarchy and do not add
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main effects. This is done both for biological plausibility, and to evaluate the performance of

xyz and glinternet under less ideal circumstances. Since only glinternet assumes

the strong hierarchy, this scenario might favour xyz.

Based on simulated perturbation matrices X, simulated main effects βi and interaction

terms βi,j, we sampled fitness values with β0 = 0 according to the fitness landscape model

(Eq 3)

Y � N
�P

iXibi þ
P

i<jðXi � XjÞbi;j; s
2I
�
;

where we chose σ2 for fixed SNRs s 2 {2, 5, 10}.

2.5 Evaluation criteria

We focus the evaluation on the estimated parameters of the model, specifically the conditional

epistasis terms, β̂fi;j:i<jg, rather than the model’s performance in predicting the fitness pheno-

types Y. Given the ground truth of true conditional epistasis between gene i and j, β{i,j:i<j}, we

assess the performance of the model to identify epistasis, i.e., estimated non-zero coefficients

b̂i;j, by computing the number of true positives (TPs), false positives (FPs) and false negatives

(FN). Here, TPs represent the number of gene pairs (i, j) such that βi,j 6¼ 0 and b̂i;j 6¼ 0, FPs the

number of gene pairs (i, j): βi,j = 0 and b̂ i;j 6¼ 0 and FNs the number of gene pairs (i, j):βi,j 6¼ 0

and b̂i;j ¼ 0: The performance is then summarised using the following measures

precision ¼
TP

TPþ FP

recall ¼
TP

TPþ FN

F1 ¼ 2
precision� recall
precisionþ recall

Furthermore, we investigate whether estimates b̂ i;j have the same sign as the ground truth con-

ditional epistasis and we quantify the deviation of the magnitude from the truth. Where appli-

cable, we also evaluate the effect of selection of only those βi,j which significantly deviate from

zero on the model’s performance.

3 Results

First, we evaluate the proposed approach to estimating epistatic effects from off-target pertur-

bations on simulated data. The approach depends on a model able to detect non-zero pairwise

interactions (Fig 1). Here, we evaluate the approach using two such alternative models, glin-
ternet and xyz.

We evaluate the ability of both xyz and glinternet to identify epistasis between pairs

of genes from RNAi screens on simulated data with p = 100 genes and n = 1000 siRNAs. Only

for xyz, we also test larger data sets, with p = 1000 and n = 10000. We use off-target informa-

tion from real siRNAs and investigate the performance for varying signal-to-noise ratios, num-

ber of true interactions, number of observations per double knockdown, and effect sizes for

epistasis.

We perform a separate set of tests where we specifically assess the performance of the two

methods to identify synthetic lethal interactions, the strongest negative interactions. For this

purpose, we simulate a separate data set that contains additional synthetic lethal pairs of genes.
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In this test, we attempt to identify only lethal interactions using xyz and glinternet,

given increasingly large numbers of genes.

3.1 Identification of epistasis under varying conditions

Both xyz and glinternet are tested on a series of small simulated data sets. For each com-

bination of parameters q 2 {5, 20, 50, 100}, r 2 {0, 20, 50, 100} and s 2 {2, 5, 10}, controlling

the number of true interactions, the number of additional main effects, and the SNRs of the fit-

ness phenotypes, respectively, we sample 50 independent data sets. xyz is tested on a series of

larger data sets, with parameters q 2 {50, 200, 500, 1000}, r 2 {0, 200, 500, 1000} and s 2 {2, 5,

10}. Only 10 independent data sets are sampled in these cases. Each data set consists of the per-

turbation matrix X, phenotypes Y, true conditional epistasis βi,j and main effects βi.
The distribution of the number of observations for pairwise knockdowns of gene i and j is

shown in Fig 13 in S1 Appendix for an exemplary perturbation matrix X. While only a few

genes have many observations, 87% of gene pairs are simultaneously perturbed by at least one

siRNA. Note that the distribution seen in Fig 13 in S1 Appendix is similar for both p = 100 and

p = 1, 000 genes. We also find that number of additional main effects has relatively little impact

on detecting interactions (Appendix B in S1 Appendix), and this value is kept constant during

our tests. We select only estimates b̂i;j with a magnitude significantly different from zero (q-

value < 0.05). This significantly improves precision, at a slight cost to recall, using both

glinternet and xyz (Fig 2).

3.1.1 Number of double knockdowns per gene pair. We fixed the number of additional

main effects to 20 and investigated performance with respect to the number of double knock-

downs per epistatic gene pair, i.e. siRNAs that target both genes (Fig 3). The results are largely

similar for both xyz and glinternet. As expected, for increasing numbers of observations,

we observe an increase in precision and recall with a steeper increase of precision compared to

recall and decreased performance for higher number of true interactions. The number of true

epistatic gene pairs primarily affects recall, which decreases for higher numbers of true non-

zero βi,j. For gene pairs with more than 80 observations of the double knockdown,

Fig 2. Trade-off between precision and recall for selecting the subset of interactions significantly deviating from

zero versus all interactions. Top and bottom panels depict gain of precision and loss of recall, respectively. (a)

glinternet; (b) xyz.

https://doi.org/10.1371/journal.pone.0254491.g002
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glinternet shows strong performance with F1 values between 0.68 − 0.9 across all tested

numbers of true interactions and an SNR larger than or equal to 5 (Fig 3a).

xyz shows significantly improved performance for gene pairs with more than 40 observa-

tions, with F1 values almost all above 0.25. Small numbers of true interactions are particularly

accurate, with F1> 0.5 when there are also only 5 such effects (Fig 3b).

The number of times each pair of genes is observed is shown in Fig 4. We see that in the

large simulation, in which all parameters are multiplied by ten, the number of observations of

each pair of genes is similarly scaled. As a result, the overall distribution is similar to the

smaller simulation.

3.1.2 Epistatic effect size. We observe that, for both xyz and glinternet, the perfor-

mance of the model increases with the absolute value of the magnitude of the conditional

Fig 3. Identification of epistasis for increasing numbers of observations of the pairwise double knockdown. The

number of additional main effects not overlapping with the set of interacting genes is fixed to 20. Results using (a)

glinternet and (b) xyz.

https://doi.org/10.1371/journal.pone.0254491.g003

Fig 4. The distribution of the fraction of gene pairs stratified by ranges of observed double knockdowns. Gene pairs with

zero observations are not shown. (a) p = 100, n = 1000; (b) p = 1000, n = 10000.

https://doi.org/10.1371/journal.pone.0254491.g004
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epistasis between pairs of genes |βi,j| (Fig 5). Both for negative and positive epistasis, recall and

precision steeply increase with increasing effect size. For pairs of genes with |βi,j|> 1 and SNRs

�10, the model performs favourably with F1 values of 0.6 and higher in glinternet, and at

least 0.25 in xyz. Overall performance also marginally improves for glinternet at

SNR = 5, but no clear effect is seen for xyz or SNR = 10. With both xyz and glinternet,

we observe exceptions to the general pattern of the overall V-shape for precision and recall,

where strongly negative and positive epistasis and weak epistasis lead to high and low perfor-

mance of the model, respectively. This effect can be explained by the fact that, after the signifi-

cance test, an extremely small number of interactions are reported in these ranges (most often

only one), with no false positives. The fact that the model’s performance notably decreases for

small effect sizes around zero explains why we observe a trend of decreasing performance for

increasing numbers of true interactions, when we average over all effect sizes. This is because

sampling true epistatic effect sizes from N(0, 2) for increasing numbers of true interactions

increases the fraction of interactions with small effects around zero.

Notably, we can see in Fig 5b that even when the overall performance is poor, xyz is still

able to find a small number of strong interactions relatively accurately. This is particularly

promising, since synthetic lethal pairs would be such interactions.

3.1.3 Direction. We evaluate the ability of each method to distinguish between negative

and positive epistasis among epistatic gene pairs identified as true positives (Fig 6). For both

glinternet and xyz, the fraction of incorrect estimates of direction (positive vs. negative)

is higher for decreasing effect size and increasing number of true interactions. For epistatic

effects with an absolute value> 1, we observe at most 3% incorrect predictions with glin-
ternet, and 8% with xyz. We observe at most 9% and 15% incorrect predictions for smaller

effect sizes for glinternet and xyz respectively. Furthermore, we observe that increasing

SNRs leads to a subtle decrease of incorrectly predicted direction.

3.1.4 Magnitude. We evaluate the deviation of the magnitude of estimates for epistasis

from the ground truth as a function of observed double knockdowns (Fig 7). The deviation in

magnitude is computed as
jbi;j j� jb̂ i;j j

jbi;j j
, i.e. the percent relative change in deviation with respect to

the true epistasis. We observe that across varying numbers of observations the model predicts

the magnitude of epistasis between pairs of genes with high accuracy using both xyz and

glinternet.

Fig 5. Identification of epistasis for varying effect size. Using (a) glinternet and (b) xyz.

https://doi.org/10.1371/journal.pone.0254491.g005

PLOS ONE Gene interactions from perturbation screens

PLOS ONE | https://doi.org/10.1371/journal.pone.0254491 July 13, 2021 11 / 22

https://doi.org/10.1371/journal.pone.0254491.g005
https://doi.org/10.1371/journal.pone.0254491


3.2 Scalability

Running glinternet until it has converged takes a prohibitively long time on larger data

sets. While we are able to run our p = 100, n = 1, 000 simulations in slightly under two minutes,

increasing to p = 1, 000, n = 10, 000 takes over two days using ten cores. Although using more

threads is possible, the running time is already dominated by single-threaded components

with ten cores. The multi-threaded performance is therefore limited to by Ahmdahl’s Law to

approximately the performance we see here. Since fitting with small lambda values takes the

majority of the time, we can improve this by changing the minimum value of lambda that gets

used. Adjusting this from lambdaMax

100
to lambdaMax

4
, and fitting only five lambdas in this range rather

than fifty, glinternet still takes over an hour. This makes the repeated simulations from

subsection 3.1 impractical at a larger scale with glinternet, although we do investigate

some larger data sets in subsection 3.3.

It should also be noted that this limits the scale of real-world data that can be analysed

using glinternet. While some improvements are possible by disabling cross-validation or

Fig 6. Concordance between the sign of true and estimated epistasis. The fraction of incorrectly identified signs

between true and estimated epistasis for (a) glinternet and (b) xyz.

https://doi.org/10.1371/journal.pone.0254491.g006

Fig 7. Concordance between the sign of true and estimated epistasis. The fraction of incorrectly identified signs

between true and estimated epistasis for (a) glinternet and (b) xyz.

https://doi.org/10.1371/journal.pone.0254491.g007
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setting a high lower limit for lambda, we do not consider analysis of over 1, 000 genes to be

practical. Further work needs to be done to develop regression methods for genome-scale

data.

Since xyz has significantly shorter run time than glinternet, here we more thoroughly

investigate performance on larger data sets. Repeating the earlier simulations with every

parameter increased by a factor of 10 (Fig 8), we find that the overall trends remain the same.

The fraction of incorrectly identified signs is omitted, as in this test there are no such results.

There is a significant drop in both precision and recall, and now only effects with a magni-

tude greater than 3 are found a significant amount of the time (Fig 8b).

3.3 Synthetic lethal pairs

Synthetic lethal pairs are of particular interest, and given that xyz is able to somewhat reliably

find extremely strong interactions, it is natural to ask whether it can be used to quickly find

lethal pairs, despite its poor performance on weaker interactions. We fix the number of main

effects to 10, and simulated 10000 siRNAs on 1000 genes. Synthetic lethal pairs are created as

interaction effects of magnitude −1000 (log scale). This rather extreme assumption makes syn-

thetic lethals the best possible case for detection via regression. In practice, synthetic lethal

detection accuracy would likely be somewhere between what we see here and that of a small

negative effect. Since lethal pairs often do not have strong main effects (i.e. do not follow the

strong hierarchy assumption), the components of the interaction are not used as main effects

in this case.

Increasing the number of lethal interactions significantly reduces recall, but does not have a

clear effect on precision. At this scale, xyz is often able to correctly identify some lethal inter-

actions (Fig 9), particularly when there are only a few to find.

3.3.1 Synthetic lethality detection in larger matrices. While we could not run a signifi-

cant number of tests at this scale using glinternet, we could investigate how well its accu-

racy scales compared to xyz. To do this, we simulated sets of up to p = 4000 genes, and

measured the performance of both xyz and glinternet. In this case, both to avoid allocat-

ing more elements to a matrix than R allows, and to keep the run time of glinternet low,

only n = 2 × p siRNAs are simulated. The ratio of siRNAs, genes, main effects, interactions,

Fig 8. Simulations repeated using xyz and larger data sets. (a) number of observations of double knockdown. (b)

Precision/recall/f1 by actual effect strength.

https://doi.org/10.1371/journal.pone.0254491.g008
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and lethals, is fixed to:n = 200 siRNAs, p = 100 genes, bi = 1 main effect, bij = 20 interaction

effects, l = 5 lethal interactions. Data sets are then generated with these values multiplied by 5,

10, 20, and 40. As in the previous simulation, components of lethal interactions are not added

as main effects. The strong hierarchy assumption is not valid in this case.

Interactions are then found with both xyz and glinternet. Here we focus specifically

on synthetic lethal detection, and only correct lethal pairs are considered true positives, Any

other pair (including a true interaction that is not a lethal) is considered a false positive.

We can see in Fig 10a that precision with glinternet remains fairly consistent as p
increases. There is a roughly proportional reduction in recall as the number of lethal interac-

tions increases. After a slight increase from 500 to 100 genes, the actual number of significant

interactions found remains fairly consistent. Beyond p = 2000, we found that xyz typically

fails to find any of the lethal pairs (Fig 10b)

Fig 11 shows that neither xyz nor glinternet quite demonstrate a linear run time, but

the run time for glinternet increases sharply beyond p = 2000. It is possible that this is

simply the result of less efficient cache use with larger data, but it is nonetheless worth noting.

Fig 9. Precision, recall, and F1 performance for varying numbers of synthetic lethal pairs, with additional

background interactions, using xyz. Neither side of the lethal interactions are used as main effects, and as far as

lethal interactions are concerned, there is no hierarchy present.

https://doi.org/10.1371/journal.pone.0254491.g009
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3.4 Violations to model assumptions

For the regularised regression model (Eq 4) we assume strong hierarchy (Eq 6) between main

effects βi and interaction terms βi,j in order to reduce the search space of all possible non-zero

coefficients pþ ð p
2
Þ during inference. We refer the reader to [27], where Lim and Hastie show

how violations to this assumption affect the performance. For instance, the performance of the

model is evaluated when the ground truth only obeys weak hierarchy, i.e. only one main effect

present, no hierarchy, or anti-hierarchy. Additionally, approximately 2.5% of simulations pro-

duced no interactions using xyz, because the estimated interaction frequency of non interact-

ing pairs was too low. These were fairly evenly distributed across all combinations of

parameters (Fig 12), and are not believed to have substantially affected the results.

Fig 10. Performance on increasingly large data sets. (a) glinternet and (b) xyz.

https://doi.org/10.1371/journal.pone.0254491.g010

Fig 11. Run time in seconds to find interactions on increasingly large data set. (a) glinternet. (b) xyz. We

compiled glinternet with OpenMP and ran with numCores = 10.

https://doi.org/10.1371/journal.pone.0254491.g011
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3.5 Summary recommendation

After simulating siRNA knockdown data sets of various sizes, and under various conditions,

and attempting to reconstruct the interacting pairs using both xyz and glinternet, we

arrive at the following recommendations. For data sets containing less than 4,000 genes

(assuming between 2 and 10 experiments per gene), we recommend using glinternet to

find interactions. Where glinternet would have a prohibitively long run time (data sets

larger than those mentioned above), xyz continues to run quickly, and may still identify some

useful results (Fig 9), particularly when interactions are observed a large number of times in

the data and have strong effects (sections 3.1.1 and 3.1.2). Particularly when one expects a

small number of significant interactions, increasing the number of projections beyond
ffiffiffi
n
p

may improve performance here (see Appendix D in S1 Appendix).

3.6 Effects in real data

Following the recommendation we have arrived at in subsection 3.5, we apply glinternet
(followed by a linear regression analysis) to estimate epistatic effects from a real data set. We

use the perturbation data from [24], containing siRNA screens targeting kinases in the pres-

ence of five bacterial pathogens and two viruses, and apply the routine as described in subsec-

tion 2.2 to identify pairwise kinase-kinase interactions. Specifically, we restrict the data to

siRNAs that target kinases from the Qiagen Human Kinase siRNA Set V4.1, and the off-target

effects within this set, resulting in an input matrix containing 11214 perturbations × 667

genes. Using f ¼ log2
Cells after
Cells before

� �
as a fitness measure, we found 1662 effects, 116 of which had a

p-value less than 0.05. Since we have assumed that perturbations are binary in our simulations,

Fig 12. Distribution of xyz failures.

https://doi.org/10.1371/journal.pone.0254491.g012
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we continue to do so here. As a result, all non-zero predicted off-target effects are given a value

of 1. The ten most significant predicted effects are shown in Table 1 (the full set of results, sig-

nificant or otherwise, can be found at https://github.com/bioDS/xyz-simulation/blob/master/

real_data_results_sorted.csv). Interestingly, the most significantly associated pair of genes,

CDK5R1 and RPS6KA2, are both related to a common pathway. Specifically, CDK5R1 acti-

vates CDK5, which, along with RPS6KA2, is part of the IL-6 signalling pathway [38]. Searching

both the ConsensusPathDB database [39], and STRING database [40] for relations between

the found pairs, we find that a number of the interactions suggested here could be the result of

existing known interactions. We each of the identified pairs of genes, we searched for common

neighbours (a third gene with which both interact), shared pathways, and whether the pro-

duced proteins are found in the same protein complexes, and found the following known

relationships:

CDK5R1 and RPS6KA2 share a common neighbour, and are present in four of the same

enriched pathway-based sets. TTK and RPS6KA2 share nine common neighbours. RIPK4 and

GRK3 share one neighbour, nd homologs were found interacting in other species. TNIK and

PANK4 share one neighbour, as do MAPK4 and TRPM7, MAP2K6 and UCK1, and HIPK1

and NUAK2. As we could not locate the other identified pairs in the database, we hypothesise

that they might constitute novel interactions.

Of the interactions present in Table 1, we see that HIPK1 and NUAK2, TNIK and PANK4,

and MAP2K6 and UCK1 are predicted to have negative epistatic effects, and may be promising

synthetic lethal candidates.

For comparison we also fit a linear model including all genes, but no interactions. Compar-

ing the R2 values for each, we find that individual gene effects explain�15% of the variance

(R2 = 0.150) Including the interactions chosen by glinternet, and removing the main

effects it sets to zero, we have R2 = 0.392, more than doubling the fraction of explained vari-

ance. The Adjusted R2 is also significantly higher for the pairwise model, 0.286 as opposed to

0.096, indicating that the additional interaction variables are contributing significantly more

than random. Moreover, the Akaike An Information Criterion (AIC) values indicate the pair-

wise model is more informative, with an AIC value of −11607 as opposed to the main effect

only model’s −9853. This highlights the importance of accounting for interactions in large-

scale genotype-phenotype analyses, and relevance of bioinformatic tools with this capability.

4 Discussion

To the best of our knowledge, the presented model is the first approach that leverages the com-

binatorial nature of RNAi knockdown data resulting from sequence-dependent off-target

Table 1. Ten most significant predicted effects of siRNA perturbation screens, targeting all human kinases.

Gene i Gene j Type Combined Effect P-value i effect j effect

CDK5R1 RPS6KA2 interaction 12.52 0.0047 1.71 -2.32

RIPK4 GRK3 interaction -3.24 0.0056 -24.5 1.87

PHKB GUK1 interaction -7.47 0.0061 6.23 -28.4

MAP2K6 UCK1 interaction -40.89 0.0094 13.8 -22.6

TNIK PANK4 interaction -37.41 0.0115 21.3 5.21

RPS6KB2 TTK interaction 172.04 0.0118 0.5 -20.4

MAPK4 TRPM7 interaction 9.49 0.0120 8.46 16.3

HIPK1 NUAK2 interaction -13.17 0.0126 18.1 29.5

CDK19 NA main 3.80 0.0136 3.80

C17orf75 MAPK8IP3 interaction 21.74 0.0136 5.91 20.4

https://doi.org/10.1371/journal.pone.0254491.t001
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effects for the large-scale prediction of epistasis between pairs of genes. To do this, we take the

second-order approximation of the fitness landscape, including only individual and pairwise

effects, and attempt to infer the parameters of this model. Since glinternet is able to find

pairwise interactions among p = 1, 000 genes, we speculate that searching for three-way inter-

actions is feasible among
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 00023

p
¼ 100 genes. We are not aware of any software currently

able to do this, however.

For the majority of our tests, we simulate the presence of a strong hierarchy. This constraint

would imply that for the inference of non-zero epistatic effects between gene i and j, βi,j, we

penalise cases where the main effects for both single genes, βi and βj, are zero. This constraint

significantly decreases the complexity of the search space of interactions. However, in biology

there are many examples of epistasis where the marginal effects of individual genes are very

small, for instance if both genes redundantly execute the same function within the cell [41].

[13] found in their study of experimental double knockouts in yeast that single mutants with

decreasing fitness phenotypes tended to exhibit an increasing number of genetic interactions.

This observation is reassuring for glinternet, which can pick up the interaction as long as

the true single-mutant effects are not exactly zero. Moreover, Lim and Hastie showed in a sim-

ulation study that the model is in fact flexible enough to also identify pairwise interactions vio-

lating the strong hierarchy constraint [27]. For the detection of strong interactions, specifically

synthetic lethal pairs, we have also demonstrated that the strong hierarchy constraint is not

required.

In a simulation study, we sampled perturbations for n = 1000 siRNAs and p = 100 genes,

and n = 10000 siRNAs with p = 1000 genes. As a consequence of high-throughput genome-

wide screening platforms, the setting of n = 10 × p, i.e. ten perturbations with different siRNAs

per gene, is realistic even for higher order organisms with tens of thousands of genes [21, 24].

Sampling the perturbations directly from commercially available RNAi libraries allows us to

translate results from the simulation study to applications on real data. We observe that

increasing SNRs, as expected, results in an overall increase of the number of successfully iden-

tified gene pairs with true epistasis.

Nevertheless, we found that even for a moderate SNR of only 2, the model identifies interac-

tions with acceptable performance using glinternet (F1 > 0.5 for 50 true interactions),

when we observed each double knockdown over 40 times (Fig 3a) or the effect size of epistasis

is larger than 1, i.e. |βi,j|> 1 (Fig 5a). For an SNR of 5 and across all tested numbers of addi-

tional gene pairs and epistatic effect sizes, the performance of the model is approximately con-

stant at around F1 = 0.5, independent of the number of true epistatic gene pairs (Appendix B

in S1 Appendix).

Performance in our simulations also suggests that xyz is unable to accurately identify

interactions in large data sets. Although xyz has a consistently short run time, and appears

capable of running on genome-scale data, we see a significant drop in all other performance

measures beyond p = 1000 genes.

The results when using glinternet, however, suggest that the general approach is able

to accurately identify pairwise epistasis from large-scale RNAi data sets, given that the SNR of

measured fitness phenotypes is larger than 2 and the effect size of epistasis is larger than 1. It is

challenging to compare the performance of these models to approaches that estimate genetic

interactions from other data, such as for instance from double knockout experiments [13], due

to different scales of the epistatic effect size, however, the high precision of glinternet
seems quite competitive. Moreover, our simulations demonstrated that if true epistatic effects

between pairs of genes are identified, the model identifies both the direction of epistasis
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(positive and negative) as well as the magnitude of the epistatic effect with high accuracy (Figs

6 and 7).

In detecting lethal interactions specifically, the high precision of glinternet after testing

for significant deviations is particularly promising. Using this as a method to detect likely syn-

thetic lethal interactions from RNAi data sets, we could propose candidates for further investi-

gation as anticancer drug targets [9, 12]. While the run time may prevent glinternet from

being used as such a method in genome-scale applications, we can recommend it for use with

smaller data sets, or where the number of potential interactions can be significantly reduced

prior to running glinternet. As the precision does not appear to suffer with larger input,

only the run time, we believe combining linear regression with a perturbation matrix is a

promising method for further investigation, and work to improve the performance sufficiently

for use in genome-scale applications is ongoing.

Demonstrating our method on a set of kinase siRNA knockdowns, we find a number of

plausible proposed effects (Table 1). This set is sufficiently small that the true positives may be

found experimentally by testing all�1.4 million gene pairs (as in [13]). Alternatively, the most

likely candidates may analysed with targeted sequencing and fitness measurements (as in [42])

or clinical trials, (as in [43]). It is likely that a significant number of false positives are present

among the proposed interactions, and we consider such verification to be an essential second

step in discovering true epistatic effects.

While filtering results by p-value does significantly increase accuracy (Fig 2), the p-values

we use do not account for the prior variable selection (using glinternet or xyz), and may

therefore be biased. Recent work is able to overcome this limitation with regard lasso regres-

sion in some cases [44, 45], however existing implementations [45, 46] of these methods

require storing the full interaction matrix X0. For non-trivial numbers of interactions this does

not typically fit in memory, and we cannot work with it directly. Moreover, the procedure

from [47] is not applicable when p� n unless the variance can be efficiently estimated. Given

recent progress in variance estimation for lasso regression [48] it may be possible to implement

unbiased p-value calculations for lasso regression at this scale, and we suggest this as one possi-

ble improvement for future work.

Finally, it is worth noting that this approach is not limited to siRNA perturbation matrices,

or to synthetic lethal detection. Any method of suppressing gene expression, combined with

an affected proxy for fitness, could be used to find likely candidates for epistasis.
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46. Dezeure R, Bühlmann P, Meier L, Meinshausen N. High-Dimensional Inference: Confidence Intervals,

p-Values and R-Software Hdi. Statistical Science. 2015; 30(4):533–558. https://doi.org/10.1214/15-

STS527

47. Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. A Significance Test for the Lasso. The Annals of Sta-

tistics. 2014; 42(2):413–468. https://doi.org/10.1214/13-AOS1175 PMID: 25574062

48. Kennedy C, Ward R. Greedy Variance Estimation for the LASSO. Applied Mathematics & Optimization.

2020; 82(3):1161–1182. https://doi.org/10.1007/s00245-019-09561-6

PLOS ONE Gene interactions from perturbation screens

PLOS ONE | https://doi.org/10.1371/journal.pone.0254491 July 13, 2021 22 / 22

https://doi.org/10.1186/gb-2010-11-1-r3
https://doi.org/10.1186/gb-2010-11-1-r3
http://www.ncbi.nlm.nih.gov/pubmed/20067622
https://doi.org/10.1093/nar/gkn698
https://doi.org/10.1093/nar/gkn698
http://www.ncbi.nlm.nih.gov/pubmed/18940869
https://doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
https://doi.org/10.1126/science.aaf0965
http://www.ncbi.nlm.nih.gov/pubmed/27080103
https://doi.org/10.1098/rspb.2016.0151
https://doi.org/10.1098/rspb.2016.0151
http://www.ncbi.nlm.nih.gov/pubmed/27170722
https://doi.org/10.1136/annrheumdis-2012-201774
https://doi.org/10.1136/annrheumdis-2012-201774
http://www.ncbi.nlm.nih.gov/pubmed/22887649
https://doi.org/10.1214/15-AOS1371
https://doi.org/10.1080/01621459.2015.1108848
https://doi.org/10.1080/01621459.2015.1108848
https://doi.org/10.1214/15-STS527
https://doi.org/10.1214/15-STS527
https://doi.org/10.1214/13-AOS1175
http://www.ncbi.nlm.nih.gov/pubmed/25574062
https://doi.org/10.1007/s00245-019-09561-6
https://doi.org/10.1371/journal.pone.0254491

