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Adaptive attention‑based 
human machine interface system 
for teleoperation of industrial 
vehicle
Jouh Yeong Chew*, Mitsuru Kawamoto, Takashi Okuma, Eiichi Yoshida & Norihiko Kato

This study proposes a Human Machine Interface (HMI) system with adaptive visual stimuli to facilitate 
teleoperation of industrial vehicles such as forklifts. The proposed system estimates the context/
work state during teleoperation and presents the optimal visual stimuli on the display of HMI. 
Such adaptability is supported by behavioral models which are developed from behavioral data of 
conventional/manned forklift operation. The proposed system consists of two models, i.e., gaze 
attention and work state transition models which are defined by gaze fixations and operation pattern 
of operators, respectively. In short, the proposed system estimates and shows the optimal visual 
stimuli on the display of HMI based on temporal operation pattern. The usability of teleoperation 
system is evaluated by comparing the perceived workload elicited by different types of HMI. The 
results suggest the adaptive attention-based HMI system outperforms the non-adaptive HMI, where 
the perceived workload is consistently lower as responded by different categories of forklift operators.

Demand for teleoperation systems is increasing due to the emergence of pandemic which essentially changed 
the social behavior and work pattern in daily life. Physical interactions and contacts between humans are dis-
couraged and digitalization of interactions towards remote or online interactions is accelerated. Teleoperation 
system is therefore, getting more attention and interest, where the applications range from telepresence systems1 
in the convenience stores, to teleoperation systems at workplaces, such as teleoperation of heavy machineries 
at construction sites2–4 or industrial vehicles at warehouses5,6. However, transition from physical or manned 
operation to teleoperation is not easy because of issues such as implementation cost, safety, and usability of 
new teleoperation systems. This usability is typically dependent on the visual stimuli shown on the displays of 
Human Machine Interface (HMI). In case of teleoperation HMI for heavy machineries such as cranes2–4, the 
recommended visual stimuli usually cover a relatively small working area around the machine itself. Thus, views 
from an overhead camera covering this working area are consistently recognized as the optimal visual stimuli 
to facilitate teleoperation of cranes. However, these visual stimuli may not be suitable for different applications 
which may have different operation characteristics. For example, some applications require multiple tasks such 
as driving and handling of load. Thus, the attention of operators may need to have multiple perspectives.

To develop an intuitive HMI with good usability for varying applications, one promising approach is to 
present suitable visual stimuli to operators during operation. For this purpose, prior knowledge of operators’ 
attention for these applications is necessary, but it is not easy to achieve and existing studies2–6 provide no indica-
tion on how to identify operator’s attention. For example3, proposed teleoperation HMI based on the attention-
awareness model which consists of three types of views, i.e. “Focused”, “Ambient”, and “Alerting” views. However, 
the methods to identify visual stimuli for these views were not explained. Thus, there is still a barrier to apply 
this model to different applications.

Alternatively, a more common or straightforward approach to develop a teleoperation HMI is to present as 
much visual stimuli as possible. This method provides high awareness for better operation safety, where multiple 
fixed visual stimuli which have large coverage of client’s surrounding environment, are presented on multiple 
displays of HMI5. However, operators can be confused and may face difficulties to find the desired visual stimu-
lus, especially if there are multiple machines in case of single-operator-multi-robot operation. It is also possible 
to develop a teleoperation system using telepresence6, where head motion of the operator is tracked, and the 
optimal view is presented accordingly through the HMD, Essentially, operators can see the environment as if 
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they are present physically. However, this method requires the environment model and sensors to track the 
states of client and host.

We can therefore conclude that the ideal approach is to minimize the number of visual stimuli to be presented 
on the display of HMI while ensuring good operation safety. This study proposes a method to identify attention 
of operators during manned operation of an industrial vehicle, taking the example of forklift. These attentions 
are then used to select and present optimal visual stimuli on teleoperation HMI. Consequently, it is possible to 
minimize visual stimuli presented during teleoperation while ensuring operation safety because the presented 
visual stimuli are expected to be optimal at that instant of work state. As described above, this study intends to 
answer the following research question, i.e. “When to show what visual stimuli to the operator during teleopera-
tion?”. The first contribution of this paper is the extension of the attention-awareness model3,7 to define the three 
types of views as functions of gaze behavior. With these definitions, it is possible to develop intuitive teleoperation 
HMI for different applications based on the same model or approach. The second contribution is the extension 
of the work state transition model8, where given the operation input, the corresponding gaze attention are also 
estimated in addition to the work state.

Objectives and assumptions
This study focuses on developing an intuitive teleoperation HMI based on human behavior observations. Spe-
cifically, the study uses the forklift operation as a case study because the problem is challenging yet remains 
mostly unexplored for teleoperation. Although fully autonomous forklift systems exist, human intervention is 
often necessary to supervise and intervene in the event of accidents or difficult situations. More importantly, 
an intuitive teleoperation system is necessary for semi-autonomous operation like single-operator-multi-robot 
systems, where operation efficiency can be increased by allowing an operator to supervise multiple machines.

Assumptions.  This section explains two assumptions which are the basis of the development of Adaptive 
Visual Stimuli (AVS) for HMI of forklift teleoperation. The adaptability of the proposed system is supported by 
behavioral models which are developed using data from manned forklift operation. Assumption 1 and 2 refers 
to operation pattern and gaze behavior, respectively.

Assumption 1: A forklift operation typically consists of a sequence of basic work states, where each state is 
triggered by unique operation pattern which can be discriminated through analysis of operation input vector, 
defined as a set of input values from the operator.

Assumption 2: At each work state, operators tend to exhibit unique gaze pattern where gaze attention focuses 
on different area of workspace with varying distribution and transition.

Objectives.  Referring to Fig. 1, Di is defined as the ith image frame which presents one of the views acquired 
from the cameras mounted on the forklift. Hereafter, Di is referred to as HMI element. Based on the two assump-
tions in the preceding section, this study aims at developing a novel adaptive attention-based HMI for teleop-
eration of forklift as illustrated in Fig. 1. The Adaptive HMI module selects the optimal visual stimuli for HMI 
elements D1 and D2, where D1 = h1(u, v, C) ∈ {c1, c2, … , cM}, and D2 = h2(u, v, C) ∈ {c1, c2, … , cM}. The operation 
input vector and gaze attention matrix are represented by u and v, respectively. The intrinsic and extrinsic cam-
era parameters such as the focal length, position, and orientation, of the cameras mounted on the forklift are 
represented by C. Essentially, functions h1 and h2 select the optimal visual stimulus for D1 and D2 from a set of 
views acquired from M cameras mounted on the forklift, where ci is the view of the ith camera.

As described above, the following objectives are defined in this study.

•	 To develop behavioral models of manned forklift operation using operation pattern and gaze behavior.
•	 To develop an adaptive HMI for forklift teleoperation.
•	 To evaluate usability of adaptive HMI from the perspective of perceived workload.

Figure 1.   Adaptive attention-based HMI for teleoperation of forklift.
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Acquisition of behavioral data.  This section explains the experiment which was carried out to acquire 
behavioral data of manned forklift operation. The experiment was carried out according to the rules and regula-
tions of National Institute of Advanced Industrial Science and Technology (AIST) of Japan. Informed consents 
were obtained from all human subject participants and the experiment protocol was reviewed and approved 
by the Human Factor experiment committee of AIST. All the subjects have forklift operating licenses, and the 
experiment was participated by 57 subjects from four categories as explained below. The recruitment plan is 
15 subjects/category, but the actual number differs due to recruitment difficulty. However, this does not affect 
behavioral analysis for 3 subject categories.

•	 16 Novice with forklift work experience of < 2 years
•	 23 Intermediate with forklift work experience of ≥ 2 year and < 10 years
•	 17 Expert with forklift work experience of ≥ 10 years
•	 1 Instructor with experience as the instructor of forklift training course

Each subject performed the experiment task in a virtual environment (see Fig. 2) three times after one train-
ing. The task consists of basic forklift operations which are typical in the actual forklift work. The experiment 
was carried out in the virtual environment using the forklift simulator which was developed in the preceding 
study6. We found that subjects exhibited similar operating behavior compared to performing the same task in 
the real environment. Based on the results of6, the same assumption is made in this study.

Assumption 3: The forklift simulator emulates operation behavior when performing the same task in the 
real environment.

Methodology
This section explains the configuration of AVS for teleoperation HMI (see Fig. 3), which consists of work state, 
gaze fixation and camera selection modules. The inputs are operation input vector u and the outputs are optimal 
visual stimuli Yi for i number of adaptive HMI elements Di. First, the configuration of HMI elements is elaborated. 
Then, the development of the work state and gaze fixation models using database of manned forklift operation are 
explained. Next, the method to select the optimal visual stimuli Yi using gaze attention v and camera parameters 
are explained. Lastly, test conditions of the usability test are elaborated.

Configuration of HMI elements.  The HMI consists of several elements as shown in Fig.  4. The basis 
of development is the attention-awareness model3,7, where three types of views, i.e. “Focused”, “Ambient”, and 
“Alerting” views, are shown on the HMI. Compared to the preceding studies3,7 which defined these views intui-
tively, this study extended the method by defining each type of view using gaze attention as illustrated in Fig. 5. 
Specifically, gaze fixations of manned forklift operation are used to select the optimal views for adaptive elements 
Di. This novel approach facilitates implementation of the attention-awareness model to different applications, 

Figure 2.   The experiment task consists of basic forklift operations in a virtual environment such as moving 
forward, backward, approach shelf, loading and unloading.

Figure 3.   Configuration of the adaptive attention-based teleoperation HMI.
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where definition of these views can be determined empirically. This study mainly evaluates the usability of adap-
tive views defined by gaze attention, and the layout of these elements are not evaluated.

Referring to Fig. 5, each type of view is represented by HMI elements in Fig. 4 (see Appendix A for details 
such as sizes and positions of each HMI element).

•	 Ambient view is represented by non-adaptive HMI element D3
	   D3 shows the views from all cameras mounted on the forklift for operation awareness and safety (see 

Appendix B for camera positions and orientations for a1 to a8). Supplementary information such as tire 
direction and tilt status of the fork are also presented by a9 and a10, respectively.

•	 Focused view is represented by adaptive HMI elements D1, D2
	   D1, D2 are expected to present optimal visual stimuli to the operators so that teleoperation can be per-

formed without having to “search” the HMI. In principle, operators are expected to focus mainly on D1, D2 
if the proposed system is easy-to-use.

•	 Alerting view is represented by adaptive HMI element D4

Figure 4.   The HMI consists of multiple elements D1 to D4 implemented on a 27-inch display with 1920 × 1080 
resolution (see Appendix B for the details of cameras mounted on the forklift which provide the views for UI 
elements a1 to a8).

Figure 5.   The HMI elements are developed according to the attention-awareness model3,7, but the method is 
extended by defining adaptive views emprically using gaze fixations of manned operation.
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D4 is an adaptive view which appears only for complex operations. Referring to Fig. 6, these operations are 
cargo handling at work states ⑤ and ⑫, and reversing the forklift at work states ⑥, ⑦, ⑬, and ⑭. These opera-
tions are defined as complex because they require multiple salient attention.

For an ideal adaptive attention-based teleoperation system, operator is expected to focus on adaptive HMI 
elements D1, D2, and D4, where the optimal views are defined by outputs of camera selection method Y1, Y2, 
and Y3, respectively.

Work state transition.  From this section onwards, the method of computing the optimal visual stimuli Y1, 
Y2, and Y3 for HMI elements is elaborated. The adaptability of the HMI is supported by the ability of the system 
to recognize basic work states of forklift operation. In this case, the operation task defined in Fig. 2 is segmented 
into 14 basic work states which are typical of any forklift operations (see Fig. 6 which illustrates a cycle of basic 
work states). This approach is adapted from the preceding study8 which recognizes 6 basic work states. In the 
current study, the model is expanded to recognize 14 basic work states, thus enabling the model to recognize 
typical forklift work using higher resolution.

In Fig. 3, input of the work state model is the operation input vector u = (ain, θty, Lin, Rin, Tin). Each dimension 
of u is a normalized voltage value measured from the potentiometer of the forklift’s operation levers. The first ele-
ment ain represents input from the acceleration lever which implicitly represent the linear velocity of the forklift’s 
drive wheel. The angle of this drive wheel is given by the second element θty. The other three elements Lin, Rin, 
and Tin, represent inputs from the handling levers which control lift, reach and tilt of the forklift, respectively.

The output of work state model is work state s ∈ [1,14]. This model assumes the typical work state cycle in 
Fig. 6 and determines the probability of transition from work state at time t to t + 1 using parameters of u and 
its corresponding Gaussian Mixture Model (GMM). This process is illustrated in Fig. 7, where the first step uses 
data of manned forklift operation to train a GMM, and the parameters are used in the second step to determine 
work state transition using u of teleoperation.

Given Xt ∈ [1,14], the probability of transition from work state at time t to t + 1 is given by (1) and (2), where 
fj→k is the transition condition from work state at time t to t + 1. Thus, given the initial work state Xt=0 = 1 for a 
typical forklift operation cycle, the work state transition can be estimated sequentially by checking ut at every 
sampling instant t during teleoperation.

Gaze attention.  The optimal visual stimuli for each work state are selected by referring to operators’ gaze 
attention during manned forklift operation as in Assumption 2. In the preceding study9, spatial analysis of point 
pattern was used to evaluate differences of gaze fixation pattern between different categories of operators and 
between different work states. The results suggest that major gaze fixations of different categories of operators at 
each work state are similar, and the common gaze fixations at each work state for these operators can be modeled 
by hierarchical clustering of their gaze fixations. More importantly, the common gaze fixations at each work state 
are representative of gaze fixations of all categories of operators as evaluated by their significant spatial correla-
tions. However, the results show spatial independence between common gaze fixations for different work states 
especially for those after loading due to view occlusions by the cargo.

Therefore, the results of spatial analysis from the preceding study9 led to Assumption 2, and the common 
gaze attention v for work state s is defined by (3), which is a set of gaze points g ∈ ℝ3 and Ni is the number of 
gaze points for the ith work state.

(1)P
(

Xt+1 = k|Xt = j
)

= pjk

(2)pjk = fj→k(ut), pjk ∈ {0, 1}

Figure 6.   A typical forklift operation consists of a sequence of basic work states, where a comple cycle consists 
of 14 states.
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The analysis of operators’ gaze fixations is based on the concept of foveal and peripheral vision9,10. It is note-
worthy that visual recognition of human is not limited to the gaze fixation point itself. Instead, human recognize 
the fovea and parafovea vision areas which are the surrounding area of a fixation point. Thus, this spherical-like 
visual recognition area can be well-represented using the clustering approach. The analytic approach for gaze 
attention is summarized in Fig. 8. The analysis mainly focuses on clustering gaze fixation points because this 
stationary gaze pattern is more relevant to information processing and decision making.

In Fig. 8, gaze positions of each category of operators are first discriminated into fixations and saccades for 
each work state. Then, gaze fixations are clustered into several clusters using K-means clustering. The optimal 
K is selected using the silhouette plot9,11 and the elbow method9,12. The first and second steps are carried out 
for each category of operators at each work state. For the adaptive teleoperation HMI easy-to-use for different 
category of operators, the similarity of gaze fixations between different category of operators is evaluated using 
hierarchical clustering in the third step. The common gaze fixations between different category of operators are 
denoted as g in (3), where Ni denotes the number of common gaze fixations for the ith work state.

Selection of adaptive visual stimuli.  This section explains the method for finding the optimal visual 
stimuli Y1, Y2, and Y3, for adaptive HMI elements, where Y1, Y2, Y3 ∈ {c1, c2, … , cM} and ci is the view from the ith 
camera mounted on the forklift. In this study, M = 8 and the positions of each camera are illustrated in Appendix 
B. To select the optimal visual stimuli, camera coverage of a set of gaze fixation points v(s) is computed based 
on13. The model of a camera is given by C = (Xc, Yc, Zc, P, T, ccdw, ccdh, f), where (Xc, Yc, Zc) is the position of the 
camera’s optical center, (P,T) is the yaw and pitch angles, and (ccdw, ccdh, f) is width, height, and focal length of 
the imaging plane. The concept is to evaluate the visibility of a fixation point on a camera’s image plane as in (4) 
and (5). Given a gaze fixation point g(xg, yg, zg), its projection on the imaging plane (x,y) of a camera positioned 
at (Xc, Yc, Zc), with yaw and pitch angles (P,T) is defined by (4). The focal length and scale factor are represented 
by f and λ, respectively. The visibility of g on the image plane (x,y) can be computed by (5) (see Fig. 9).
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Figure 7.   Work state estimation approach consists of training and testing of the GMM model, and using the 
parameters as transition conditions.
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Based on (4) and (5), camera coverage of all gaze fixations for each work state can be computed as illustrated 

in Fig. 9. Equation (6) computes camera coverage Yi for the ith camera for Nk gaze fixations at the kth work state. 
Intuitively, Yi is simply a measure of how many gaze fixations are seen by the ith camera. Thus, the highest and 
second highest Yi are assigned to D1 and D2, respectively, as the “Focused” views. The third highest Yi is assigned 
to D4 as the “Alerting” view.
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Figure 8.   Gaze analysis approach to find common gaze attention (fixations) of operators from different 
categories.

Figure 9.   Illustration of camera coverage of gaze fixations at a work state.
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Usability test.  A usability test is carried out to test the proposed adaptive teleoperation HMI described in 
the preceding sections. The proposed system is benchmarked with two other teleoperation HMIs. All the three 
teleoperation HMIs are briefly described below (the main difference is the visual stimuli presented on HMI ele-
ments D1 and D2 as illustrated in Fig. 1).

•	 UI1: Visual stimuli presented on D1, D2 are non-adaptive, i.e. fixed visual stimuli are presented like typical 
teleoperation HMI

•	 UI2: AVS are presented on D1, D2, but the method of selecting AVS is different from Fig. 9. Instead of using 
camera coverage map, AVS for D1 and D2 use only the two most frequently used gaze fixations at each work 
state (see Fig. 10)

•	 UI3: As described in the preceding sections (see Fig. 9)

This usability test is participated by two groups of new subjects, i.e. 14 Expert and 15 Beginner of manned 
forklift operation. They performed the task specified in Fig. 2 repeatedly in a pre-defined sequence to reduce 
effect of adaptation/learning. Instead of using across-subjects counterbalancing, this study uses within-subject 
counterbalancing to minimize the order effect14. Each subject carried out one training using UI3, followed by 
six tests in the following sequence (UI2 → UI1 → UI3 → UI3 → UI1 → UI2). Each UI is presented more than 
once but equally often for every subject in the opposite sequence. Therefore, the progressive error due to order 
effect can be cancelled/averaged out for every subject. The preference for within-subject counterbalancing is due 
to the difficulties of presenting the many possible orders equally and randomly to every subject. This method 
also averages out the adaptation to forklift teleoperation arising from repeated trials. After each test, subjects 
answered the NASA-Task Load Index (NASA-TLX) questionnaire and made pairwise comparison between the 
latest test and the test which was perceived to be the best.

Results
During the usability test, each HMI was tested twice, and subjects were interviewed and asked to select the better 
HMI for teleoperation. The results of this interview are cross-checked with the operation time and perceived 
workload induced by each HMI. The preferred HMI is expected to complete the operation task in the shortest 
duration, and induce the lowest perceived workload (i.e. lowest NASA-TLX score).

User feedback.  Subjects were interviewed after each test, where they indicated their preference by compar-
ing the most preferred HMI with the latest test which they have just performed. For example, the first compari-
son is made between Training and Test1, then the preferred HMI is used for comparison with Test2. This contin-
ued until the completion of Test6, where the preferred HMI is defined as the one which is perceived as the best 
for teleoperation of forklift. Table 1 shows the results of interview, where 2 Expert and 1 Beginner perceived UI1 

Figure 10.   Illustration of the differences between HMI candidates for the usability test.
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and UI3 to be similar. The overall and categorial results for Expert and Beginner indicate that subjects perceived 
UI3 to be the best (62.5% to 68.8%), followed by UI1 (31.3%) and UI2 (0.0% to 6.3%). The result of the interview 
is consistent across different categories of subjects.

Operation time.  The average operation time for each HMI is summarized in Fig. 11, where each boxplot 
summarizes the mean, median, 25th and 75th percentile of this response. Comparisons are made between UI1, 
UI2, and UI3 for different category of subjects, where subjects consistently completed the task in the shortest 
time using UI3, followed by UI1 and UI2. This result is consistent with the feedback of interview where most 
subjects perceived UI3 and UI2, as the most preferred and least preferred HMI for teleoperation, respectively. In 
other words, the preference of subjects from the interview is likely to be dependent on the time spent on com-
pleting the task. The operation time differences between UI1, UI2, and UI3, are generally statistically significant 
(p < 0.05) as in Table 2. The Shapiro–Wilk normality test is used to test the normality of the response data prior 
to selecting either the parametric or nonparametric tests to test the differences between dependent samples.

In this study, the former and latter refers to the paired t-test and the Wilcoxon Signed Rank test, respectively. 
The nonparametric test is used when the null hypothesis of Shapiro–Wilk normality test is rejected at p < 0.05. 
This means the null hypothesis which assumes the distribution of data as normally distributed is rejected. 
Additional analyses data such as the skewness of the distribution of data can be found in Appendix C. Due to 
the presence of outliers as indicated by boxplots in Fig. 11, the response data are generally skewed. Therefore, 

Table 1.   Subjective perception of HMI.

All (n = 29)
Expert 
(n = 14)

Beginner 
(n = 15)

n % n % n %

UI1 10 31.3 5 31.3 5 31.3

UI2 1 3.1 0 0.0 1 6.3

UI3 21 65.6 11 68.8 10 62.5

Total 32 100.0 16 100.0 16 100.0

Figure 11.   Operation time of each HMI.
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statistical significance of the differences of operation time between different HMIs is mostly tested using the 
Wilcoxon Signed Rank test which is more robust to outliers. It is also noteworthy that test results using either 
the parametric or nonparametric tests are almost consistent, except for Beginner.

Perceived workload.  The results of perceived workload (NASA-TLX) are also consistent with the results of 
subjective preference in Table 1, where UI3 is preferred regardless of the category/skills of subjects, The results 
of NASA-TLX for operators performing the task using different HMI is summarized in Table 3 and Fig. 12. The 
perceived workload is consistently the lowest for UI3, followed by UI1, and UI2. This means the preference of 
subjects is also influenced by the perceived workload when using different HMIs for teleoperation. In other 
words, the subjective preference of subjects is likely to be influenced by operation time and perceived work-
load, where the responses are consistent with each other. Table 3 shows the statistical tests for the differences of 
NASA-TLX for different HMIs. The test is carried out like the preceding section by checking the normality of 
the response data prior to selecting either the paired t-test or Wilcoxon Signed Rank test. Results indicate the 
differences of NASA-TLX are also generally statistically significant (p < 0.05) except for Beginner (see Appendix 
C for the complete test result).

Discussions
Factors of NASA‑TLX.  The weighted NASA-TLX15 is used to evaluate the workload of subjects so that the 
factors which are relevant to the experiment task can be evaluated. There are six factors, i.e. Mental, Physical, 
Time Pressure, Performance, Effort and Frustration, and they are weighted using pairwise comparisons between 
each other. In total, subjects made 15 pairwise comparisons and the resulting scoring are used as weights to 
compute the weighted NASA-TLX. The breakdown of weighted NASA-TLX responses for six factors is summa-
rized in Fig. 13, and analyses results of normality tests and dependent sample tests are tabulated in Appendix C.

Except for the factors Physical and Time Pressure, every factor exhibits similar scoring pattern in all cases, i.e. 
the score is the lowest for UI3, followed by UI1, and UI2. The differences of responses between UIs are generally 
statistically significant (p < 0.05) as indicated in Fig. 13a. This means, subjects perceived UI3 is better than UI1 
and UI2 in the following aspects (factors), i.e. Mental, Performance, Effort and Frustration. This perception is 
consistent with the significantly lower operation time as indicated in Fig. 11. For factors Physical and Time Pres-
sure, the scoring pattern is inconsistent and mostly statistically insignificant compared to other factors, especially 
for Beginners. This is maybe because these two factors are less related to the task which requires insignificant 
physical movement, and the task had no time limit. The more evident inconsistency for Beginners is reasonable 
since Beginners usually exhibit higher variances. For example, previous studies have indicated responses of 
novice swimmers16 and crane operators17, consist of higher standard deviations.

Table 2.   Statistical analyses for operation time.

Operation time (s)

All (n = 29) Expert (n = 14) Beginner (n = 15)

UI1 versus 
UI2

UI1 versus 
UI3

UI2 versus 
UI3

UI1 versus 
UI2

UI1 versus 
UI3

UI2 versus 
UI3

UI1 versus 
UI2

UI1 versus 
UI3 UI2 versus UI3

Shapiro–Wilk 
(p > 0.05)

p value 0.0009 0.0265 0.0005 0.1564 0.0423 0.1035 0.0155 0.0116 0.0169

Normality 0 0 0 1 0 1 0 0 0

Paired t-test
t-stat  − 3.2145 3.8466 4.4476  − 3.0663 4.6534 5.9470  − 2.0283 1.6602 2.3177

p value 0.0033 0.0006 0.0001 0.0090 0.0005 0.0000 0.0620 0.1191 0.0361

Wilcoxon 
signed rank

z-value  − 3.2975 3.4489 3.9895  − 2.8759 3.8419 3.8419  − 2.0409 1.9160 2.4991

p value 0.0010 0.0006 0.0001 0.0040 0.0001 0.0001 0.0413 0.0554 0.0125

Statistical significance 1 1 1 1 1 1 1 0 1

Table 3.   Statistical analyses for perceived workload (NASA-TLX).

Perceived workload 
(NASA-TLX)

All (n = 29) Expert (n = 14) Beginner (n = 15)

UI1 versus 
UI2

UI1 versus 
UI3

UI2 versus 
UI3

UI1 versus 
UI2

UI1 versus 
UI3

UI2 versus 
UI3

UI1 versus 
UI2

UI1 versus 
UI3 UI2 versus UI3

Shapiro–Wilk 
(p > 0.05)

p value 0.0600 0.5355 0.0311 0.0951 0.6790 0.1714 0.3722 0.2855 0.0535

Normality 1 1 0 1 1 1 1 1 1

Paired t-test
t-stat  − 4.0252 2.8599 5.3598  − 4.0222 2.0679 4.5831  − 1.9011 1.9109 3.0994

p value 0.0004 0.0079 0.0000 0.0015 0.0592 0.0005 0.0781 0.0767 0.0078

Wilcoxon 
signed rank

z-value  − 3.3516 2.9194 4.1843  − 3.3345 2.3214 3.8419  − 1.6735 1.9781 2.4306

p value 0.0008 0.0035 0.0000 0.0009 0.0195 0.0001 0.0942 0.0498 0.0157

Statistical significance 1 1 1 1 0 1 0 0 1
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Apart from the inconsistency for factors Physical and Time Pressure, responses of Expert and Beginner for 
other factors are consistent as shown in Fig. 13b,c. However, responses of Expert are lower than that of Begin-
ner for these factors, specifically for UI3 which is perceived to be the best for teleoperation. This is reasonable 
considering that subjects of the Expert category are more likely to quickly adapt to teleoperation, so the workload 
tends to be lower across the different NASA-TLX factors. However, the results suggest this is true only for UI3 
which is perceived to be the best for remote operation. On the contrary, UI2 which is perceived to be the worst 
for teleoperation, prompted Expert to score higher than Beginner for factors such as Mental, Effort, and Frus-
tration. This maybe because Expert subjects may find UI2 more difficult to use because they have at least some 
expectations on the optimal visual stimuli due to their prior knowledge. Inappropriate visual stimuli presented 
by UI2 may therefore prompt Expert subjects to score higher compared to Beginner subjects who have relatively 
less prior knowledge.

Fixed versus adaptive visual stimuli.  Referring to Fig. 13, the Physical factor is consistently the largest 
for UI1 compared to UI2 and UI3. This response is different compared to the other factors which consistently 
show UI2 as the largest. This means subjects perceived HMIs with AVS (i.e. UI2, UI3) to require lower physical 
load compared to HMI with fixed visual stimuli HMI (i.e. UI1). This seems to be reasonable considering that 
subjects do not need to frequently move the eyes and heads to search for optimal visual stimuli, which will be 
automatically shown on adaptive HMI elements for UI2 and UI3. In other words, teleoperation HMI with AVS 
reduces the burden of subjects by providing optimal visual stimuli at each work state on predefined HMI ele-
ments. This makes the adaptive HMI system to be better than the fixed information HMI system, where subjects 
need to think and search for the optimal visual stimuli.

The preference for AVS for teleoperation system can be traced to the trend in manned operation systems. 
Increasing sensing capability using wide angle cameras like fisheye18 and omnidirectional19 cameras provide 
rich visual information to operators so that it is no longer necessary to search for the desired visual informa-
tion. Coupled with the improvement in computing power and cutting-edge algorithms for computer vision and 
machine learning, rich visual information can be processed quickly to facilitate operations of autonomous or 
manned systems. Therefore, in the case of semi-autonomous operations, it is important to have a support system 
to present the optimal visual stimuli at the appropriate timing, especially for teleoperation of multiple vehicles.

The proposed AVS is promising for such purpose because it is developed based on behavioral data of human 
operators. The advantage of biological intelligence was discussed by20. Compared to related studies on AVS,21,22 
proposed using views of autonomous monitoring robots for teleoperation,23 proposed using real-time manipu-
lation of camera, and24 proposed real-time 3D reconstruction of environment. Therefore, the proposed system 
based on behavioral data of human operators is advantageous because it does not require additional supporting 

Figure 12.   NASA-TLX (workload) of each HMI.
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systems like monitoring robots or camera manipulation system, or real-time 3D reconstruction of the environ-
ment that requires high computing power.

Responses of expert versus beginner.  It is noteworthy that both Expert and Beginner subjects exhibit 
consistent responses which indicate UI3 is relatively the best HMI for teleoperation of forklift. This suggests 
that UI3 is easy to use for both category of subjects. This similarity of responses maybe because both Expert and 
Beginner for manned forklift operation are novices for teleoperation.

Referring to Fig. 11, Experts tend to complete the task in shorter duration compared to Beginners, which 
is consistent for every HMI. The corresponding perceived workload NASA-TLX is shown in Fig. 12, and both 
illustrate the same pattern. Specifically, Experts exhibit lower perceived workload compared to Beginners. The 
results suggest shorter operation time translates into lower perceived workload, and the vice versa. Normality 
tests have indicated the distribution of operation time and perceived workload is skewed and normal, respectively. 
Therefore, the Mann–Whitney U-test (Wilcoxon rank sum test) and the two samples t-test are used to analyze 
the differences of operation time and perceived workload, respectively. The results are tabulated in Table 4.

The differences between Experts and Beginners are statistically significant at p < 0.05 for UI3, for both opera-
tion time and perceived workload. For UI2, both the differences are not statistically significant, and for UI1, only 
the difference of perceived workload is statistically significant. The result is reasonable considering that UI3 is 
the most preferred UI that facilitates teleoperation of forklift. In case of UI1 and UI2, the responses have higher 
variances since non-optimal visual stimuli were presented during the experiment. This means, given optimal 
visual stimuli at the appropriate timing like the case of UI3, statistically significant lower operation time and 
perceived workload can be achieved for forklift teleoperation using the proposed AVS4UI.

Conclusions
The proposed adaptive attention-based HMI system addresses a critical issue in transitions from manned to 
teleoperation system. Human behavior models are used to bridge the gap between these two types of systems, 
where optimal visual stimuli are determined empirically rather than intuitively. Thus, it is possible to generalize 

Figure 13.   Weighted NASA-TLX responses for (a) all subjects, (b) experts, and (c) beginners.
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this approach to develop teleoperation systems for different applications. Implementation of the proposed system 
in the simulation environment showed promising results, where the perceived workload is lower than that of 
non-adaptive HMI system. More importantly, the response is consistent for different category of operators which 
suggests the adaptive HMI system is easy-to-use.

However, it is noteworthy that humans are to be capable of understanding the current environment and 
acquire the desired visual stimuli in advance. This predictive ability is not yet embedded in the current system. 
As the future work, it is desirable to incorporate such predictive function and to implement the proposed system 
in the physical environment.
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