
Draft Genome Sequences of Marinobacter Strains Recovered
from Utica Shale-Produced Fluids

Shantal Tummings,a Jenny Panescu,a Rebecca A. Daly,b Kelly C. Wrighton,b Paula J. Mousera*

aDepartment of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio,
USA

bDepartment of Microbiology, The Ohio State University, Columbus, Ohio, USA

ABSTRACT The genomes of three Marinobacter strains, isolated from saline fluids
produced from a Utica-Point Pleasant shale well, have been sequenced. These ge-
nomes provide novel information on the degradation of petroleum distillates and
virulence mechanisms under microaerophilic conditions in fractured shale.

Horizontal drilling coupled to hydraulic fracturing well completion methods are the
industry standard for recovering hydrocarbon from low-permeability black shales

(1, 2). Microorganisms play a role in degrading shale-derived hydrocarbons (3) and
altering xenobiotic organic compounds introduced during the fracturing process (4).
The bacterial strains Marinobacter persicus UTICA-S1B3, UTICA-S1B6, and UTICA-S1B9
were isolated from saline fluids produced from a Utica-Point Pleasant shale well in Ohio.
Cosmopolitan Marinobacter species are distributed across marine lakes, oceans, sedi-
ments, and deep mines (5–8), especially where hydrocarbons are present (8, 9), and
recently were observed in fractured shale brines (4, 10–12). Here, we describe the
genomic sequencing of three Marinobacter strains isolated from fractured shale and
highlight their capacity for aromatic compound degradation and bacterial virulence.

The Marinobacter isolates were cultivated from fluids collected on the first day of
flowback in Difco marine broth 2216 medium supplemented with 40 mM nitrate at
30°C. Cells were harvested via centrifugation, and genomic DNA was isolated using a
DNA minikit (Qiagen, Hilden, Germany), with sequencing performed at the Department
of Energy Joint Genome Institute (Walnut Creek, CA, USA). Assemblies were constructed
from Illumina MiSeq sequence data (SPAdes version 3.6.2) and generated 94, 96, and
100 contigs for UTICA-S1B3, UTICA-S1B6, and UTICA S1B9, respectively, with a G�C
content of 57.7% and 92% genome completeness. Annotation was performed in the
Integrated Microbial Genomes platform (Pipeline version 4.12.1) and resulted in 3,287,
3,294, and 3,288 protein-coding genes for UTICA-S1B3, UTICA-S1B6, and UTICA S1B9,
respectively. While these strains had an average nucleotide identity (ANI) of 99.9% to
each other, their genomes were more distantly related to Marinobacter persicus IRBC-M
10445 (ANI, 83%) and Marinobacter hydrocarbonoclasticus ATCC 49840 (ANI, 78%).

These Marinobacter strains have the genomic potential to degrade toluene and
benzene to (methyl)catechol using phenol 2-monooxgenases, further metabolizing
catechol through meta-cleavage to formate, acrylate, pyruvate, or acetyl-coenzyme A
(acetyl-CoA). All three strains contain genes for denitrification and alternative nitrogen
source utilization (e.g., urea). Of 35 predicted cytochromes in each genome, 15 cyto-
chromes are annotated for (per)oxidase activity, which may be important for outer
membrane processes, including iron oxidation. Unlike other Marinobacter species that
utilize a type IV secretion system (13), the Marinobacter strains encode a type VI
secretion system that has a known role in the delivery of toxic effectors to other
bacteria using a phage-like tubule (14). Specifically, the three strains can target the
peptidoglycan of recipient bacterial cells using amidases and proteases or attack outer
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membranes using phospholipases (14, 15). Amidases may also catalyze the degradation
of polyacrylamides (16), which are common additives used during slick-water hydraulic
fracturing (17). The isolation of Marinobacter persicus UTICA-S1B3, UTICA-S1B6, and
UTICA S1B9 provides new insight into hydrocarbon metabolism, polymer degradation,
and opportunistic survivability in the shale ecosystem.

Accession number(s). The whole-genome sequences for M. persicus UTICA-S1B3,
UTICA-S1B6, and UTICA-S1B9 have been deposited in DDBJ/ENA/GenBank under
accession numbers PTIV00000000, PTIT00000000, and PTIU00000000, respectively,
and can be accessed at the JGI Integrated Microbial Genomes and Microbiome data-
base under the IMG genome identification (ID) numbers 2700989663, 2700989662, and
2700989665, respectively.
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