
Detecting Protein Candidate Fragments Using a
Structural Alphabet Profile Comparison Approach
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Abstract

Predicting accurate fragments from sequence has recently become a critical step for protein structure modeling, as protein
fragment assembly techniques are presently among the most efficient approaches for de novo prediction. A key step in
these approaches is, given the sequence of a protein to model, the identification of relevant fragments - candidate
fragments - from a collection of the available 3D structures. These fragments can then be assembled to produce a model of
the complete structure of the protein of interest. The search for candidate fragments is classically achieved by considering
local sequence similarity using profile comparison, or threading approaches. In the present study, we introduce a new
profile comparison approach that, instead of using amino acid profiles, is based on the use of predicted structural alphabet
profiles, where structural alphabet profiles contain information related to the 3D local shapes associated with the
sequences. We show that structural alphabet profile-profile comparison can be used efficiently to retrieve accurate
structural fragments, and we introduce a fully new protocol for the detection of candidate fragments. It identifies fragments
specific of each position of the sequence and of size varying between 6 and 27 amino-acids. We find it outperforms present
state of the art approaches in terms (i) of the accuracy of the fragments identified, (ii) the rate of true positives identified,
while having a high coverage score. We illustrate the relevance of the approach on complete target sets of the two previous
Critical Assessment of Techniques for Protein Structure Prediction (CASP) rounds 9 and 10. A web server for the approach is
freely available at http://bioserv.rpbs.univ-paris-diderot.fr/SAFrag.
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Introduction

Due to the large number of available protein structures and

progress in remote homology detection, protein structure model-

ing is progressively focusing on smaller and smaller parts of protein

structure [1]. Indeed, it has been suggested since several years that

the diversity of the available structures may be sufficient to identify

relevant templates for most of protein domains [2], and

concomitantly, the number of new folds discovered has been

decreasing constantly [3]. Protein fold identification being solved

in most cases, fold adaptation under sequence divergence results

however in local conformational modifications. Small or medium

variations still remain to be addressed, in particular small

variations in loops, or large insertion-deletions, as for instance

recently illustrated in [4].

The search for short candidate fragments matching a sequence

has been tackled within different contexts. Firstly there is interest

in analyzing the structure/sequence relationship at the local level,

as pioneered by Rooman and Wodak in the early 909s[5]. Many

studies have focused on identifying recurring patterns in protein

structures, including among others, works related to structural

alphabets (SA), fragment classification and many others [6–10].

Secondly, recurring sequence patterns have also been shown to

correspond to conserved functional motifs [11–13], or conserved

local structures, as demonstrated by the I-Sites of Bystroff and

Baker [14,15], again a motivation for many further studies.

Finally, protein domains too divergent in sequence can remain out

of the scope of homology modeling techniques, and it is interesting

that progress in de novo modeling has also come from fragment

assembly techniques - see for instance [16,17], i.e. again

considering the local conformation level. Hence, fragment

identification has become a key step for both protein structure

analysis, annotation and modeling.

The identification of candidate fragments starts from a given

amino acid sequence. Different strategies have been described,

considering fragments of fixed or variable length, considering gaps

or not. I-sites [15] then nnmake [18] search for fragments of fixed

length having a strong correlation between sequence and

conformation so as to constrain the sampling of the conforma-

tional space to generate models. Approaches such as FRAGFOLD

[19], TASSER [20], I-Tasser [21] or HHfrag [22] look instead for

position-specific structural fragments. Profile comparison ap-

proaches have proven valuable to drive fragment identification.

For instance, to identify fragments of variable lengths, HHfrag

relies on the hhsearch Hidden Markov Model (HMM) profile

comparison approach [23] - accepting gaps - adapted to short

segments. Very recently, Xu et al. [24] have reported a gapless

approach combining secondary structure, solvent accessibility, phi-

psi angle prediction together with amino acid profiles derived from

similar fragments from the PDB [25]. In the present study, we

introduce a new approach to the detection of candidate structural
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fragments from the amino acid sequence. It is designed to search

for candidate fragments of variable length at any position in the

sequence. A major difference with former approaches that usually

make use of enriched amino acid profiles, is that the search is

based on predicted structural alphabet profiles.

A structural alphabet can be seen as a generalized secondary

structure description allowing to label more accurately local

conformations in the structures. Here, we use a Hidden Markov

Model derived structural alphabet of 27 states - or structural

alphabet letters - that describes the proteins as series of

overlapping fragments of 4 amino acid length [7]. The HMM

model consists in multivariate gaussians describing the specific

geometry of each letter and the transition matrix associated with

the Markovian process. Given such model and a protein structure,

classical HMM techniques can infer the optimal states at each

position, which allows to translate the 3D coordinates of a

structure of L amino acids as a series of L{3 letters of the

structural alphabet. Starting from an amino acid sequence turns

into a prediction problem. Using a machine learning approach, we

have previously setup an approach that predicts the probabilities

of the structural alphabet states from an amino acid sequence.

Given a sequence, it returns, for each fragment of 4 amino acid

length in the sequence, the probabilities that it is associated with

each of the structural alphabet states. Thus, given a sequence of

size L, it returns a series of L{3 profiles of dimension 27, which

we call here the predicted structural alphabet profile. In previous studies,

we have shown such prediction can be used to enhance protein

domain fold attribution from sequence compared to other

approaches using features derived from amino acid profiles [26].

We have also designed PEP-FOLD, a de novo approach to peptide

modeling [27] based on such prediction. PEP-FOLD selects, at

each position in a peptide sequence, the n-best letters - 8 in the

current version, so as to limit the sampling of the local

conformational space to perform the 3D assembly. PEP-FOLD

results have shown that the truncated profiles are efficient to grab

information about the local structure. Here, we turn to the full -

not truncated - comparison of the predicted structural alphabet

profiles of dimension 27. We investigate how profile comparison

can be applied to the search for candidate structural fragments.

We introduce a new approach based on such profile comparison.

We find it outperforms state of the art profile-profile approach

such as HHfrag [22] in terms of specificity and precision, while

reaching a coverage of the targets close to 90%.

Results

We have developed a new protocol to identify candidate

structural fragments given the amino acid sequence of a query. At

each position of the sequence, it searches for candidate structural

fragments of variable length by mining a bank of structures. The

search is performed for each query sub-sequences of size between

6 and 27 amino acids, presently using a brute force strategy: for

each sub-sequence, a systematic scan of all proteins in the bank is

performed, sliding the sub-sequence at each position of each

protein, not allowing gap, and scoring the similarity. The scoring is

based on the comparison of the structural alphabet profile of the

sub-sequence with that of the protein scanned, using the Jensen

Shannon divergence. A flowchart of the complete approach is

presented Figure 1. It consists in three steps. The first one is the

generation of a structural alphabet profile given a query sequence.

The second one is the systematic search for matches mining a

collection of pre-generated profiles for proteins of known structure,

and the identification of hits, i.e. matches having a score better

than a given value. Since the number of hits is potentially very

large, several mechanisms have been implemented to limit their

number (see methods). The most important consists in the

clustering of the hits to identify the most relevant candidate

fragments. Also, since we consider various fragment size at each

position, it is possible that nested matches are identified.

Consequently, the third step performs some redundancy elimina-

tion over the hits of different sizes collected. The underlying

strategy of this last step is to sort the matches according to their

expected precision, and to favor hits having the best expected

precision, while preserving protein coverage by accurate fragments

(see methods).

Low profile-profile distances to identify similar fragments
We first assess the effectiveness of the profile-profile scoring to

identify candidate fragments. The profiles correspond to the

predicted probabilities that the sequence of each fragment of 4

amino acids adopts one of the conformations of the structural

alphabet. The distance between two profiles is measured using the

maximum Jensen Shannon (MJS) criterion (see methods). Low

alpha carbon RMD deviation (cRMSD) matches are expected to

have low MJS values.

Figure 2 shows the distribution of the a-carbon RMSD

(cRMSD) as a function of the MJS for two fragments of eleven

amino acids adopting helical conformation - CASP9 target T0516,

PDB entry 3no6, fragment 143–153, and a beta hairpin

conformation - CASP9 target T0518, PDB entry 3nmb, residues

84–94. The plots depict the complete distribution of the MJS and

cRMSD values obtained over the complete PDB25 dataset, i.e.

over 637 000 comparisons. For sake of clarity, only the iso

contours of the densities are plotted, except for the regions of low

MJS and low cRMSD - areas surrounded by a rectangle - for

which the individual dots are plotted.

A first observation is the apparent difference between the

distributions. Three regions of stronger densities are observed for

the helical fragment and only one for the beta hairpin. In fact the

two plots are consistent. Firstly and non surprisingly, in both cases,

the areas with the strongest densities occur for simultaneously large

cRMSD and MJS values (yellow to purple areas) and correspond

to irrelevant matches. For the alpha helical fragment, an

additional area of strong density is observed for cRMSD close to

2Å. It corresponds to the alpha helices of the dataset, the 2Å

deviation coming from the non helical C-terminus of the query.

The third region observed for cRMSD close to 1Å corresponds to

the true hits. Its absence for the beta hairpin is only apparent and

results from a threshold effect in the iso contours, as can be seen

looking at individual dots in the regions of low MJS and low

cRMSD. Compared to a helical fragment, fewer hits are expected

for a beta hairpin because the larger conformational stability of a

helical fragment compared to that of a beta hairpin makes the

expected number of very low cRMSD fragments larger for helical

conformations. Thus, for both cases, low MJS values are

associated with low cRMSDs, which implies the predicted profiles

can lead to the identification of relevant fragments.

A second observation is that a rather large range of MJS values

can be associated with low cRMSDs. For instance, for the beta

hairpin, fragments having a cRMSD less than 2Å have MJS
values between 0.1 and 0.9. Figure 2-Bottom depicts the

relationship between the cRMSD and the MJS collected for

close to 800 fragments of eleven amino acids. It contains over 500

000 dots. A similar behavior is observed. One such example of

profile mismatch for low cRMSD is detailled Figure 3. One

fragment (PDB 3h3lA: 75–85) (bottom) has a profile very similar to

that of the query (PDB 3nmb:84–94) (top) - distance of 0.11, and

the conformations are very close - cRMSD of 0.44Å. For another

Protein Candidate Fragment Identification
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fragment (PDB 1xauA: 95–105) (middle) the profile differs on its

C-terminus end. Particularly, at the penultimate position, the large

frequency for letter L is superseded by a large frequency for the

letter S, and the profile distance at this position is of 0.77 for a

cRMSD of 0.72Å. We have investigated more in detail the reasons

why such large panel of MJS values are associated with lows

cRMSDs and we have found several reasons can explain it. Firstly,

the distance criterion presently in use measures the similarity by

pairing the probabilities of identical local conformations. It does

not consider the possibility for equivalences between non identical

conformations, which is over restrictive. Indeed, the analysis of

collections of structural alignments has shown some equivalences

between the structural alphabet letters exist, an observation that

has been used to derive structural alphabets similarity matrices

used for structural alignment techniques [28,29]. Consequently,

some part of the divergence between profiles can be attributed to

such equivalence between similar 3D shapes. It turns however that

considering such equivalences in the distance between profiles

Figure 1. The SA-Frag protocol. A: Structural alphabet profile prediction from amino acid sequence. B1: Fragment search using profile
comparison against a bank of predicted profiles. B2: Clustering to discard spurious matches. C: Hit redundancy elimination.
doi:10.1371/journal.pone.0080493.g001
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Figure 2. Relationship between the alpha carbon RMSD (cRMSD) and the profile similarity score (MJS). Top: PDB entry 3no6, residues
143–153. Middle: PDB entry 3nmb, residues 84–94. The fragments are matched against all the fragments of size 11 amino acids of the PDB25 set.
Bottom: Values collected for 799 fragments of eleven amino acids and of different conformations are depicted. Over 500 000 pairs are depicted. Iso
contour representation is used, except for the areas of low cRMSD and low MJS - surrounded by a rectangle - for which individual dots are depicted.
doi:10.1371/journal.pone.0080493.g002
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adds some complexity and it remains the subject for further work.

Secondly, it is possible that differences in profiles are the result of

errors in the prediction, even if our previous analyses related to the

3D de novo modeling of peptides [27] suggest full misprediction of

the local conformation is only marginal. A third explanation is that

the cRMSD criterion itself can be misleading [30]. Low cRMSD

fragments can include local deformations that will correspond to

different local conformations as assigned by the structural

alphabet. Thus for fragments of low cRMSDs, it is possible that

a correct prediction can lead to large MJS values.

Since it is hard to assess the exact amount of cases that could be

attributed to each of the aforementioned explanations for having

fragments of low cRMSDs but large MJS values, the sensitivity of

a procedure using the MJS to identify candidate fragments is

necessarily underestimated. However, it is important to note a

possibly weak sensitivity is not necessarily too penalizing. Firstly, it

can be compensated by the very large number of comparisons

achieved mining large collections of structures for different

fragment sizes. Secondly, the main objective of the approach is

to reach a good specificity, i.e. identify fragments that are accurate

and reject inaccurate ones, so as to propose correct fragments for

3D modeling. Interestingly, as depicted Figure 4, a clear

relationship exists between the MJS value and the precision of

the fragments collected. In practice, for each fragment size, we

have used the MJS value for which the precision is of 0.95 as the

threshold to identify hits.

Clustering as a mean to infer an expected precision
We now consider a second important condition for efficient

structural fragment identification. The approach should return as

few erroneous fragments as possible, where erroneous means a

fragment adopting an incorrect conformation that will lead to poor

modeling. This can be measured as the precision of the approach,

i.e. the ratio of the correct fragments upon all fragments returned,

that should be as high as possible. Consequently, means to control

the expected precision of the protocol are important. To this

respect, looking at Figure 2, a last observation of interest is that

clusters are observed in the region of low MJS of plots A and B.

Such clusters are associated with low cRMSDs, outliers having

larger cRMSD values. For instance, the cRMSDs of the hits at 0.2

MJS for the beta hairpin vary between 0.1 and 4Å, but a larger

density of hits is obtained for 0.2Å. This suggests that clustering

the hits and analyzing cluster effectives could be a mean to enforce

true positive hit identification. To assess the generality of this

observation, we have performed a large scale analysis collecting,

for all fragments of size between 6 and 27 amino acids of all

CAPS8 targets, information about the clusters returned by step

two of our protocol, using the PDB25 set. Each cluster has been

associated with three informations: its effective, the MJS value

associated with its centroid, and the quality of the centroid in

terms of true positive or false positive, according to the cRMSD

between the query and the centroid. Finally, we have analyzed the

relationship between the cluster effectives (Weight - W), the MJS
score, and the a posteriori precision.

Figure 5 shows for fragments of size 9 amino acids, the

relationship between the effectives of the clusters (Weight - W),

and the MJS score of their centroids. The plot contains over

15,100 clusters. For each area of the plot, we have calculated the

cumulative observed precision, i.e. the precision over all clusters

with a MJS less than and of W more than the current values,

using steps of 0.001 for MJS and 1 for W . Different colors are

used to depict the cumulative observed precision (labels in %).

Clearly, it is possible to associate areas of the plot to an expected

precision, which provides a simple mean to infer the expected

precision of a cluster given its weight and MJS score. In addition,

the observed precision is large for low scores. It is of over 95% for

scores less than 0.15. Thus, clusters with high effectives collected

using the MJS score are associated with high values of observed

precision. We have performed similar analyses for each fragment

size, and for each, we have identified an expected precision as a

function of the cluster effectives and MJS score. These values are

in use in the final redundancy elimination procedure of our

protocol (see methods).

Fragment identification
The analysis of the performance of the complete protocol is

summarized in Figure 6. We first look at the performance obtained

over all CASP9 targets, mining a subset of the Protein Data Bank

filtered at 25% sequence identity (PDB25), i.e. in conditions of low

sequence homology. Note this dataset was built in April 2010, i.e.

before CASP9. Figure 6A shows the evolution of the number of

hits at the different steps of the protocol (see methods). For sake of

clarity, we report the number of hits in terms of the number of hits

per elementary search, i.e. averaged over the different sequence

indexes and different fragment sizes. One sees the initial number

of hits is very large. It is of over 1000 collected fragments per

request for fragments of 6 amino acid length. Although fewer

fragments are collected for larger sizes, occurrences of similar

larger fragments being less likely to occur, it is by far too large to

be handled over a complete sequence. Interestingly, the consec-

utive filters (best hits, clusters, best cluster and redundancy

elimination) allow to reduce this number by close to one order

of magnitude each, which, on average, reduces the final number of

hit per request to a value close to only 0.1. As a result, the mean

number of fragments returned is on the order of only 160 for a

protein of 100 amino acids.

Figure 6B presents an analysis of the coverage (percentage of the

query residues covered by at least one hit). One observes that the

value of the coverage obtained during the initial steps of the

protocol is over 90%, while the final redundancy elimination

procedure has a large impact, a decrease by over 15% for 1.2Å.

Since this procedure makes use of the expected precision of the

fragments to eliminate redundancies, one can expect that most of

the fragments discarded are of poor quality. Actually, Figure 6C

shows that the impact of this final step is effectively to increase the

precision of the hits. Consistently, Figure 6D shows that the

successive steps of the procedure largely improve the average

accuracy of the hits and result in cRMSDs much below the limit of

significance (dashed line). On average, most of the fragments are

associated with cRMSDs of less than 1.5Å. In summary, the

different steps of the protocol allow to dramatically reduce the

number of candidates - by close to 4 orders of magnitude, while

increasing the precision of the hits and preserving a coverage of

86% for a fragment accuracy better than or equal to 2Å cRMSD.

To investigate if the protocol can take advantage of mining

closer homologs, we have also performed a similar experiment

using a subset of the Protein Data Bank filtered at 50% sequence

identity (PDB50). Figure 6 only reports the final results after the

complete protocol. One sees mining the PDB50 set instead of the

PDB25 set does not result in a number of hits significantly larger -

Figure 6A. One observes an important gain in coverage (over to

95% for 2Å cRMSD) - Figure 6B. It is associated with a slightly

increased precision - Figure 6C-, and an accuracy of the fragment

unaffected, except for large fragment sizes where one observes an

increase in the number of hits and a decrease of their average

cRMSD. This indicates that homologous long hits are better

identified. Overall, such results suggest the main outcome of using

the procedure on homologous structures is not in terms of

Protein Candidate Fragment Identification
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Figure 3. Examples of profile similarity score variation for low cRMSD fragments. For three fragments, their structural alphabet profiles
(left) and their structure (right) are plotted. The x axis of the profiles corresponds to the amino acid sequence. The y axis corresponds to the predicted
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increased accuracy and precision, but in terms of coverage. Larger

parts of the structures are covered with accurate fragments.

Comparison with previous approaches
The added value of using structural alphabet profiles can be

discussed by comparing our procedure (SA-Frag) with HHfrag, an

approach based on amino acid profile comparison recently

reported to outperform other approaches such as nnmake [18]

or torusDBN [9]. We first compare HHfrag and SA-Frag for the

CASP9 targets, using the PDB25 protein collection - Figure 6.

Overall, the two approaches reach very similar performances in

terms of coverage. One observes a slightly more even distribution

of the hits depending on size for SA-Frag (Figure 6 A). A major

difference is observed for the precision of the fragments, where the

precision reached by SA-Frag is much larger. At 2 Å cRMSD, SA-

Frag precision is of 86.7% and that of HHfrag of 74.7%, i.e. a gain

of close to 12%. Consequently, the accuracy of the fragments

collected by SA-Frag is usually better than those identified by

HHfrag, up to fragment size of 18 amino acids - Figure 6 D. This

performance is obtained for a number of fragments that is smaller

than that of HHfrag - Figure 6 A. Over all targets, the average

number of fragments identified is of 686 for HHfrag, when it is

only of 349 using our approach. Hence, as illustrated for two

targets Figure 7, using SA profiles results in better quality

fragments. The final performance of the two approaches are

summarized Table 1. Over the complete CASP9 target set, SA-

Frag outperforms HHfrag in terms of coverage (Cov), coverage

considering only true positives (TPCov), and in terms of precision

for which differences of 4, 4 and 19% are observed, respectively.

Looking more in detail at the more difficult Free Modeling

domains, one observes, as could be expected, a decrease in

performance for both approaches. However, compared to the

results obtained over the complete target set, the precision of the

fragments collected by SA-Frag is only moderately affected

compared to HHfrag.

We have also assessed the relative performance of both

approaches on the very recent CASP10 target set. Considering

all the targets, the performance of both approaches appears rather

stable over CASP9 and CASP10 target sets. As for the CASP9

targets, Table 1 shows that the SA-Frag performance is better in

terms of coverage (Cov), coverage considering only true positives

(TPCov), and in terms of precision. Using the PDB25 set on the

complete target set, the improvement is of close to 10%, 10% and

by over 13%, respectively. For the FM domains, the results appear

a bit better for CASP10 than for CASP9, suggesting that the

difficulty of the targets was greater for CASP9, but overall, the

results are consistent. Moving from PDB25 to PDB50, the same

trends are observed, but the TPCov of both SA-Frag and HHfrag

is largely improved, by close to 10%, reaching over 90% for SA-

Frag. The precision of the two approaches appears stable

compared to the results using PDB25. Investigating more in

details the performance for the more difficult 14 Free Modeling

probabilities of each of the 27 local conformations of the structural alphabet. For sake of clarity, the conformations are sorted from the most helical
(red - bottom) to the most extended (green - top). Blue conformations correspond to coil. Each column corresponds to a fragment of 4 amino acids.
For instance, the first barplot of the upper profile corresponds to the amino acid sequence KWTI, the second to WTIE, etc. The local conformation
labels associated with sufficiently large probabilities are printed as overlays of the profile. The two first positions of the upper profile - corresponding
to KWTI and WTIE - have large probabilities for extended conformations (labels T,X,N, M and L). Top: PDB entry 3nmb, residues 84–94. Middle: PDB
entry 1xau chain A residues 95–105 (blue), superimposed on the 3nmb fragment (green). The profiles differ at positions 6 and 7. At position 6, the
largest probability is associated with local conformation label Q for 3nmb and D for 1xau. At position 7, the largest probability is for conformation
label L for 3nmb and S for 1xau. Slight differences are observed between the backbone conformation of the two fragments observed. The MJS score
between the 3nmb and 1xau fragments is of 0.77 for a cRMSD of 0.71. Bottom: PDB entry 3h3l chain A, residues 75–85 (yellow), superimposed on the
3nmb fragment (green). The 3h3l fragment profile is very similar to that of the 3nmb fragment. The MJS score is of 0.02 for a cRMSD of 0.43.
doi:10.1371/journal.pone.0080493.g003

Figure 4. Precision as a function of the MJS. The precision is estimated for fragments collected for a given MJS threshold. For each fragment
size, curves are calculated from over 5 000 000 MJS/ cRMSD values obtained by scanning the PDB25 set with fragments of the CASP8 targets.
doi:10.1371/journal.pone.0080493.g004
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Figure 5. Cluster effectives (W ) and MJS score. The plot contains all the clusters identified for all the fragments of 9 amino acids of the CASP8
targets against the PDB25 set - over 15,100 clusters. Each cluster is associated with the MJS value of its centroid, and its effectives (W ). For each area
of the plot colors are used to depict the cumulative precision of the clusters - labels in %. Steps of 0.001 have been used for the x axis (MJS) and 1 for
the y axis (W ). Clearly delimited regions are observed, which allows to infer an expected precision given the MJS and W values of a cluster.
doi:10.1371/journal.pone.0080493.g005

Figure 6. SA-Frag performance at different steps of the search. A: average number of hits returned per request for fragment size varying
between 6 and 27 amino acids. B: coverage, the fraction of amino acids covered by at least one candidate fragment, C: precision, the ratio of correct
candidates over the total number of candidates. D: average cRMSD of hits as a function of fragment size (L). The different lines correspond to different
steps of the protocol (see methods). HHfrag results are also reported. All curves but the one labeled SA-Frag 50 (obtained using the PDB50 set) are
obtained using the PDB25 set.
doi:10.1371/journal.pone.0080493.g006
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domains of CASP10, we find that, compared to the complete

target set, HHfrag results are similar in terms of coverage, but for a

degraded precision, whereas SA-Frag TP coverage is degraded for

a precision moderately affected. We find consistent results using

the PDB50 set, where both HHfrag and SA-Frag TPCov are

increased by close to 10% for a precision similar to that obtained

with PDB25.

Finally, we have also considered combining the hits returned by

HHfrag and SA-Frag. The results are reported Table 2. The

results obtained for CASP9 and CASP10 targets appearing

similar, we discuss in detail the results obtained for CASP10

targets. Using the PDB25 set, we obtain for the complete CASP10

target set, a TPCov value of 87.7%, i.e. a gain of 15% and 6%

compared with HHfrag and SA-Frag alone, respectively. This

clearly suggests that each approach is able to address specific but

distinct aspect of hit identification. An improvement is also

observed for FM domains, of 12% and 9%, respectively. Using the

PDB50 set, the coverage by true positive fragments reaches 94.4%

over all CASP10 targets, and 90% on the FM domains, the best

results of this study. However, this increase is at the cost of a

decrease of the precision that is as low as 70.6% and 61.7%

considering all target and FM targets, respectively. We have

analyzed the distribution of the specific contributions in terms of

secondary structure. Using the PDB25 set, we find for SA-Frag

that the fraction of amino acids covered by TPCov is of 93.2, 84.0

and 72.4% for alpha, beta and coil residues. It is of 82.1, 76.0 and

57.2% for HHfrag. The largest difference is observed for coil

residues. The fraction of sites not covered by a TP hit using

HHfrag for which SA-Frag finds a TP hit is of 17% - it is of 5%

conversely. A more detailed analysis show that, starting from

HHfrag results, the fractions of alpha, beta and coil sites recovered

by SA-Frag are of 26.6, 18.7 and 54.6%, respectively. Corre-

sponding fractions for HHfrag enhancement over SA-Frag results

are of 16.7, 26.4 and 56.7%. Hence, most of the improvement

combining the approaches arises for coil residues. The same trends

are observed for the FM targets.

Figure 7. Candidate fragments obtained using HHfrag (A,C) and SA-Frag (B,D) for CASP9 target T0635 - Template based (A,B) and
CASP10 target T0734 - Free Modeling (C,D). The search was performed using the PDB25 set. The fragments are superimposed on the
experimental structure (green).
doi:10.1371/journal.pone.0080493.g007

Table 1. HHfrag and SA-Frag performance for CASP9 and CASP10 targets.

CASP9 CASP10

All targets HHfrag SA-Frag HHfrag SA-Frag HHfrag50 SA-Frag50

Cov. 91.0 94.6 83.6 93.8 92.5 99.6

TPCov. 78.2 82.7 71.2 81.8 84.2 90.9

Prec. 65.9 84.7 69.8 83.9 68.7 85.4

FM domains

Cov. 84.9 88.5 89.4 92.5 97.0 99.8

TPCov. 61.9 71.4 72.1 75.3 82.8 85.7

Prec. 50.2 80.0 50.6 80.2 52.5 80.5

HHfrag and SA-Frag and HHfrag (resp. SA-Frag 50, HHfrag50) results were obtained using the PDB25 (resp. PDB50) set. Cov.: the fraction of amino acids of the target
covered by at least one candidate fragment. TPCov.: the fraction of amino acids of the target covered by at least one accurate candidate fragment (True positive). Prec.:
The fraction of True positive candidate fragments among the candidate fragments returned.
doi:10.1371/journal.pone.0080493.t001
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Discussion and Perspectives

In the present study, we have introduced a new approach for

the identification of candidate fragments, based on the comparison

of structural alphabet profiles predicted from the amino acid

sequence.

As a more detailed characterization of the local structure of

proteins compared to the classical secondary structure conforma-

tions [31], structural alphabets have previously proven efficient for

the analysis of protein conformations, to identify and align similar

structures [28,32], to quantify the statistical significance of

structural motifs [13], or to track conformational changes through

ensembles of conformations resulting from simulated annealing or

molecular dynamics simulations [33–36]. Such analyses have

relied on the identification of only the most representative local

conformation at each position in a conformation. However, sub-

optimal encoding can be expected to contain information as well

since each state is associated with a variability and since it is well

known that some equivalences between the local conformations

can be inferred from structural alignments. The need to consider

suboptimal conformations is even greater when using local

conformations predicted from an amino-acid sequence. Probabil-

ity profiles are usually much smoother than those obtained from

3D structures, and the optimal conformation can be ranked at a

sub-optimal position [27,37]. This can be attributed for one part to

a weak sequence structure relationship for some sequences or some

parts of sequences. Interestingly, it also seems such profiles can

embed information related to the intrinsic flexibility of protein

structure as a function of their entropy [38], suggesting several

conformations can be associated with one local sequence. It thus

seems highly desirable to explore ways considering not solely the

best conformation predicted but also the other ones, as proven for

instance during the design of the PEP-FOLD de novo prediction

approach[27,39]. Ultimately, all the probabilities of the local

conformations at each position in a structure could be informative.

The present study is, to our knowledge the first attempt to use the

complete information of predicted profiles of local conformation,

and our results clearly indicate that such predicted structural

alphabet profiles are a relevant mean to grab sequence-confor-

mation relationships at a local level. Indeed our results show that,

compared to previous approaches, the major benefit of such

approach is its ability to identify fewer hits, but at a better accuracy

and precision.

Among the possible reasons for such improvement, the main

one is that predicted structural alphabet profiles directly code for

local conformation information, a difference with amino acid

profiles. Since structure is known to be more conserved that

sequence, such encoding could be more relevant, and our previous

results about fold attribution [26] support this idea. In a general

manner, the consideration of structural features has been shown to

supplement efficiently pure amino acid information. It is for

example the case for the approach described by Xu and Zhang

[24] that, even if more oriented towards contact prediction, makes

use of profiles combining amino acid frequencies and predicted

structural features.

Another explanation could be that the higher dimension of the

profile - 27 here - could help to grab some accurate details of the

local sequence - structure relationship. Following, one could ask

how the choice of the collection of canonical local conformations

impacts the results. Interestingly, the protocol described here is not

specific of the particular structural alphabet used, and indeed,

numerous collections of short fragments - denominated as

structural alphabets or not - have been described by other groups

(e.g. [6,8,9,40,41] among many others). However, they vary

largely both in the descriptors and methods used to identify them,

and consequently in size. All these differences make likely that the

transposition of the protocol to other structural alphabets would

require slight but specific adaptations for each step of the protocol.

Turning back to the present procedure, our goal here was

primarily to assess the effectiveness of the concept. It is clear it

could be improved on several aspects. It is obvious that the brute

force strategy used could be revisited. Redundant Jensen-Shannon

calculations are presently performed which could be optimized. As

well, the use of the Jensen-Shannon divergence instead of other

criterion such as the Skew divergence could be questioned.

Following, as discussed before, the weak sensitivity of the protocol

could also be the matter for further developments, in particular

accepting some equivalence between local conformations. Such

question is clearly of theoretical interest although preliminary tests

show it is difficult to foresee the balance between the gain in

sensitivity and a possible loss in precision when accepting

equivalence between the local conformations. In terms of

candidate fragment identification however, present results clearly

show that the large number of structures available already allows

to identify accurate fragments for over 90% of a query sequence.

Finally, it could be even more interesting to combine two

approaches such as HHfrag and SA-Frag, two profile comparison

Table 2. Combined HHfrag and SA-Frag performance for CASP9 and CASP10 targets.

CASP9 CASP10

All targets HHfrag + SA-Frag HHfrag + SA-Frag HHfrag50 + SA-Frag50

Cov. 98.8 98.4 99.9

PCov. 88.6 87.7 94.9

Prec. 72.2 74.6 70.5

FM domains

Cov. 96.8 98.2 98.6

PCov. 76.4 84.7 90.7

Prec. 63.6 64.7 61.7

Results obtained when merging the candidate fragments identified by HHfrag and SA-Frag. HHfrag and SA-Frag and HHfrag (resp. SA-Frag 50, HHfrag50) results were
obtained using the PDB25 (resp. PDB50) set. Cov.: the fraction of amino acids of the target covered by at least one candidate fragment. TPCov.: the fraction of amino
acids of the target covered by at least one accurate candidate fragment (True positive). Prec.: The fraction of True positive candidate fragments among the candidate
fragments returned.
doi:10.1371/journal.pone.0080493.t002
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approaches - although of different kind, to bring a significant

improvement. Embedding SA profiles in the HMM profile

comparison approach of HHfrag could be a promising perspec-

tive. Despite this would open the door to similarity search at larger

scale, this perspective still faces however the difficult question of

efficiently modeling gaps in structural alphabet profile comparison.

Materials and Methods

Datasets
We have considered five different datasets. The first one

(PDB25) corresponds to the 4 678 proteins used by [22] to assess

HHfrag performance, reduced to 4 649 after removing fragment-

ed structures. A second one (PDB50) corresponds to the 10 114

proteins identified by the culled PDB [42] of April 13th, 2012, at

less than 50% sequence identity, a resolution better than 2Å and a

R-value less than 0.25. The three other sets correspond to the

targets of the three last CASP editions, and correspond to 120

proteins for CASP8, 111 for CASP9 and 96 CASP10 targets for

which experimental coordinates are available, including 25 and 14

free modeling (FM) domains for CASP9 and CASP10, respective-

ly. For the HHfrag experiments, the hhm profiles of the sequences

corresponding to the PDB25 collection have been kindly provided

by the HHfrag authors [22]. The hhm profiles of the sequences

corresponding to the PDB50 collection have been generated using

HHblits with the nr20 databank and hhmake of the hhsuite

package [1].

Generation of the SA-profiles
We describe the protein structures using a Hidden Markov

Model derived structural alphabet of 27 letters [7]. In this

framework, protein structures are considered as series of fragments

of 4 amino acids overlapping by three residues. Given a protein

structure of size Sz3, it is possible from local geometrical

descriptors to identify the optimal series of size S of the letters that

describe it using the Viterbi algorithm, or to assess the probability

that each letter represents the local conformation at each position

of a structure using the forward-backward algorithm, which results

in a profile of size S|27. The way the SA has been learnt, the

discussion about its optimality, the description of the SA letters

and the values of the descriptors associated with them can be

found in [7].

Starting from an amino acid sequence, the SA-profiles are

predicted using a protocol identical to that described in [27].

Briefly, the prediction is performed using a support vector

machine taking as input a 8|20 vector that correspond to the

PSI-blast profile of a segment of 8 amino acids, where the 4 central

amino acids correspond to a structural alphabet letter, and two

residues are added each side. The SVM in use in this study has

been learned on a collection of 3672 protein structures resolved

earlier than 2006. Updates of this collection have so far not led to

significant improvement, which can be related to the locality of the

prediction. The output is a vector of size S|27 that corresponds

to the predicted SA profile.

SA profile comparison
The comparison of the predicted SA profiles is performed

assuming an ungapped procedure. In our experience [28] and

those of others [43], the management of gaps in the structural

alphabet framework can be misleading as a single insertion or

deletion may lead to a major change in the local conformation of

the backbone. So far, instead of considering HMM-HMM

alignment techniques such as embedded in HHpred or HHfrag

for instance [22,23], we use a more straight approach based on the

Jensen Shannon distance to compare two SA profiles P,Q of

dimension 27:

JS(P,Q)~1=2DKL(P,M)z1=2DKL(Q,M) ð1Þ

where M is 1=2(PzQ) and DKL is the Kullback-Leibler

divergence

DKL(P,Q)~
X

i~1,27

P(i)ln(P(i)=Q(i)) ð2Þ

where P(i) is the probability of SA letter i.

For two vectors of profiles of size L - corresponding to the

profiles describing two fragments of size Lz3 amino acids, we use

as distance:

MJS(Pi,Qj)~ max JS(Pi::izL{1,Qj::jzL{1) ð3Þ

where MJS stands for the Maximum Jensen-Shannon over the

paired series of profiles, Pi and Qj are the two profiles

corresponding to positions from i to izL{1 on the first sequence

and j to jzL{1 on the second one. Note that a MJS distance of

0 indicates a perfect identity of the profiles. Such case could occurr

when mining a bank containing the exact same protein sequence

since the profiles would be identical, but in theory, it is also

possible that two profiles are identical for non identical structures

since (i) prediction could in theory produce identical profiles for

different shapes, and (ii) identical series in the structural alphabet

space encompass structural fuzziness - see [7].

Significant fragment identification
Given a query of size Sz3, the search for hits is achieved

considering profiles of length 3ƒlƒL, where L has presently a

value of 24, over positions i, where 1ƒiƒS{lz1. Each

fragment is paired with all fragments of equal size in the n
proteins of the bank. For each fragment pair, SA-Frag measures

the MJS distance. Only the fragments that have a value of MJS
lower than a given threshold are selected. The 22 - fragment size

from 6 to 27 amino acids - thresholds used for this study have been

learnt over the complete collection of 120 CASP8 targets. A

control over the 111 CASP9 targets using a 5 fold cross validation

procedure resulted in threshold values only slightly different,

which suggests the threshold values are rather independent from

the learning set.

Since the number of hits can be very large (for instance several

millions of hits can be selected for a short helical fragment), the

search procedure embeds two mechanisms to limit their number.

Firstly, for each query, we limit the number of hits to the first N

best hits, in practice 500. Secondly, the N best hits are sorted

according to their MJS scores and clustered by an incremental

procedure using the alpha carbon RMS deviation (cRMSD) of the

fragments as a score of similarity. The cRMSD thresholds used for

clustering depend on fragment length. The goal is to select only

the classes with the highest densities, those of low densities being

expected to correspond to noise. Class representatives are

incrementally defined as the fragments having the lowest MJS
values, and the effectives of the class (or weight - W ) are kept in

memory. After this step, only one fragment - the cluster

representative - is selected per cluster. This allows a dramatic

reduction of the number of hits. Finally, we have also found from a
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posterior analysis (see Results) that the observed precision is higher

for large values of W . Thus, for each query, only the cluster with

the largest W value is kept. If several clusters have identical W
values, the one which has the lowest MJS value is retained.

A last filtering step is achieved by considering the expected

precision of the candidate fragments. All hits associated with an

expected precision more than an upper threshold are kept, and

those with an expected precision less than a lower threshold are

discarded. Fragments having an expected precision in between

these two thresholds are used as best candidates for regions not yet

covered. Since these fragments are associated with a less

predictable quality, we accept some redundancy in these regions.

In practice, it is possible to adjust the values depending on the

desired ratio between coverage and precision. In this study, we

used upper and lower values of 0.99 and 0.82 (resp. 0.995 and

0.65) with the PDB25 (resp. PDB50) set. Nested hits from the same

protein are discarded.

Assessment of fragment quality
To assess the results, we define true positives (TP) the hits

deviating from the query by less than a given cRMSD. Since the

distribution of the cRMSD over random fragments depends on

fragment size, we follow the rule used in [22]. TPs correspond to

fragments with a cRMSD less than m{2s where m is, for a given

size, the average cRMSD over the whole dataset, and s the

associated standard deviation. Other hits correspond to false

positives (FP). The precision is then defined as:

Prec~TP=(TPzFP). The coverage (Cov) is the percentage of

target residues that are covered by at least one hit. The true

positive coverage (TPCov) is the percentage of target residues that

are covered by at least one TP.
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