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Abstract: Ischemic stroke is a complicated disease which is affected by environmental factors and
genetic factors. In this field, various studies using whole-exome sequencing (WES) have focused
on novel and linkage variants in diverse diseases. Thus, we have investigated the various novel
variants, which focused on their linkages to each other, in ischemic stroke. Specifically, we analyzed
the N-methylpurine DNA glycosylase (MPG) gene, which plays an initiating role in DNA repair,
and the nitrogen permease regulator-like 3 (NPRL3) gene, which is involved in regulating the
mammalian target of rapamycin pathway. We took blood samples of 519 ischemic stroke patients
and 417 controls. Genetic polymorphisms were detected by polymerase chain reaction (PCR),
real-time PCR, and restriction fragment length polymorphism (RFLP) analysis. We found that two
NPRL3 polymorphisms (rs2541618 C>T and rs75187722 G>A), as well as the MPG rs2562162 C>T
polymorphism, were significantly associated with ischemic stroke. In Cox proportional hazard
regression models, the MPG rs2562162 was associated with the survival of small-vessel disease
patients in ischemic stroke. Our study showed that NPRL3 and MPG polymorphisms are associated
with ischemic stroke prevalence and ischemic stroke survival. Taken together, these findings suggest
that NPRL3 and MPG genotypes may be useful clinical biomarkers for ischemic stroke development
and prognosis.

Keywords: ischemic stroke; DNA repair-related gene; mTOR pathway-regulating gene; post-stroke
mortality; polymorphism

1. Introduction

In recent years, the advancement of whole-exome sequencing (WES) has allowed for enhanced
screening of genetic diseases [1] and has become a useful tool for studying various diseases [2].
Specifically, the use of WES has resulted in large cohorts of subjects with neurodevelopmental disorders,
from which numerous gene mutations have been identified, as well as the confirmation of a role for
the identified variants in related pathways of more complex diseases [3,4]. Using this approach, many
genes underlying monogenic disorders have now been established; however, the identification of genes
involved in multi-genic diseases is more complicated [5]. Furthermore, various studies using WES have
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identified and focused on the novel, linkage, and haplotype variants in diverse diseases [6–10]. Thus,
we have investigated the various novel single-nucleotide polymorphisms, which focused adjacent to
one another, in ischemic stroke.

Ischemic stroke is a multifactorial disease that is affected by both genetic [11,12] and environmental
factors [13], including advanced age [14], diabetes mellitus [15], family or personal history of stroke [16],
high cholesterol [17], smoking [18], hypertension [19], hyperlipidemia [20], and metabolic syndrome [21].
Of these, the primary contributors to ischemic stroke are diabetes mellitus, hypertension, smoking,
and hyperlipidemia [22]. Ischemic strokes occur when an artery supplying blood to the brain becomes
blocked. This occlusion is often the result of thrombosis, which is responsible for 53% of ischemic
strokes, or an embolism, which is responsible for 31% of ischemic strokes [23].

Platelets are a component of the blood responsible for clotting and are directly involved in
both thrombus composition and thrombosis [24]. Importantly, many studies have demonstrated a
clear association between platelet levels and ischemic stroke [25]. Platelets are formed within the
cytoplasm of large precursor cells called megakaryocytes, which reside in the bone marrow [26].
The proliferation of megakaryocyte progenitors is regulated by the mammalian target of rapamycin
(mTOR) pathway, which plays an important role in megakaryocyte terminal differentiation, including
platelet functions [27]. In the brain, the mTOR pathway regulates numerous processes, including the
development of nerve cells and their plasticity over time [28]. Additionally, increased mTOR activity
has been shown to facilitate brain recovery after stroke [29].

DNA repair mechanisms also play an important role in the mammalian brain, and polymorphisms
of DNA repair-related genes are associated with ischemic stroke susceptibility and short-term
recovery [30,31]. In addition, preservation of normal brain function after endogenous damage and
protection from brain-related diseases are associated with successful DNA repair, such as base-excision
repair [32]. DNA glycosylases are enzymes involved in base-excision repair and are found in many
species, including bacteria, yeast, plants, rodents, and humans. As such, there exist multiple subfamilies
of these enzymes, including the human alkyladenine DNA glycosylase [33]. Notably, this subfamily of
monofunctional glycosylases is involved in the recognition of base lesions, including alterations in
purines, and in the initiation of the base-excision repair pathway [34]. Together, these findings support
our efforts to assess whether mTOR pathway-related and DNA repair-related genes are associated
with ischemic stroke prevalence.

Therefore, in this study, we investigated gene polymorphisms associated with ischemic stroke
using WES. Specifically, we investigated the MPG gene, which encodes for N-methylpurine DNA
glycosylase [35], and the NPRL3 gene, which encodes for nitrogen permease regulator-like 3,
a component of the GATOR1 complex (Figure S1). Importantly, the GATOR1 complex is a regulator of
the mTOR pathway [36], and its actions can be blocked by inhibiting mTOR complex 1 activity [37].
As a result of our WES screening, we discovered novel single-nucleotide polymorphisms for NPRL3
(rs2541618 C>T, rs75187722 G>A) and MPG (rs2562162 C>T, rs710079 C>T) that were adjacent to one
another in chromosome 16. Thus, we designed a case-control study to investigate the association
between the NPRL3 and MPG polymorphisms and ischemic stroke in a Korean population. To the
best of our knowledge, this study presents the first piece of evidence of a role for NPRL3 and MPG
polymorphisms in ischemic stroke risk in Korean individuals.

2. Materials and Methods

2.1. Study Participants

Blood samples were collected from 519 ischemic stroke patients and 417 controls. All study
protocols were reviewed and approved by the Institutional Review Board of CHA Bundang Medical
Center and followed the recommendations of the Declaration of Helsinki (IRB No. 2013-09-073,
date of approval: 6 November 2013). All patients and controls were recruited from the Department of
Neurology of CHA Bundang Medical Center, CHA University between 2000 and 2008. This study was
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approved by the Institutional Review Board of CHA Bundang Medical Center in June 2000 (IRB No.
2013-09-073, date of approval: 6 November 2013) and both informed and written consent was obtained
from study participants.

Ischemic stroke was defined as a stroke (a clinical syndrome characterized by rapidly developing
clinical symptoms and signs of the focal or global loss of brain function) with evidence of cerebral
infarction in clinically relevant areas of the brain according to magnetic resonance imaging (MRI) scan
findings. On the basis of the clinical symptoms and neuroimaging data, two neurologists categorized
whole ischemic strokes into four causative subtypes using the criteria of the Trial of Org 10172 in Acute
Stroke Treatment (TOAST) [38] as follows: (1) large-artery disease (LAD) defined by an infarction lesion
of ≥15 mm in diameter by MRI and significant (>50%) stenosis of the main brain artery or cerebral
cortex artery by cerebral angiography, (2) small-vessel disease (SVD) defined by an infarction lesion of
<15 and ≥5 mm in diameter by MRI and classic lacunar syndrome without evidence of cerebral cortical
dysfunction or detectable cardiac embolism, (3) cardioembolism (CE) defined by arterial occlusions
and due to an embolus arising in the heart, as detected by cardiac evaluation, and (4) pathogenesis in
which the cause of the stroke was not determined or had more than two causes.

Based on these criteria, 39.9% (n = 207) of patients in the stroke group had LAD, 28.7% (n = 149)
had SVD, 10.2% (n = 53) experienced a CE, and 21.2% (n = 110) were of an undetermined pathogenesis.
In addition, we selected 417 controls that were matched for sex ratio and age within 5 years in accordance
with the patient group. Controls were drawn from subjects visiting our hospitals during the same
period for health examinations, including biochemical testing, electrocardiograms, and brain MRIs.

Hypertension was defined as a systolic pressure of >140 mmHg and a diastolic pressure of
>90 mmHg on more than one occasion and included patients currently taking hypertensive medications.
Diabetes mellitus was defined as fasting plasma glucose levels of >126 mg/dL (7.0 mmol/L) and included
patients currently taking diabetic medications. Smoking referred to patients that were current smokers.
Hyperlipidemia was defined as a high fasting serum total cholesterol level (≥240 mg/dL) or a
history of taking an antihyperlipidemic agent treatment. Patients that possessed more than three of
the following five risk factors were diagnosed with metabolic syndrome (MetS): body mass index
(BMI) of ≥25.0 kg/m2; triglycerides of ≥150 mg/dL; high-density lipoprotein cholesterol (HDL-c) of
≤40 mg/dL in men or ≤50 mg/dL in women; blood pressure ≥140/90 mmHg or patients currently
taking hypertensive medication; and fasting plasma glucose of ≥110 mg/dL or patients currently taking
insulin or hypoglycemic medication.

2.2. Whole-Exome Sequencing (WES) Analysis

The NPRL3 and MPG polymorphisms were selected using WES screening because our purpose
was to investigate the various novel single-nucleotide polymorphisms (SNPs), which focused adjacent
to one another, in ischemic stroke. After the gene selection progressing, we progressed the polymerase
chain reaction (PCR) and restriction fragment length polymorphism (RFLP) because we needed to
confirm that the WES data were correct. The significant SNP list was filtered by the significant criteria
satisfying P-value < 0.05 for Fisher’s exact test, and these significant SNPs were shown through a
Manhattan plot (Figure S2). Ten variants were selected by Fisher’s exact test (P = upper 0.2%), and we
chose four sites in two genes, which were adjacent to one another, that contained a polymorphic
genotype as well as one previously reported site (Table S2, Figure S2). Paired-end sequences produced
by a HiSeq Instrument were first mapped on the human genome using the mapping program “BWA”
(version 0.7.12). Based on the output BAM file, variant genotyping of each sample was performed with
the Haplotype Caller of GATK. Then, an in-house program and SnpEff were applied to filter additional
databases including ESP6500, ClinVar, and dbNSFP2.9. For the advanced analysis, we gathered all the
per-sample genomic variant call formats (GVCFs) and passed them together to the joint genotyping
tool and genotype GVCFs. We calculated genotype frequencies of each individual polymorphism and
evaluated the Hardy–Weinberg equilibrium (HWE) to check the data quality and genotype error.
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The association between the case-control status and each individual single-nucleotide
polymorphism was analyzed by Fisher’s exact test, which assumed that a rare allele variant
had an effect for each polymorphism. Gene enrichment and functional annotation analysis for
significant SNPs were performed based on the Gene Ontology database (Gene Ontology unifying
biology, available online: https://geneontology.org, accessed on 13 November 2020). The statistical
analysis for association test was conducted using PLINK 1.07 (massgeneralbrigham, available online:
https://pngu.mgh.harvard.edu/~purcell/plink/, accessed on 13 November 2020).

2.3. Genotyping

Genomic DNA from the stroke patients and controls was extracted in blood leukocytes using a
G-DEX(TM) on blood extraction kit (Intron Biotechnology, Seongnam, South Korea). Most of the genetic
polymorphisms were confirmed by PCR and RFLP. One genetic polymorphism was detected by real-time
PCR. The NPRL3 rs2541618 C>T, NPRL3 rs75187722 G>A, and MPG rs710079 C>T polymorphisms were
confirmed by restriction enzyme activation of Sau96I, HphI, and BccI (New England Bio Laboratories,
Ipswich, MA, USA) at 37 ◦C over a period of 16–24 hrs (Table S1). Each polymorphism genotype was
confirmed by electrophoretic separation on 4% agarose gels. In addition, for each polymorphism, 30% of
the PCR data were randomly selected for a second PCR assay and were checked using DNA sequencing
to validate real-time PCR and RFLP findings.

2.4. Post-Stroke Mortality

To estimate the association between NPRL3, MPG gene polymorphisms, and long-term prognosis
after ischemic stroke, the time from stroke occurrence to death was recorded. The death dates of each
stroke patient (n = 519) were confirmed using death certificates obtained from the Korean National
Statistical Office. The survival statistics were derived from the survival data from 2008 to 2013,
and patients who were alive on 31 December 2013 were censored.

2.5. Statistical Analysis

Differences in the frequencies of the identified polymorphisms between stroke patients and control
subjects were analyzed using Fisher’s exact test and logistic regression. The odds ratio (OR) and 95%
confidence interval (CI) were utilized to measure the association between genotype frequencies and
stroke. To evaluate the relationship between each specific polymorphism, as well as a combination
of the allele, the OR and 95% CI were used. The relationships between polymorphisms and stroke
prevalence were calculated using adjusted ORs (AORs) and 95% CIs in logistic regression with adjusted
factors such as sex, age, diabetes mellitus, hypertension, hyperlipidemia, and smoking. Statistical
significance was accepted at a degree of P < 0.05. The false discovery rate (FDR) correction was
performed to adjust multiple comparisons. All of the polymorphisms were consistent with the HWE
(P > 0.05). To estimate ischemic stroke risk, we used three genetic susceptibility models: additive,
dominant, and recessive. All NPRL3 and MPG genotypes were converted into numeric values for
logistic regression in accordance with their genotypes. Wild homozygotes were designated as “0” in
all models. Heterozygotes were designated as “1” in additive and dominant models and “0” in the
recessive model. Mutant homozygotes were designated as “1” in dominant and recessive models and
“2” in the additive model.

The haplotypes of whole polymorphisms were confirmed using multifactor dimensionality
reduction (MDR) to identify combinations with strong synergistic effects. Furthermore, the HAPSTAT
program (version 3.0; www.bios.unc.edu/~lin/hapstat/; University of North Carolina, Chapel Hill,
NC, USA) was used to estimate the frequency of all haplotypes and confirmed the combinations with
strong synergistic effects. Furthermore, the statistical power of positive associations was calculated
using G*POWER 3.0 (Universität Düsseldorf: gpower, available online: http://www.psychologie.
hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html, accessed on
13 November 2020). Survival curves were created from the Cox proportional hazards regression, and the
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log-rank test was used to estimate the importance of differences between groups. Cox regression models
were used to analyze the independent prognostic importance markers, and results were adjusted for
various factors, including sex, age, diabetes mellitus, hypertension, hyperlipidemia, and smoking.
Statistical significance was defined as P < 0.05.

3. Results

3.1. Baseline Characteristics

The demographic characteristics and clinical factors of the ischemic stroke patients and controls
are shown in Table 1 and Table S3. The controls and ischemic stroke patients consisted of 41.5% and
44.1% males, respectively, and the mean ages of the control and stroke groups were 63.05 ± 11.00 and
63.29 ± 11.95 years, respectively. Some significant differences in clinical variables were confirmed
between ischemic stroke patients and controls. Metabolic syndrome, hypertension, and diabetes
mellitus were more incident in stroke patients, LAD patients, and SVD patients than controls.
In addition, HDL-c was lower in stroke patients and LAD patients than controls, and folate was
lower in stroke patients, LAD patients, and SVD patients than controls. Furthermore, homocysteine
was higher in stroke patients and LAD patients than controls. The vitamin B12, total cholesterol,
and triglyceride had significant differences between CE patients and controls.

Table 1. Comparison of baseline characteristics between ischemic stroke patients, ischemic stroke
subgroups, and controls.

Characteristics Controls
(n = 417)

Stroke
Patients
(n = 519)

P a
LAD

Patients
(n = 207)

P a
SVD

Patients
(n = 149)

P a CE Patients
(n = 53) P a

Males, n (%) 173 (41.5) 229 (44.1) 0.609 89 (43.0) 0.819 72 (48.3) 0.368 21 (39.6) 0.866
Age,

(years, mean ± SD) 63.05 ± 11.00 63.29 ± 11.95 0.747 64.36 ± 11.81 0.172 60.76 ± 11.63 0.032 66.58 ± 12.55 0.031

Smoking,
n (%) 140 (33.6) 194 (37.4) 0.405 77 (37.2) 0.535 54 (36.2) 0.682 16 (30.2) 0.724

MetS,
n (%) 94 (22.5) 238 (45.9) <0.0001 112 (54.1) <0.0001 68 (45.6) 0.0001 20 (37.7) 0.070

HTN,
n (%) 171 (41.0) 331 (63.8) 0.0001 131 (63.3) 0.003 92 (61.7) 0.011 30 (56.6) 0.189

DM,
n (%) 56 (13.4) 142 (27.4) <0.0001 55 (26.6) 0.001 47 (31.5) <0.0001 12 (22.6) 0.132

Hyperlipidemia,
n (%) 95 (22.8) 156 (30.1) 0.057 70 (33.8) 0.027 44 (29.5) 0.207 10 (18.9) 0.603

SD, standard deviation; LAD, large artery disease; SVD, small-vessel disease; CE, cardioembolism; MetS, metabolic
syndrome; HTN, hypertension; DM, diabetes mellitus. a P-values were calculated by two-sided t-test for continuous
variables and chi-square test for categorical variables. P-values < 0.05 are shown in bold.

3.2. Comparison of the Frequencies of NPRL3 and MPG Polymorphisms between Patients with Ischemic Stroke,
Subtypes, and Controls

We investigated the NPRL3 rs2541618 C>T, NPRL3 rs75187722 G>A, MPG rs2562162 C>T,
and MPG rs710079 C>T polymorphisms in patients with ischemic stroke and controls, as well as by
stoke subtype (LAD, SVD, and CE). The data are shown in Tables 2 and 3. We calculated the AOR using
logistic regression analyses including adjusted factors such as age, sex, hypertension, diabetes mellitus,
smoking, and hyperlipidemia. The frequencies of the identified NPRL3 and MPG polymorphisms
agreed with the predictions of the HWE (P > 0.05).
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Table 2. Comparison of the NPRL3 and MPG polymorphism frequencies between ischemic stroke
patients and controls.

Genotypes Controls
(n = 417)

Stroke Patients
(n = 519) AOR (95% CI) * P † P ‡

NPRL3 rs2541618 C>T
CC 205 (49.2) 225 (43.4) 1.000 (reference)
CT 178 (42.7) 238 (45.9) 1.270 (0.944–1.710) 0.115 0.153
TT 34 (8.2) 56 (10.8) 1.679 (1.011–2.787) 0.045 0.180

Additive (CC vs. CT vs. TT) 1.205 (0.979–1.485) 0.079 0.161
Dominant (CC vs. CT+TT) 1.333 (1.004–1.770) 0.047 0.094
Recessive (CC+CT vs. TT) 1.504 (0.924–2.449) 0.101 0.366

HWE-P 0.591 0.555

NPRL3 rs75187722 G>A
GG 333 (79.9) 438 (84.4) 1.000 (reference)
GA 82 (19.7) 77 (14.8) 0.638 (0.438–0.931) 0.020 0.080
AA 2 (0.5) 4 (0.8) 0.979 (0.172–5.586) 0.981 0.981

Additive (GG vs. GA vs. AA) 0.742 (0.531–1.037) 0.081 0.161
Dominant (GG vs. GA+AA) 0.650 (0.448–0.942) 0.023 0.092
Recessive (GG+GA vs. AA) 1.060 (0.186–6.039) 0.948 0.948

HWE-P 0.197 0.762

MPG rs2562162 C>T
CC 239 (57.3) 266 (51.3) 1.000 (reference)
CT 151 (36.2) 217 (41.8) 1.265 (0.950–1.684) 0.107 0.153
TT 27 (6.5) 36 (6.9) 1.213 (0.696–2.114) 0.495 0.661

Additive (CC vs. CT vs. TT) 1.175 (0.944–1.463) 0.149 0.198
Dominant (CC vs. CT+TT) 1.252 (0.954–1.643) 0.106 0.141
Recessive (CC+CT vs. TT) 1.105 (0.642–1.901) 0.719 0.948

HWE-P 0.633 0.355

MPG rs710079 C>T
CC 290 (69.5) 376 (72.4) 1.000 (reference)
CT 118 (28.3) 136 (26.2) 0.962 (0.709–1.304) 0.801 0.801
TT 9 (2.2) 7 (1.3) 0.500 (0.174–1.436) 0.198 0.396

Additive (CC vs. CT vs. TT) 0.893 (0.680–1.172) 0.413 0.413
Dominant (CC vs. CT+TT) 0.925 (0.686–1.246) 0.606 0.606
Recessive (CC+CT vs. TT) 0.489 (0.170–1.401) 0.183 0.366

HWE-P 0.454 0.173

AOR, adjusted odds ratio; HWE, Hardy–Weinberg equilibrium; 95% CI, 95% confidence interval; NPRL3, nitrogen
permease receptor like-3; MPG, N-methylpurine DNA glycosylase. * Adjusted by age, sex, hypertension, diabetes
mellitus, hyperlipidemia, and smoking. † P-value calculated by logistic regression analysis; ‡ P-value calculated by
false discovery rate test; P-values < 0.05 are shown in bold.

We found numerous differences in the included polymorphisms between the ischemic stroke
patients and control groups. For example, our results showed that the NPRL3 rs2541618 C>T
polymorphism was associated with the prevalence of ischemic stroke: the NPRL3 rs2541618 TT
genotype and the dominant model (CC vs. CT+TT) were both associated with ischemic stroke
prevalence. Similarly, the NPRL3 rs75187722 G>A polymorphism was associated with ischemic stroke
prevalence, and the NPRL3 rs75187722 GA genotype and the dominant model (GG vs. GA+AA) were
also significantly associated with ischemic stroke prevalence. However, no polymorphisms were
associated with ischemic stroke prevalence after the FDR analysis.



Diagnostics 2020, 10, 947 7 of 17

Table 3. Comparison of the NPRL3 and MPG polymorphism frequencies between ischemic stroke subtype patients and controls.

Genotype Controls
(n = 417)

LAD
(n = 207) AOR (95% CI) * P † P ‡

SVD
(n = 149) AOR (95% CI) * P † P ‡

CE
(n = 53) AOR (95% CI) * P † P ‡

NPRL3 rs2541618
C>T
CC 205 (49.2) 93 (44.9) 1.000 (reference) 57 (38.3) 1.000 (reference) 22 (41.5) 1.000 (reference)
CT 178 (42.7) 89 (43.0) 1.040 (0.717–1.509) 0.835 0.870 73 (49.0) 1.375 (0.902–2.097) 0.138 0.185 27 (50.9) 1.402 (0.766–2.568) 0.274 0.737
TT 34 (8.2) 25 (12.1) 1.860 (1.015–3.408) 0.045 0.178 19 (12.8) 2.406 (1.225–4.725) 0.011 0.043 4 (7.5) 1.069 (0.329–3.480) 0.911 0.911
Additive (CC vs. CT vs. TT) 1.237 (0.946–1.618) 0.120 0.239 1.496 (1.102–2.031) 0.010 0.037 1.172 (0.747–1.838) 0.490 0.927
Dominant (CC vs. CT+TT) 1.159 (0.815–1.647) 0.411 0.548 1.524 (1.019–2.279) 0.041 0.054 1.342 (0.747–2.412) 0.326 0.775
Recessive (CC+CT vs. TT) 1.832 (1.028–3.262) 0.040 0.160 2.059 (1.087–3.899) 0.027 0.106 0.893 (0.295–2.701) 0.841 0.841

NPRL3 rs75187722
G>A
GG 333 (79.9) 179 (86.5) 1.000 (reference) 130 (87.2) 1.000 (reference) 43 (81.1) 1.000 (reference)
GA 82 (19.7) 28 (13.5) 0.622 (0.380–1.017) 0.058 0.207 18 (12.1) 0.474 (0.261–0.860) 0.014 0.056 9 (17.0) 0.835 (0.388–1.797) 0.644 0.737
AA 2 (0.5) 0 (0.0) NA 0.995 0.995 1 (0.7) 1.301 (0.112–15.114) 0.834 0.834 1 (1.9) 2.829 (0.238–33.596) 0.410 0.911

Additive (GG vs. GA vs. AA) 0.599 (0.370–0.968) 0.037 0.146 0.535 (0.306–0.934) 0.028 0.037 0.969 (0.491–1.914) 0.927 0.927
Dominant (GG vs. GA+AA) 0.606 (0.371–0.989) 0.045 0.180 0.495 (0.277–0.886) 0.018 0.044 0.898 (0.429–1.878) 0.775 0.775
Recessive (GG+GA vs. AA) NA 0.996 0.996 1.468 (0.127–16.980) 0.759 0.759 2.690 (0.230–31.473) 0.430 0.841

MPG rs2562162
C>T
CC 239 (57.3) 105 (50.7) 1.000 (reference) 65 (43.6) 1.000 (reference) 28 (52.8) 1.000 (reference)
CT 151 (36.2) 88 (42.5) 1.359 (0.940–1.965) 0.103 0.207 72 (48.3) 1.569 (1.038–2.372) 0.033 0.066 20 (37.7) 1.156 (0.621–2.152) 0.647 0.737
TT 27 (6.5) 14 (6.8) 1.189 (0.576–2.452) 0.640 0.853 12 (8.1) 1.708 (0.786–3.708) 0.176 0.343 5 (9.4) 1.276 (0.440–3.697) 0.654 0.911
Additive (CC vs. CT vs. TT) 1.212 (0.916–1.605) 0.179 0.239 1.422 (1.040–1.945) 0.027 0.037 1.121 (0.718–1.753) 0.615 0.927
Dominant (CC vs. CT+TT) 1.332 (0.937–1.894) 0.110 0.219 1.589 (1.069–2.363) 0.022 0.044 1.153 (0.643–2.067) 0.633 0.775
Recessive (CC+CT vs. TT) 1.052 (0.522–2.121) 0.886 0.996 1.412 (0.665–2.996) 0.369 0.492 1.179 (0.421–3.300) 0.754 0.841

MPG rs710079
C>T
CC 290 (69.5) 151 (72.9) 1.000 (reference) 115 (77.2) 1.000 (reference) 38 (71.7) 1.000 (reference)
CT 118 (28.3) 55 (26.6) 0.968 (0.652–1.436) 0.870 0.870 33 (22.1) 0.797 (0.499–1.274) 0.344 0.344 14 (26.4) 0.893 (0.461–1.728) 0.737 0.737
TT 9 (2.2) 1 (0.5) 0.217 (0.026–1.825) 0.160 0.319 1 (0.7) 0.293 (0.035–2.453) 0.257 0.343 1 (1.9) 0.819 (0.098–6.834) 0.854 0.911
Additive (CC vs. CT vs. TT) 0.858 (0.598–1.231) 0.406 0.406 0.738 (0.482–1.129) 0.161 0.161 0.894 (0.501–1.594) 0.704 0.927
Dominant (CC vs. CT+TT) 0.910 (0.616–1.344) 0.636 0.636 0.754 (0.476–1.196) 0.230 0.230 0.891 (0.468–1.695) 0.725 0.775
Recessive (CC+CT vs. TT) 0.211 (0.025–1.760) 0.151 0.301 0.294 (0.035–2.488) 0.261 0.492 0.780 (0.094–6.509) 0.818 0.841

AOR, adjusted odds ratio; HWE, Hardy–Weinberg equilibrium; 95% CI, 95% confidence interval; LAD, large-artery disease; SVD, small-vessel disease; CE, cardioembolism; NA,
not applicable; NPRL3, nitrogen permease receptor like-3; MPG, N-methylpurine DNA glycosylase. * Adjusted by age, sex, hypertension, diabetes mellitus, hyperlipidemia, and smoking.
† P-value calculated by logistic regression analysis; ‡ P-value calculated by false discovery rate test; P-values < 0.05 are shown in bold.
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In our ischemic stroke subgroup analysis, we found several associations between the NPRL3 and
MPG polymorphisms and stroke subtype. SVD was significantly associated with the NPRL3 rs2541618
C>T polymorphism (TT and additive model: CC vs. CT vs. TT; dominant model: CC vs. CT+TT;
recessive model: CC+CT vs. TT), the NPRL3 rs75187722 G>A polymorphism (GA and additive model:
GG vs. GA vs. AA; dominant model: GG vs. GA+AA), and the MPG rs2562162 C>T polymorphism
(CT and additive model: CC vs. CT vs. TT; dominant model: CC vs. CT+TT). The NPRL3 gene
polymorphisms and MPG gene polymorphisms were further assessed using the FDR analysis. Notably,
only the NPRL3 rs2541618 C>T (TT genotype and additive model), the rs75187722 G>A (additive
model and dominant model), and the MPG rs2562162 C>T (additive model and dominant model)
were significantly associated with SVD after FDR analysis. Additionally, NPRL3 and MPG gene
polymorphisms were not significantly associated with LAD or CE stroke patients after FDR analysis.
The statistical powers of positive associations measured in this study are shown in Table S9.

3.3. Haplotype Analyses of NPRL3 and MPG Polymorphisms between Ischemic Stroke Patients and Controls

We next proceeded to perform haplotype analyses comparing the ischemic stroke patients
and controls (Table 4). The following showed significant associations with stroke prevalence
(P < 0.05): the T-A-C allele combination of the NPRL3 rs2541618 C>T/rs75187722 G>A/MPG
rs2562162 C>T polymorphisms, the C-A-C allele combination of the NPRL3 rs2541618 C>T/rs75187722
G>A/MPG rs710079 C>T polymorphisms, and the T-A-C allele combination of the NPRL3 rs2541618
C>T/rs75187722 G>A/MPG rs710079 C>T polymorphisms. In addition, although it was not significant,
the T-A allele combination of the NPRL3 rs2541618 C>T/rs75187722 G>A polymorphisms showed
a trend toward increasing ischemic stroke prevalence. Each polymorphism was also evaluated
with FDR analysis. Only the C-A-C allele combination of the NPRL3 rs2541618 C>T/rs75187722
G>A/MPG rs710079 C>T polymorphisms and the T-A-C allele combination of the NPRL3 rs2541618
C>T/rs75187722 G>A/MPG rs710079 C>T polymorphisms were significantly associated with stroke
prevalence after FDR analysis.

3.4. Combined Effects of NPRL3 and MPG Polymorphisms and Clinical Factors

To determine if other factors contributed to the association of genotype and ischemic stroke,
we stratified our genotype analyses by clinical variables (Tables S4 and S5). Moreover, we clarified the
number of each subgroup in stratification analysis. These stratified analyses revealed many combined
effects of genotype and ischemic stroke risk factors. Therefore, we next performed an analysis
of interactions between the NPRL3 and MPG polymorphisms and environmental factors (Table 5,
Table S6). Moreover, we clarified the number of each subgroup in interaction analysis. We found that
the NPRL3 rs2541618 CT+TT genotype had synergistic effects with hypertension, diabetes mellitus,
hyperlipidemia, and smoking (Table 5). Especially, NPRL3 rs2541618 CT+TT with hypertension
(AOR, 3.120; 95% CI, 2.116–4.599) was shown to significantly increase ischemic stroke prevalence.
In addition, NPRL3 rs2541618 CT+TT with diabetes mellitus (AOR, 2.904; 95% CI, 1.758–4.796) was
shown to significantly increase ischemic stroke prevalence. Furthermore, NPRL3 rs2541618 CT+TT
had a combinatorial effect with HDL-c<40(M)/50(F) (AOR, 6.364; 95% CI, 4.103–9.869) and NPRL3
rs2541618 CT+TT was shown to possess a combinatorial effect with folate ≤3.54 nmol/L (AOR, 4.866;
95% CI, 2.527–9.370 (Table S6). Similarly, we found synergistic effects between this polymorphism and
several clinical factors (hyperlipidemia, smoking, high homocysteine levels, and low prothrombin time
levels) (Table 5 and Table S6). Furthermore, we found that the NPRL3 rs75187722 GA+AA genotype
had synergistic effects with low HDL-c levels and high platelet levels (Table S6).
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Table 4. Haplotype analyses for the NPRL3 and MPG polymorphisms in ischemic stroke patients
and controls.

Haplotypes Controls
(2n = 834)

Stroke
(2n = 1038) OR (95% CI) P P *

NPRL3 rs2541618 C>T/NPRL3 rs75187722 G>A/MPG rs2562162 C>T/MPG rs710079 C>T
C-G-C-C 418 (50.1) 525 (50.6) 1.000 (reference)
C-A-C-C 21 (2.6) 10 (1.0) 0.379 (0.177–0.814) 0.010 0.129
C-A-T-T 4 (0.4) 0 (0.0) 0.088 (0.005–1.649) 0.039 0.254
T-A-C-C 2 (0.3) 10 (1.0) 3.981 (0.867–18.270) 0.077 0.335

NPRL3 rs2541618 C>T/NPRL3 rs75187722 G>A/MPG rs2562162 C>T
C-G-C 469 (56.2) 568 (54.7) 1.000 (reference)
C-A-T 9 (1.1) 4 (0.4) 0.367 (0.112–1.200) 0.098 0.196
T-G-T 162 (19.5) 243 (23.4) 1.239 (0.981–1.564) 0.072 0.196
T-A-C 0 (0.0) 7 (0.6) 12.390 (0.705–217.600) 0.019 0.112

NPRL3 rs2541618 C>T/NPRL3 rs75187722 G>A/MPG rs710079 C>T
C-G-C 446 (53.5) 568 (54.7) 1.000 (reference)
C-G-T 56 (6.7) 49 (4.8) 0.687 (0.459–1.028) 0.067 0.133
C-A-C 29 (3.5) 10 (1.0) 0.271 (0.131–0.562) 0.0002 0.001
T-A-C 0 (0.0) 14 (1.4) 22.780 (1.354–383.100) 0.001 0.002

NPRL3 rs2541618 C>T/MPG rs2562162 C>T/MPG rs710079 C>T
C-C-C 440 (52.8) 532 (51.3) 1.000 (reference)
T-T-C 159 (19.1) 237 (22.8) 1.233 (0.972–1.563) 0.084 0.586

NPRL3 rs2541618 C>T/NPRL3 rs75187722 G>A
C-G 502 (60.2) 608 (58.6) 1.000 (reference)
T-A 0 (0.0) 5 (0.5) 9.084 (0.501–164.800) 0.068 0.154

NPRL3 rs2541618 C>T/MPG rs2562162 C>T
C-C 545 (65.4) 642 (61.9) 1.000 (reference)
T-T 162 (19.5) 243 (23.4) 1.273 (1.012–1.602) 0.039 0.116

NPRL3 rs75187722 G>A/MPG rs2562162 C>T
G-C 553 (66.3) 669 (64.5) 1.000 (reference)
G-T 195 (23.4) 284 (27.3) 1.204 (0.972–1.492) 0.090 0.147
A-T 10 (1.2) 5 (0.5) 0.413 (0.140–1.217) 0.098 0.147

OR, odds ratio; 95% CI, 95% confidence interval; NPRL3, nitrogen permease receptor like-3; MPG, N-methylpurine
DNA glycosylase. * P-value calculated by false discovery rate test. P-values < 0.05 are shown in bold.

Similarly, the MPG rs2562162 CT+TT genotype exhibited synergistic effects with hypertension,
diabetes mellitus, hyperlipidemia, and smoking (Table 5). Especially, MPG rs2562162 CT+TT with
hypertension (AOR, 3.256; 95% CI, 2.193–4.833) was shown to significantly increase ischemic stroke
prevalence. Moreover, MPG rs2562162 CT+TT with diabetes mellitus (AOR, 2.984; 95% CI, 1.759–5.063)
was shown to significantly increase ischemic stroke prevalence. Furthermore, MPG rs2562162 CT+TT
had a combinatorial effect with HDL-c<40(M)/50(F) (AOR, 7.330; 95% CI, 4.564–11.773) and MPG
rs2562162 CT+TT was shown to possess a combinatorial effect with folate ≤ 3.54 nmol/L (AOR, 5.601;
95% CI, 2.651–11.836) (Table S6). In addition, the MPG rs2562162 CT+TT genotype exhibited synergistic
effects with several clinical factors (hyperlipidemia, smoking, and low prothrombin time levels) (Table 5
and Table S6). Moreover, the MPG rs710079 CT+TT genotype had synergistic effects with low HDL-c
levels and low folate levels (Table S6).
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Table 5. Ischemic stroke incidence according to an interaction analysis between NPRL3 and MPG genotypes and environmental factors.

Characteristics NPRL3 rs2541618
CC

NPRL3 rs2541618
CT+TT

NPRL3 rs75187722
GG

NPRL3 rs75187722
GA+AA

MPG rs2562162
CC

MPG rs2562162
CT+TT

MPG rs710079
CC

MPG rs710079
CT+TT

Age (936)
<63 1.000 (reference) 1.436 (0.951–2.167) 1.000 (reference) 0.589 (0.343–1.014) 1.000 (reference) 1.435 (0.952–2.164) 1.000 (reference) 0.903 (0.573–1.424)
≥63 0.903 (0.594–1.373) 0.996 (0.655–1.515) 0.762 (0.554–1.049) 0.746 (0.443–1.255) 0.866 (0.583–1.288) 1.086 (0.712–1.656) 0.785 (0.558–1.104) 0.778 (0.501–1.207)

Sex (936)
Male 1.000 (reference) 1.581 (1.033–2.421) 1.000 (reference) 0.544 (0.310–0.957) 1.000 (reference) 1.461 (0.953–2.239) 1.000 (reference) 0.866 (0.540–1.388)

Female 1.254 (0.769–2.044) 1.325 (0.823–2.134) 0.890 (0.618–1.281) 1.031 (0.586–1.812) 0.957 (0.601–1.525) 1.546 (0.945–2.531) 0.946 (0.641–1.394) 1.002 (0.606–1.657)

Hypertension
(936)
No 1.000 (reference) 1.060 (0.714–1.574) 1.000 (reference) 0.993 (0.598–1.650) 1.000 (reference) 1.415 (0.948–2.110) 1.000 (reference) 1.093 (0.715–1.672)
Yes 2.085 (1.399–3.105) 3.120 (2.116–4.599) 2.811 (2.069–3.819) 1.339 (0.808–2.218) 2.725 (1.878–3.955) 3.256 (2.193–4.833) 2.720 (1.958–3.777) 2.000 (1.290–3.100)

Diabetes mellitus
(936)
No 1.000 (reference) 1.154 (0.853–1.561) 1.000 (reference) 0.681 (0.454–1.020) 1.000 (reference) 1.184 (0.873–1.605) 1.000 (reference) 0.829 (0.596–1.154)
Yes 2.019 (1.217–3.351) 2.904 (1.758–4.796) 2.048 (1.378–3.042) 1.724 (0.833–3.567) 1.788 (1.107–2.888) 2.984 (1.759–5.063) 1.779 (1.187–2.666) 2.883 (1.410–5.893)

Hyperlipidemia
(936)
No 1.000 (reference) 1.180 (0.862–1.616) 1.000 (reference) 0.594 (0.394–0.897) 1.000 (reference) 1.340 (0.976–1.839) 1.000 (reference) 0.821 (0.582–1.159)
Yes 1.311 (0.834–2.059) 1.769 (1.143–2.736) 1.258 (0.894–1.771) 1.555 (0.770–3.140) 1.601 (1.048–2.446) 1.739 (1.107–2.733) 1.270 (0.881–1.832) 1.533 (0.891–2.637)

Smoking (930)
No 1.000 (reference) 1.260 (0.900–1.764) 1.000 (reference) 0.799 (0.517–1.237) 1.000 (reference) 1.261 (0.899–1.769) 1.000 (reference) 0.989 (0.682–1.434)
Yes 1.478 (0.904–2.416) 1.649 (1.033–2.632) 1.216 (0.848–1.743) 0.880 (0.467–1.659) 1.212 (0.766–1.917) 1.946 (1.172–3.229) 1.303 (0.888–1.912) 1.095 (0.654–1.835)

NPRL3, nitrogen permease receptor like-3; MPG, N-methylpurine DNA glycosylase. P-values < 0.05 are shown in bold. The number of each subgroup is located next to each subgroup.
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3.5. Analysis of NPRL3 and MPG Polymorphisms with Respect to Survival in Ischemic Stroke Patients
and Subtypes

Our final analysis investigated the relationships between the NPRL3 and MPG polymorphisms and
survival in ischemic stroke patients (Figure 1, Figure S3). To this end, we performed a Cox proportional
analysis, which showed that the NPRL3 rs2541618 C>T, NPRL3 rs75187722 G>A, MPG rs2562162 C>T,
and MPG rs710079 C>T polymorphisms were not associated with survival in ischemic stroke patients.
However, the MPG rs2562162 CT genotype and dominant model were associated with survival of SVD
patients in the Cox proportional hazard regression models (CC vs. CT and CC vs. CT+TT analyses;
Figure 1A, Figure S3A). Conversely, the MPG rs2562162 CT genotype was not associated with survival
in LAD or CE patients in our analyses (Figure S3B,C).

In addition, we found a significant association between the MPG rs2562162 C>T dominant model
and SVD patients with hypertension using the Cox proportional hazard regression model (CC vs.
CT+TT; Figure 1B). Similarly, the MPG rs710079 CT genotype was associated with survival in stroke
patients with diabetes mellitus using the Cox proportional hazard regression model (CC vs. CT;
Figure 1C), and the NPRL3 rs2541618 C>T dominant model was associated with survival in stroke
patients with hyperlipidemia (CC vs. CT+TT; Figure 1D). Finally, we performed a stepwise Cox
regression analysis to confirm the covariant effects. As a result, we found that the MPG rs2562162
(in SVD patients), MPG rs710079 (with diabetes mellitus), and NPRL3 rs2541618 (with hyperlipidemia)
polymorphisms and age were associated with mortality in stroke patients (Table S8).
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Figure 1. Survival analysis of the small-vessel disease (SVD) in ischemic stroke using the Cox
proportional hazards model, according to the MPG rs2562162 C>T, MPG rs710079 C>T, and NPRL3
rs2541618 C>T polymorphisms. Survival probability of ischemic stroke patients is shown based on (A)
the MPG rs2562162 CC vs. CT+TT dominant model, (B) the MPG rs2562162 CC vs. CT+TT dominant
model with hypertension, (C) the MPG rs2562162 CC vs. CT genotypes, and (D) the NPRL3 rs2541618
CC vs. CT+TT dominant model with hyperlipidemia. Note for Figure 1: HR, hazard ratio.
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3.6. Clinical Factors in Ischemic Stroke Patients, Subtypes Stratified by NPRL3 and MPG Polymorphisms

Using an analysis of variance (ANOVA), we confirmed that the NPRL3 rs75187722 AA genotype
was associated with increased uric acid levels compared to the uric acid levels with the NPRL3
rs75187722 GG genotype (GG vs. GA vs. AA; P = 0.028) in ischemic stroke patients. Furthermore,
the MPG rs256262 CT+TT was associated with increased platelet levels compared to the platelet levels
with the MPG rs256262 CC genotype (CC vs. CT+TT; P = 0.022) in ischemic stroke patients (Table S7).

Subsequently, we performed an ANOVA based on the individual ischemic stroke subgroups.
We found that the NPRL3 rs2541618 CT+TT was associated with increased platelet levels compared
to the platelet levels with the NPRL3 rs2541618 CC genotype in the LAD patients (CC vs. CT+TT;
P = 0.030). Moreover, the NPRL3 rs2541618 CT+TT decreased HDL-c compared to HDL-c with the
NPRL3 rs2541618CC genotype in the LAD patients (CC vs. CT+TT; P = 0.038) (Table S7). With respect
to the SVD patients, the NPRL3 rs2541618 TT genotype increased fibrinogen levels compared to
fibrinogen levels with NPRL3 rs2541618 CC+CT (CC+CT vs. TT; P = 0.034) (Table S7).

4. Discussion

In this study, we sought to determine novel markers with potential use in clinical diagnostics.
To this end, we selected four polymorphisms (NPRL3 rs2541618 C>T, NPRL3 rs75187722 G>A,
MPG rs2562162 C>T, and MPG rs710079 C>T) to investigate with respect to ischemic stroke in a
Korean population.

NPRL3 is a known regulator of mTOR activity that promotes neuronal survival in stroke patients
and is associated with focal epilepsy [39,40]. Importantly, increased mTOR activity accelerates
brain recovery after stroke, and focal epilepsy is associated with the manifestation of ischemic
cerebrovascular disease [29,41]. Consequently, the NPRL3 gene has been previously linked to ischemic
stroke prevalence due to its relationship with cerebrovascular disease. Therefore, we hypothesized
that NPRL3 polymorphisms affect ischemic stroke prevalence and prognosis. In agreement with
our hypothesis, our analyses showed that the NPRL3 rs2541618 C>T and NPRL3 rs75187722 G>A
genotypes were significantly associated with the prevalence of ischemic stroke, and this association
was strengthened when limited to ischemic stroke patients with SVD. Interestingly, the NPRL3
rs2541618 C>T polymorphism was associated with decreased long-term survival after stroke in
patients with hyperlipidemia. Although we did not identify the cause of the high mortality of
stroke patients with the NPRL3 rs2541618 CT+TT dominant model, our analysis did show that the
NPRL3 rs2541618 polymorphism was significantly associated with the rate of ischemic stroke patient
survival. Furthermore, we confirmed that the NPRL3 rs2541618 and rs75187722 polymorphisms were
significantly associated with fibrinogen and uric acid, which are risk factors of ischemic stroke [42,43].

Polymorphisms in MPG and other base-excision repair-related genes due to age-related or oxidative
DNA damage are major contributors to stroke [44–46]. Furthermore, base-excision repair, which is
initiated by the MPG gene, was reported to promote ischemia-reperfusion injury in the brain [47].
These ischemia-reperfusion injuries alter the blood flow restoration at the post-ischemic tissue and
lead to further tissue damage [48]. Therefore, we hypothesized that the MPG gene is associated
with ischemic stroke prevalence and prognosis. In our analyses, we found that the MPG rs2562162
C>T genotype was significantly associated with prevalence of the SVD subtype of ischemic stroke.
Interestingly, the MPG rs2562162 C>T polymorphism was significantly associated with increased
long-term survival of SVD patients with and without hypertension, whereas this same polymorphism
was not associated with mortality in LAD or CE patients. Although we did not identify the cause
of low mortality in SVD patients (with or without hypertension) with the MPG rs2562162 dominant
model, our analysis did show that the MPG rs2562162 polymorphism was significantly associated
with the rate of ischemic stroke patient survival. Furthermore, we confirmed that the MPG rs2562162
dominant model was significantly associated with risk factors related to the SVD subtype of ischemic
stroke, such as platelet levels [49].
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This study has several limitations that must be considered when interpreting our results. First,
it is not yet clear whether the gene polymorphisms predicted the phenotypes related to ischemic
stroke prevalence. Second, we examined a limited pool of patients for our subgroup analyses. Third,
the control group in our study was not completely healthy, as some required medical attention.
Therefore, it is difficult to identify a casual effect for the clinical risk factors examined in these groups.
Additional studies such as the replication study are needed to confirm that the NPRL3 and MPG genes
play a crucial role in ischemic stroke pathogenesis and to provide more evidence that the regulation of
NPRL3 and MPG expression or activation can be used as a tool to prevent ischemic stroke. Although
expression of these genes has not been studied in ischemic stroke, the association between several risk
factors of ischemic stroke, including inflammation activation and these gene polymorphisms, elicited
speculation about the biomarker’s possible usefulness in early diagnosis [50–53]. We hypothesized
that it could be affected by the decision of ischemic stroke diagnosis in the combined high-risk factor
levels and these polymorphisms. Furthermore, the results of a previous genome-wide association
study (GWAS) showed that NPRL3 rs2541618 and MPG rs2562162 were associated with SVD patients
and controls in the European population (Table S10). Therefore, our findings suggest that these
polymorphisms are potential biomarkers to diagnose ischemic stroke and assess risk.

Authors should discuss the results and how they can be interpreted from the perspective of
previous studies and of the working hypotheses. The findings and their implications should be
discussed in the broadest context possible. Future research directions may also be highlighted.

5. Conclusions

In conclusion, we found that the NPRL3 rs2541618 C>T, NPRL3 rs75187722 G>A, and MPG
rs2562162 C>T genotypes were all strongly associated with ischemic stroke prevalence. In a further
analysis, we found that some of these genotypes were associated with different stroke subtypes;
specifically, SVD was associated with NPRL3 rs2541618 TT genotype, NPRL3 rs75187722 GA genotype
and the dominant model, and MPG rs2562162 CT genotypes and dominant model. Finally, we found
that the dominant models of NPRL3 rs2541618, NPRL3 rs75187722, and MPG rs2562162 all showed
synergistic effects with clinical risk factors of the SVD subtype and ischemic stroke, including platelet
level, fibrinogen, hypertension, and diabetes mellitus. Taken together, these results suggest that NPRL3
and MPG polymorphisms play a role in ischemic stroke. Consequently, we identified associations
between the NPRL3 rs2541618 C>T, NPRL3 rs75187722 G>A, and MPG rs2562162 C>T polymorphisms
with the prevalence of ischemic stroke in a Korean population as well as a significant association
between NPRL3 and MPG gene polymorphisms and post-stroke mortality. However, the specific
mechanisms underlying these effects need to be investigated in future research.
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Abbreviation

MPG: N-methylpurine DNA glycosylase; NPRL3: nitrogen permease regulator-like 3; PCR: polymerase chain
reaction; RFLP: restriction fragment length polymorphism; WES: whole-exome sequencing; mTOR: mammalian
target of rapamycin; MRI: magnetic resonance imaging; LAD: large-artery disease; SVD: small-vessel disease; CE:
cardioembolism; MetS: metabolic syndrome; BMI: body mass index; HDL-c: high-density lipoprotein cholesterol;
GVCFs: genomic variant call formats; HWE: Hardy–Weinberg equilibrium; SNP: single-nucleotide polymorphism;
OR: odds ratio; CI: confidence interval; AORs: adjusted ORs; FDR: false discovery rate; MDR: multifactor
dimensionality reduction; GWAS: genome-wide association study; HR: hazard ratio.
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