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Innate immune response induces positive inflammatory transducers and regulators in
order to attack pathogens, while simultaneously negative signaling regulators are
transcribed to maintain innate immune homeostasis and to avoid persistent
inflammatory immune responses. The gene expression of many of these regulators is
controlled by different epigenetic modifications. The remarkable impact of epigenetic
changes in inducing or suppressing inflammatory signaling is being increasingly
recognized. Several studies have highlighted the interplay of histone modification, DNA
methylation, and post-transcriptional miRNA-mediated modifications in inflammatory
diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic
alterations affords the opportunity of attenuating different inflammatory dysregulations.
In this regard, many studies have identified the significant anti-inflammatory properties of
distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the
current review, we demonstrate the signaling cascade during the immune response and
the epigenetic modifications that take place during inflammation. Moreover, we also
provide an updated overview of phytochemicals that target these mechanisms in
macrophages and other experimental models, and go on to illustrate the effects of
these phytochemicals in regulating epigenetic mechanisms and attenuating
aberrant inflammation.
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INTRODUCTION

The innate immune system is the non-specific, inherited immune defense mechanism encoded in
the germ-line genes of the host (1). It initiates a rapid response and recruits immune cells promptly
to the site of infection or inflammation through cytokines and chemokines production (2, 3). The
most important cellular components of the innate immune system are neutrophils and
macrophages, which are effective phagocytes that act as the first line of defense against foreign
bodies (3, 4). These cells are known as antigen-presenting cells (APCs) that usually recognize
org March 2021 | Volume 12 | Article 6060691
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pathogens through their surface-expressed receptors, known as
pattern recognition receptors (PRRs), which bind to molecular
patterns expressed on the surfaces of invading microbes (5).
Upon engulfment of a pathogen, antigen presenting
macrophages express antigen peptides derived from the
engulfed pathogen on the immune cell surface via the major
histocompatibility complex (MHC) class II, in order to recruit
CD4+ T cells, one type of adaptive immune cells (6, 7). This
connection between phagocytic immune cells and T-
lymphocytes, therefore, shapes the link between innate and
adaptive immunity.

The innate immune response begins when pattern recognition
receptors (PRRs) expressed on immune cells detect either
pathogen-associated molecular patterns (PAMPs), such as
microbial nucleic acids, lipoproteins, and carbohydrates, or
damage-associated molecular patterns (DAMPs) released from
damaged cells (5, 8). Then oligomerization of the receptor ensues,
followed by the assembly of the activated PRRs subunits, which
initiates signaling cascades leading to the activation of mediators
that attract leukocytes to the site of infection or injury (5, 8).
Subsequently, these leukocytes, including macrophages,
neutrophils, and dendritic cells phagocytose microbial elements
and release more proinflammatory cytokines, such as TNF-a,
IL-6, IL-12, and type I and II interferons (IFNs), which
collaboratively attempt to contain the pathogen until highly
specific, activated cells of the adaptive immune response are
recruited to completely eliminate the infection (6, 8).

A hallmark of the innate immune response is inflammation,
which is a complex set of defense mechanisms acting in concert
to restore homeostasis in body systems after injuries or infections
(8, 9). Inflammatory reactions are mainly a result of the
vasodilation due to the release of histamine, prostaglandins
(PGs), and nitric oxide (NO) that leads to a noticeable increase
in blood flow and accumulation of circulating leukocytes (8).
Additionally, proinflammatory cytokines secreted from activated
immune cells, such as tumor necrosis factor-alpha (TNF-a),
interleukin-1 (IL-1) and interleukin-6 (IL-6) enhance the
vascular permeability of leukocytes through raising the levels
of leukocyte adhesion molecules on endothelial cells (5, 10).
Usually, inflammation is triggered to restore homeostasis and
repair tissues; however, prolonged inflammation could lead to
serious problems, including cellular dysregulation as observed
with cell senescence, impaired proteolysis and apoptosis, and
further tissue dysfunction (11). Recently, many studies correlated
inflammatory disturbance with epigenetic modifications (11).

Epigenetic mechanisms modulate differential gene expression
with no alteration to the DNA sequences (12). Epigenetic
processes include modifications to DNA, such as DNA
methylation or histone proteins, including histone methylation,
acetylation and acylation, and they also involve microRNAs (13).
Epigenetic modifications are potentially reversible, and,
therefore, an in-depth understanding of these changes may
help identifying new therapeutic targets (14). A plethora of
reviews covered distinct pathways of innate immunity,
inflammation and highlighted the relationship between TLR4
signaling and inflammatory diseases and cancer (15, 16). The
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current review focuses on the various regulatory epigenetic
mechanisms involved in inflammation and summarizes the
recent findings of targeted phytotherapy.
TLR4 SIGNALING IN INNATE
IMMUNE RESPONSE

One of the essential and first-identified members of PRRs are
TLRs (5, 17). They are expressed on various immune cells,
including macrophages, dendritic cells (DCs), B cells, specific
types of T cells, and even on non-immune cells such as cardiac
cells, fibroblasts and epithelial cells (1). TLRs are type I
transmembrane proteins characterized by the extracellular
leucine-rich repeats (LRRs) that recognize different microbial
epitopes and has a cytoplasmic signaling domain similar to that
of the interleukin 1 receptor (IL-1R), called Toll/Interleukin 1
receptor (TIR) domain, which is responsible for signal
transduction (1, 4, 5, 18). The TLR family was first identified
in Drosophila flies, and now twelve members of the TLR family
have been identified in mammals (5, 18). Grouped as subfamilies,
TLR1, TLR2, and TLR6 recognize lipids, while TLR7, TLR8, and
TLR9 recognize nucleic acids (6, 8). Some receptor/ligand pairs
are commonly known, such as TLR4 and LPS, TLR5 and
flagellin, TLR 1, 2, and 6 with lipoproteins (18). In addition,
TLRs are either expressed on the cell-surface, e.g. TLRs 1, 2, 4, 5,
and 6, or internalized to the endosome, e.g. TLRs 3, 7, 8, and 9 (5,
6, 18). Together with phagocytic-antigen presentation, the
activation of TLRs leads to the expression of inflammatory
cytokines, which further recruits antigen-specific cells (18).

When activated, TLRs, in turn, activate various genes that
function to moderate host defense, including inflammatory
cytokines, chemokines, MHC and co-stimulatory molecules
(18). Mammalian TLRs also induce multiple effector molecules,
such as iNOS and antimicrobial peptides that can directly
destroy microbial pathogens (8). Depending on TIR domains,
TLRs activate NF-kB and MAPK (mitogen activated protein
kinases) and induce target genes (5, 18). Upon ligand binding
(e.g. LPS), TLR4 dimerizes and induces the recruitment of
intracellular adaptor proteins that trigger two standard models
of signaling cascades: myeloid differentiation primary response
gene 88 (MyD88)-dependent and Toll-interleukin-1 receptor
domain-containing adaptor inducing interferon-beta (TRIF)-
dependent pathways (8, 18).

TheMyD88-dependent pathway originates from the cytoplasmic
TIR domain (19). The activation of MyD88 causes the
autophosphorylation of interleukin-1 receptor-associated kinases
(IRAK), namely IRAK1, IRAK2, and IRAK4, which associate
temporarily with TNF receptor-associated factor 6 (TRAF6) (8,
18). This autophosphorylation and oligomerization for IRAK and
TRAF6, respectively, finally leads to the activation of IkB kinase
(IKK) (in response to TAK1/TAB complex activation) and
mitogen-activated protein kinase (MAPK), namely ERK, JNK,
p38 (10, 18). Then, ensuing signal dissemination results in the
activation and the translocation of nuclear factor kappa B (NF-kB)
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to the nucleus and the subsequent activation of the activator
protein-1 (AP-1) transcriptional program (8). Both NF-kB and
AP-1 control inflammatory responses through the induction of
inflammatory cytokines, such as TNF-a, IL-12, and others (8, 18).
The TRIF-dependent pathway, which mediates the late phase
activation of NF-kB, primarily recruits TRIF and this results in
the ubiquitination of TNF receptor-associated factor 3 (TRAF3)
which induces TANK-binding kinase 1 (TBK1) binding to IkB
(inhibitor of NF-kB) kinase epsilon (IKKϵ)) (8, 20–24).
Thenceforth, the TBK1-IKKϵ complex phosphorylates the
transcription factor interferon regulatory factor 3 (IRF3),
ultimately driving the expression of interferon-beta (IFN-b),
which induces STAT1-dependent genes encoding monocyte
chemoattractant protein 5 (MCP-5), IFN-inducible protein 10
(IP-10) and iNOS (25, 26) (Figures 1 and 2).

Despite the great progress in understanding the molecular
mechanisms underlying inflammation-related signaling events of
TLRs, particularly TLR4, less data is available about the role of
epigenetics in regulating the transcriptional responses
downstream of the TLR system (27). Recent studies have
demonstrated that TLR-induced epigenetic alterations forms a
solid platform in both positive and negative regulation of
activated inflammatory genes (27).
ROLE OF EPIGENETIC REGULATION
IN INFLAMMATION

A balanced interplay of the chromatin machinery is pivotal in
regulating the transient induction of TLR-related genes (28).
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Changes in chromatin play an essential role in both physiological
and pathological processes through responding to environmental
signals and regulating gene transcription (29). Epigenetic
regulations mainly include DNA modifications, histone post-
translational modifications (PTMs), chromatin remodeling and
microRNAs (miRNAs), which together function in a coordinated
manner (30). These epigenetic modifications occur with the aid
of several catalytic enzymes that add or remove chemical
moieties, including DNA methyltransferases (DNMTs), histone
methyltransferases (HMTs), histone demethylases (HDMs),
histone acetyltransferases (HATs), and histone deacetylases
(HDACs) (13).

Histone Modification
Histone modifications, such as acetylation and methylation, are
critical regulators of gene transcription (31). These modifications
can regulate the binding of effector molecules to DNA and,
therefore, control transcription, repair, and replication processes
(31). Acetylation of histones is associated with an “open”
chromatin conformation that activates transcription (14).
Histone acetylation of the lysine residues is regulated by
histone acetyltransferases (HATs), which add an acetyl group
and mediate histone hyperacetylation towards euchromatin and
gene upregulation, whereas histone deacetyl transferases
(HDATs), which remove the acetyl group, induce histone
hypoacetylation towards heterochromatin and silencing of
inflammatory genes (14, 32). Villagra et al. showed that
promotors of several proinflammatory cytokines are acetylated
and they, usually, display reduced HDAC activity, leading to
transcriptional activation (33). Not only this, but also histone H3
FIGURE 1 | The anti-inflammatory mediated effects of phytochemicals along the TLR4 signaling pathway. Created with Biorender.
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acetylation (H3Ac) at the promoters of many cytokines and
chemokines increases NF-kB recruitment to these regions,
following inflammation (34). In this context, Hargreaves and
colleagues stated that H3Ac modification primarily occurs at
promotors of primary response genes (PRG), which are rapidly
induced by TLR4 following macrophage activation (35).
Furthermore, Wu and Chiang showed that upon TLR ligation,
an inducible addition of histone H4Ac at lysine 5, 8, and 12
(H4K5, H4K8, and H4K12 Ac) at PRG promoters takes place,
facilitating the binding of an epigenetic reader, called BRD4 that
recognizes inducible acetylation marks on histones and recruits
positive transcription factors for active transcription (36, 37).
These chromatin modifiers are employed in regulating innate
signaling pathways induced by infection, and regulate the
expression of PRR signal transducers and inflammatory genes
through initiating various histone modifications (29). TLR4 is
one of the most important PRR signal transducers. It has been
implicated in the epigenetic regulation of the TNF-a promoter,
where LPS stimulation increased the H3 and H4 acetylation of
the TNF-a locus, and thus induced gene transcription (38).

On the other side, Histone deacetylases (HDACs) reverse the
activity of HAT by removing acetyl groups from histones,
making chromatin more condensed and thus, promoting gene
inactivation (39). It has been reported that HDAC recruitment is
associated with the pathogenesis of diseases, including
inflammation and cancer, and is targeted by therapeutic agents
in patients (40). Inhibitors of HDACs have pleiotropic effects on
the immune response, especially on TLR signaling; they are
known to suppress different cytokines, such as IL-6, IL-10,
TNF-a, IL-12, and IL-23 (41). Moreover, inhibitors of class I,
II, and IV HDACs are found to inhibit LPS-induced
upregulation of TLRs, CD14, and MD-2 genes (40). In this
respect, reduced expression and activity of HDAC2, in
Frontiers in Immunology | www.frontiersin.org 4
particular, was noticed with macrophage tolerance, which was
reported in several inflammatory models, such as lung
macrophages, biopsies, and blood cells from patients with
COPD, severe asthma, and smoking-induced asthma (42).

In contrast to histone acetylation that occurs primarily on
lysine residues, histone methylation takes place on lysine,
arginine and other amino acid residues in histone protein tails,
and eventually modifies chromatin in either its activated or
repressed states (43). For example, tri-methylation of histone
H3 on lysine 4 and 36 (H3K4me3 and H3K36me3) are
commonly referred to as activators of transcription (44).
Nonetheless, histone methylation on lysines 9 and 27
(H3K9me3 and H3K27me3) facilitates gene silencing (45).
Histone methyltransferases (HMT) are histone-modifying
enzymes that regulate gene expression by catalyzing the
transfer of methyl groups to lysine and arginine residues of
histones (H3 and H4) at specific sites (46). The number of
methyl groups transferred and the histone residues involved
determine whether gene transcription is suppressed or activated
(47). Multiple reports demonstrated the key role of H3K4me3 in
positively regulating the TLR4 signaling pathway in
macrophages during the LPS response. For example, increased
levels of H3K4me3 at the gene promotor induced the
transcription of PIGP, a product required for proper
membrane anchoring of CD14 in primary macrophages for
TLR4-mediated signaling (48). Another report showed that
elevated levels of H3K4me3 at Socs1 promoter resulted in
increased expression of suppressor of cytokine signaling 1
(SOCS1), which acts as a negative regulator of TLR4-induced
inflammation (49). Similarly, increased H3K4me3 levels on
Tnfaip3 promotor upon LPS stimulation in macrophages
results in transcribing the Tnfaip3-encoded ubiquitin-editing
enzyme A20, which in turn mediates K63 deubiquitylation of
FIGURE 2 | The regulatory network by which phytochemicals affect TLR4-mediated inflammatory responses. Created with Biorender.
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TRAF6 and NF-kB essential modulator (NEMO), therefore
suppressing TLR4-mediated signal transduction (50).
Hargreaves and colleagues conducted a ChIP analysis of RNA
pol II-associated genes that shows the elevated basal levels of
H3K4me3 modification in the promotors of many primary
response genes (PRGs) to be usually characteristic of active
transcription (35). On the contrary, the secondary response
genes (SRGs), which have delayed induction, showed
remarkable H3K4me3 modification only after TLR ligation,
and not at the basal level like PRGs (35).

On the contrary, other histone methylations, such as
H3K27me3 possess a clear suppressive effect on gene
transcription. For instance, induced H3K27me3 levels at the
promoter region of Tollip gene (a negative regulator of TLR
pathway) inhibited Tollip transcription and, therefore, activation
of the TLR signaling cascade (51). Moreover, the relationship
between epigenome reprogramming and inflammation might
also be expressed in macrophage polarization. Following NF-kB
activation, macrophages induce a protein called Jmjd3 that binds
to PcG target genes (a Polycomb Group proteins, which are
involved in development and differentiation of macrophages)
and regulates their H3K27me3 levels and, thus their
transcriptional activity (52). Taken together, these interesting
differences show the significant influence of chromatin
epigenetic modifiers on different immune responses and time-
dependent production of TLR-responsive genes.

DNA Methylation
DNA methylation involves a covalent attachment of a methyl
group to the cytosine residue at cytosine-phosphate-guanine
(CpG) site by DNA methyltransferase enzymes (DNMTs) (47).
These CpG sites are present in about 70% of human gene
promoters, and are essential modulators of gene transcription
(53). Usually, DNA hyper-methylation induces chromatin
condensation (heterochromatin) and enhance gene repression,
inhibiting the binding of transcription factors at promoter sites
on genomic DNA (54, 55). DNA methylation by DNMTs also
induces coupling with other gene repressing proteins such as
HDACs (56). Indeed, DNA methylation is highly imperative in
regulating inflammatory genes. For example, epigenome-wide
association studies (EWAS) linked DNA hypomethylation with
increased inflammation (57, 58). In addition, DNA
hypomethylation with aging has been suggested to be the cause
of chronic inflammation and cancer (59). While, another study
by Hahn et al. reported that atypical DNA methylation of some
Polycomb group (PcG) protein targets in mammalian genome
results in their efficient downregulation after chronic
inflammation (60). Cooperatively, modifications in both DNA
methylation and histone acetylation of genome status can
regulate TLR4 signaling (61). Of interest, DNMT3A, the highly
expressed DNA methyltransferase in macrophages, has been
shown to indirectly induce the expression of type I IFNs
during virus infection via maintaining increased HDAC9
expression, which, in turn, maintained the deacetylation status
of the key TLR4 signaling molecule TBK1 and, thus, enhanced its
kinase activity (29, 62).
Frontiers in Immunology | www.frontiersin.org 5
As DNA methylation is a common epigenetic modification in
inflammation-related diseases, it would be interesting to examine
the effects of individual natural products on DNA methylation
and inflammation-associated cascades in humans (27). Notably,
the post-transcriptional modifications of inflammatory genes is
suggested to be mediated by two distinct regulation levels of
TLR4 signaling pathway (63). The first level is mediated by
epigenetic alterations, and the second level is regulated by the
differential expression of TLR4-responsive miRNAs and,
specifically, miR-146a, miR-155, and miR-21 (14).

MicroRNAs
Recently, a plethora of research studies have focused on
deciphering the role of miRNAs in the regulation of
inflammatory gene expression (64). MiRNAs are short double-
stranded, non-coding RNAmolecules that are ~22 nucleotides in
length (65). They bind to the 3` untranslated region (UTR) of a
target mRNA sequence causing gene down-regulation at the
post-transcriptional level, and inducing translational arrest (66).
miRNAs are currently viewed as essential regulators in key
immune responses, for example regulation of maturation,
proliferation, differentiation and activation of both innate and
adaptive immune cells (67). TLR-responsive miRNAs are either
up-regulated or downregulated after LPS treatment (67).
Although they are heritable, miRNAs are also inducible and
reversible (68). This flexible nature of miRNA expression is
obvious in inflammatory reactions, which are primarily
dependent on the surrounding environment. For instance, the
expression of most miRNAs is triggered in an NF-kB-dependent
manner after TLR stimulus (65). The expression of miRNAs is
dependent on TLR stimulation, highlighting the cause/effect
relationship between LPS stimulation and the upregulation of
miR-146a and miR-155 in human monocytes (69–73). In terms
of response to TLR4 pathway activation, miRNAs are classified
as either “early response miRNAs”, expressed rapidly after LPS
stimulation such as miR-146 and miR-155 or “late response
miRNAs”, expressed in macrophages at a later time after LPS
treatment such as miR-21 (69–73). miR-146a-5p, miR-155-5p,
and miR-21 are also involved in the regulation of TLR
downstream signaling through TLR-induced transcriptional
factors (74, 75). They target cytokines such as type I IFNs,
TNF-a, IL-6, IL-12, and IL-10, and this has been indicated by
the presence of binding sites for miRNAs on the mRNAs
encoding these cytokines and chemokines (76–78). The
miRNAs, miR-21, miR-146a, and miR-155 are particularly
predominant in the majority of inflammation-related studies,
because of their expression succeeding TLR stimulation,
especially in macrophages (67) (Figure 3).

miR-146a
miR-146a is a pivotal repressor of NF-kB inflammatory signaling
in several cell types. It is one of the miR-146 family that is present
in chromosome 5 and 10 (67, 79–81). Upregulation of miR-146a
has been reported in inflammatory diseases, such as
osteoarthritis and rheumatoid arthritis (82). A recent study
illustrated that miR-146a negatively regulated TLR4 signaling
March 2021 | Volume 12 | Article 606069
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through blocking TRAF6 and IRAK1, which activates
downstream transcription factors NF-kB and AP-1 (14, 71,
83–86). It has been reported that increased expression of
TRAF6 was observed in 5q chromosomal deficient models,
leading to impaired innate immune signaling and causing
leukemia and bone marrow failure (87). In addition, IRAK2
and IRAK4 have been recognized as targets of miR-146a, which
results in decreasing inflammatory cytokines (71, 83, 88).
Another study illustrated the role of miR-146a as a negative
regulator of type1 IFN response in human peripheral blood
mononuclear cells (PBMCs) (89). Moreover, in LPS-treated
human monocytes, miR-146a has been shown to degrade
mRNA transcripts of IRF3, a transcriptional factor responsible
for type1 IFN production (90). miR-146a has also been reported
to be involved in regulating cytokines release and apoptosis in
human dendritic cells (71, 91). From this angle, a recent study
showed that by targeting IRAK1, IRAK2, and TRAF6 in LPS-
stimulated macrophages, miR-146a sequentially suppresses the
production of type I IFNs, and the cytokines TNF-a, IL-1b, and
IL6 (83, 85)

miR-21
Second, miR-21 is a cancer-associated miRNA that is induced by
NF-kB activation, and acts as a negative regulator of TLR
signaling inflammatory responses (67, 92). It has been revealed
that miR-21 inhibits MyD88 and IRAK1 expression during
hepatitis C viral infection in PBMCs (93). Furthermore, Sheedy
et al. highlighted the role of miR-21 in downregulating the
expression of programmed cell death protein 4 expression
(PDCD4) in LPS-induced RAW 264.7 macrophages (94).
PDCD4 acts as a tumor suppressor protein that activates the
proinflammatory mediators NF-kB and IL-6, and suppresses
the anti-inflammatory cytokine IL-10, which inhibits of the
microRNA, miR-155 (94, 95). MiR-21, therefore, has anti-
inflammatory effects by increasing the production of IL-10 and
suppressing NF-kB activity (67, 94).

miR-155
Another tumor-associated miRNA is miR-155. miR-155 has a
significant role in the TLR-mediated immune response and can
target related signaling proteins of the NF-kB pathway (65). A
positive correlation exists between miR-155 overexpression and
NF-kB activation as evidenced by Baltimore et al. in their study,
which linked miR-155 upregulation with mammalian
inflammatory reactions (71, 96). Another study by Tili et al.
showed that miR-155 expression can have both positive and
negative effects on NF-kB signaling proteins however, they
supported a positive regulatory role of miR-155 in NF-kB
pathway, which was evidenced by increased serum TNF-a in
miR-155 transgenic mice (97).

As a positive regulator of TLR4 signaling pathway, miR-155
suppresses two negative regulators of TLR4-induced
inflammation, SOCS1 and SH2 (Src homology 2)-containing
inositol phosphatise-1 (SHIP-1) (98, 99). This suppression of
these two important negative regulators of TLR4 signaling results
in boosting MAPK activity and stimulating the expression of
inflammatory cytokines in primary macrophages and dendritic
Frontiers in Immunology | www.frontiersin.org 6
cells isolated from mice (67, 100, 101). On the other hand, Ceppi
et al. showed that, sometimes, miR-155 exerts an anti-
inflammatory effect through targeting TAB2, thereby inhibiting
TAK1-dependent stimulation, and further NF-kB and MAPK
activation in human monocyte-derived DCs (102). On account
of the above findings, miR-155 remains an interesting and
significant player in downstream inflammatory pathways (67).

As demonstrated hereinabove, the significance of miRNAs in
inflammatory processes has directed research towards a better
understanding of their functions and interactions in TLR4
signaling. That being said, plant-derived bioactive compounds
have ushered in a fresher phase of research in this area. These
naturally-occurring agents have been proven to be a promising
therapeutic recourse that could interfere, at the genomic level, with
TLR4 signaling and modulating miRNA upregulation after NF-kB
activation in multiple inflammatory reactions. In this regard, a
rundown of bioactive phytochemicals and their proposed
mechanism(s) of action within the TLR4 pathway are included in
this review, highlighting their potential for post-transcriptional and
epigenetic modulation. In brief, we considered three main
epigenetic processes of gene repression: DNA methylation,
histone modifications, and microRNAs targeting. However,
alterations in histone modifications, DNA methylation, and
miRNA regulation still need future investigations to provide a
better understanding of the molecular basis for various chronic
inflammatory diseases. It has to be highlighted that understanding
the role of epigenetic modifications is becoming fundamental in
human diseases, and since these epigenetic alterations can regulate
several inflammatory signaling cascades, they indeed do play an
integral part in inflammation (103–106). Therefore, knowing more
about epigenetic events during inflammatory responses, and how
epigenetic regulation is mediated by TLR signaling during
inflammation is worth further exploration, since it opens up
opportunities for developing therapeutic interventions. For
example, histone deacetylase inhibitors and demethylating agents
are currently being proposed for epigenetic therapy (14).
PLANT-DERIVED COMPOUNDS
MODULATING THE TLR4/NF-kB
PATHWAY AND THEIR ASSOCIATED
EPIGENETIC REGULATIONS

Originally known as secondary metabolites, phytochemicals are
plant-synthesized compounds possessing health effects (107).
Plant-derived bioactive compounds can be classified as
phenolic compounds, including flavonoids and tannins,
glucosinolates, alkaloids, and terpenoids (108). When
consumed by humans, they get involved in different biological
processes inside the body, such as redox processes, cell signaling
and, inflammation (109–112). Nowadays, natural products are
becoming a promising source for the treatment of several
inflammatory conditions (113, 114). Interestingly, the most
promising anti-inflammatory herbal extracts were identified to
influence key TLR4 signaling pathways and macrophage
repolarization (115). Evidence suggests that phytochemicals
March 2021 | Volume 12 | Article 606069
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can attenuate the expression of proinflammatory genes, and
promote anti-inflammatory genes; this differential gene
expression is regulated by epigenetic modifications (116, 117).
For instance, epigenome-wide association studies (EWAS) have
demonstrated that differential methylation of inflammatory
genes in peripheral white blood cells was associated with diets
rich in phytochemicals (27, 118, 119).

In addition, many plant-derived compounds were recently
suggested to exert their anti-inflammatory effect through
regulating the expression of proinflammatory miRNAs,
especially those upregulated after NF-kB activation (120).
Although a few reports indicate the precise mechanisms that
regulate or deregulate the expression of miRNAs, growing
evidence suggests that phytochemicals regulate the expression
of miRNAs by interfering with the processes associated with the
miRNAs processing and maturation, and these phytochemical-
mediated alterations in miRNAs biosynthesis machinery could in
part contribute to the miRNAs dysregulation by either increasing
or decreasing their levels (121, 122).

In this section, we will discuss, in detail, how some natural
compounds can epigenetically alter inflammatory genes,
recapitulating on current studies that link phytochemicals-
mediated epigenetic modifications to inflammation-
associated diseases.

Polyphenols
Phenolic compounds are involved in numerous signaling pathways,
and most importantly, in regulating the redox system and
modulating the immune response through inhibiting
inflammatory cytokines synthesis (123). Unfortunately,
polyphenols, in general, are limited by their pharmacokinetics,
such as their poor bioavailability and rapid metabolism (124–131).

Resveratrol
A natural phenolic stilbene derivative, resveratrol (RES, 3, 4′,5-
trihydroxystilbene) is a phytoalexin that acts as a plant defense
mechanism against infection. It is found in grape skins, berries and
peanuts (124, 132). This phenolic compound exists in both trans-
and cis- isoforms, but the trans-isomer is more stable (132). It is
usually taken at a daily dose of 50 to 500 mg (132). Fortunately, no
significant adverse effects have been reported for RES, except for an
antiplatelet activity that should be monitored, especially if taken
with another prescribed antiplatelet or anticoagulants (132–139).
Over 40 clinical trials were published in PubMed on the applications
of RES in inflammatory disorders, including diabetes, obesity, and
coronary artery disease (124). Pharmacologically, RES has been
widely recognized for its remarkable anti-mutation, anti-
inflammatory, and antioxidant activities (124, 132). By virtue of
its anti-inflammatory effects, RES also has neuroprotective,
cardioprotective and chemotherapeutic properties (131, 132,
140, 141).

RES Mechanisms of Action as an
Anti-Inflammatory Agent
Numerous studies have been conducted to provide in-depth
insights into the powerful antioxidant and anti-inflammatory
function of RES. In a dose-effect relationship, RES exerts its
Frontiers in Immunology | www.frontiersin.org 7
effects at multiple levels (Table 1, Figures 1 and 2). It inhibits
TLR4 and MyD88 expression in activated RAW 264.7
macrophages (142, 143) (Table 1 and Figure 1). Going
downstream, RES inhibits NF-kB, MAPK, IRF-3 and AP-1
transcription factors, as well as, iNOS, COX-2, and 5-LOX
enzymes (124, 143–147) (Table 1 and Figures 1 and 2). This,
in turn, reduces NF-kB-induced proinflammatory cytokines,
including TNF-a, IL-6, and IL-1b, and the free radicals, NO
and ROS, and LTs and PGs levels (124, 132, 140, 142, 147, 148,
301) (Table 1 and Figure 2). These results were confirmed in
LPS-stimulated RAW 264.7 cells, and macrophages isolated from
C57BL/6 and BALB/c mice (302). In addition to studies
performed on macrophages, others were conducted on heart
tissues of rats to investigate the anti-inflammatory effects of RES
in response to TLR4/NF-kB-mediated cardiac inflammation
(303). These studies showed the cardioprotective effect of RES,
which was manifest in lowered left ventricular peroxidation and
enhanced antioxidant production, such as GSH and SOD, as well
as, reduced TNF-a levels (304) (Table 1 and Figure 2). Another
study showed RES inhibition of TLR4/NF-kB signaling in an
ischemic injured rat heart model, which is confirmed by TLR4
and NF-kB downregulation, and reduced myocardial TNF-a
production (303) (Table 1 and Figures 1 and 2).

Through epigenetic mechanisms (Table 1 and Figure 3), RES
attenuated LPS-mediated inflammation in RAW264.7
macrophages through downregulating miR-155 and
concurrently boosting, SOCS1 expression, leading to the
inhibition of the inflammatory factors, TNF-a, IL-6, MAPKs
(149). Additionally, Tili et al. showed another mechanism by
which RES modulates AP-1 activity in THP-1 human monocytes
through downregulating miR-155 (150). RES also downregulated
miR-21 in different in vitromodels (151). Li et al. introduced the
inhibitory effect of RES on miR-21 expression in human
glioblastoma (U251) cells, leading to a reduction in IkB
phosphorylation and NF-kB activity (305). In RAW 264.7
murine macrophages, Bigagli et al. depicted the suppressive
effect of RES on miR-146a, which targets the transcription
factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
responsible for inhibiting proinflammatory mediators. Nfr2
was also positively modulated by the RES in LPS-stimulated
macrophages (306). These findings indicate that RES modulatory
effect on these miRNAs can be regarded as a buffering effect
against physiological imbalance. Besides miRNAs, RES caused an
increased DNMT activity, especially in DNMT3a and DNMT3b
expression in the retinal epithelial cell line, ARPE-19 (152). This
RES-mediated DNA hypermethylation results in a reversal of
oxidative stress and inflammation-dependent changes (152). In
addition to regulation of NF-kB and MAPKs signaling cascades,
RES could inhibit inflammation through regulating histone
deacetylation-dependent gene expression (153, 307). RES
deacetylates the promoter region of matrix metalloproteinase 9
(MMP9), which in turn downregulates the expression of MMP9,
an endoproteinase that is involved in inflammation-induced
tissue remodeling and is activated by MAPK, c-Jun N-terminal
kinases (JNK), and NF-kB binding (153, 154). Furthermore,
independent of its histone deacetylase activity, RES could
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TABLE 1 | The anti-inflammatory mechanism(s) of phytochemicals and their associated epigenetic modifications/effect.

Origin Anti-inflammatory mechanism Epigenetic
modifications

Epigenetic modification effect

RES phenolic stilbene derivative
obtained from grape skins,
berries and peanuts (124,
132).

It inhibits TLR4 and MyD88 expression in activated RAW
264.7 macrophages (142, 143)
It inhibits NF-kB, MAPK, IRF-3 and AP-1 transcription
factors, as well as, iNOS, COX-2, and 5-LOX enzymes
(124, 143–147).
It reduces NF-kB induced proinflammatory cytokines,
including TNF-a, IL-6, and IL-1b, and the free radicals,
NO and ROS, and LTs and PGs levels (124, 132, 140,
142, 147–148).
It inhibits TLR4/NF-kB signaling in ischemic injured rat
heart model, and reduces myocardial TNF-a production
(148).

It downregulates miR-
155 in RAW264.7
(149).
RES downregulated
miR-21 in human
glioblastoma and in
different in vitro models
(150, 151).
RES suppresses miR-
146a in RAW 264.7
macrophages (151).
RES increased DNMT
3a and 3b expression
in the retinal epithelial
(ARPE-19) cell line
(152).
RES deacetylates the
promoter region of
MMP9
endoproteinase.
RES targets HDAC
complexes (104–106)

Upregulation of SOCS1 expression,
and inhibits the inflammatory
factors, TNF-a, IL-6, MAPKs (149).
It modulates AP-1 activity in THP-1
human monocytes (150)
Reduction in IkB phosphorylation
and NF-kB activity (150).
Modulation of Nfr2 in
LPS-stimulated macrophages
(151).
RES-mediated DNA hyper-
methylation reversed oxidative
stress and inflammation-dependent
changes (152).
Downregulation of MMP9
expression, and suppress
inflammation-induced tissue
remodeling (153, 154).
Regulation of JNK and NF-kB
activity.

CUR A polyphenolic-yellow pigment
that is obtained from turmeric
(Curcuma longa) (155, 156).

It inhibits lipid peroxide formation and lysosomal
enzymes (157, 158).
It attenuates oxidative stress during inflammation by
activating the Nrf2-Keap1 pathway and increasing the
activity of antioxidant enzymes (159).
It increases the activity of serum antioxidants (e.g. SOD
and GSH), and it scavenges ROS and RNS (156, 160–
163). It inhibits iNOS, 5-LOX, COX-1 and COX-2 (132).
It modulates TLR4 and MyD88 pathways in
macrophages via blocking NF-kB activation (164, 165).
It inhibits MAPK and AP-1 activation and IkB-a
phosphorylation (166, 167).
It binds non-covalently to MD-2 and inhibits both
MyD88-dependent and TRIF-dependent pathways (168–
170).
It inhibits M1 macrophage polarization by TLR4
downregulation (171).
It inhibits TNFa, IL-1b, and IL-6 proinflammatory
cytokines, as well as, ICAM-1 cell adhesion molecule
(124, 147, 171, 172).

It downregulates miR-
155 in LPS-induced
RAW 264.7
macrophages (173,
174).
It reduced miR-21 and
miR-155 in clinical
studies.
CUR inhibits p300
HAT in CVD
experimental models
(175–177).
It inhibits HDAC I
activity in cardiac cells
(178).
It inhibits HDAC I and
HDAC III (179).
It inhibits DNMTs in
non-alcoholic fatty liver
disease (180, 181).

Degradation of PI3K/AKT pathway
(174)
Suppression of AKT and JNK
proliferation kinases, AP-1
transcription factor, and decreased
NF-kB activation, TNF-a and IL-6
synthesis (182, 183).
Reduction of histone acetylation on
the promoter regions of GATA4,
and suppression NF-kB-dependent
inflammation.
Increasing TIMP1 gene expression,
downregulating MMP2, and
attenuating cardiac fibrosis and
inflammation (178).
It suppresses NF-kB activity in
human hematopoietic Raji cells
(179).
It represses DNA hypermethylation
at PPARa promoter and thus
upregulates PPARa expression
and reduced liver cell death (180,
181).

Quercetin A plant flavonoid, quercetin
found in citrus fruits, apples,
onions, red grapes and tea
(184, 185).

It negatively regulates LPS-induced TLR4 expression
and signaling, prevents NF-kB translocation, and inhibits
COX-2 and iNOS expression in macrophages and
human PBMCs (166, 186, 187).
It significantly reduces proinflammatory cytokines
production by suppressing the activation of ERK and
p38 MAP kinase, and NF-kB/IkB signaling pathways in
LPS-activated macrophage (188).
It inhibits NF-kB pathway via activating Nrf2 signal
transduction cascade (120).

It decreases miR-155
expression (120, 189).
It increases miR-146a
expression.
It attenuates p300/
HAT-mediated
signaling in breast
cancer cells
attenuating (190).

Inhibition of NF-kB activation, and
downregulation of TNF-a, IL-6, and
IL-1b proinflammatory cytokines
(120, 189).
Reduction of NF- kB, and
downregulation of TNF-a, IL-6 and
IL-17 (151, 191, 192).
Suppressing COX-2 expression,
and showing a protective effect
against inflammation-dependent
cancer (190).

API A plant-derived flavonoid
abundant in many fruits and
vegetables, including parsley,
celery, and chamomile tea
(193, 194).

It reduces the levels of NO, TNF-a, IL-6, IL-1b and PGs
via inhibiting iNOS, NF-kB and COX-2 activity in several
in vitro and in vivo LPS-induced inflammation models
(148).
It reduces oxidative stress, downregulates the TLR4/NF-
kB signaling pathway, decreases IL-6 and TNF-a levels,

It downregulates miR-
155 by inhibiting NF-
kB In LPS-induced
macrophages (199).
It decreases the
expression of DNMT1,

Upregulation of an NF-kB inhibitor,
FOXO3a and TNF-a suppressor,
SMAD2 (201, 202).
It increased Nrf2 mRNA and
protein expression in JB6 P+ skin
epidermal cells (200).
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TABLE 1 | Continued

Origin Anti-inflammatory mechanism Epigenetic
modifications

Epigenetic modification effect

and inhibits mitochondria-mediated neuron apoptosis
(195).
It acts as potent M1–M2 modulator in adipose tissue
macrophages by blocking the inflammatory processes
via PPARg, and it suppresses obesity-related
inflammation (196, 197).
It inhibits COX-2 and NF-kB gene expression in LPS-
mediated acute lung injury (198).

DNMT3a, DNMT3b, as
well as, some HDACs
(200).

Genistein An isoflavonoid obtained from
soy-based foods, red clover
and legume (203).

It prevents endothelial inflammatory damage by blocking
NF-kB and downregulating IL-6, and ICAM-1 (204).
It reverses angiotensin II-induced atherosclerotic
inflammation through suppressing the expression of NF-
kB, and the phosphorylation of ERK1/2 and p-38 (205).
It hinders TLR4 dimerization, abolishing MyD88 or TRIF
dependent pathways and inactivating NF-kB, which
downregulates proinflammatory cytokines (206).
It activates Nrf2 pathway, accounting for its antioxidant
activity (206).
It suppresses LPS-induced NF-kB activation by
targeting AMPK in macrophages (207).

It suppresses miR-
155/SOCS1 (208).

Inhibition of NF-kB signaling and
Reversal of ox-LDL-induced
inflammation in HUVECs cells
(208).

EGCG A catechin- polyphenol, mainly
found in green tea, onions,
apple skins, and plums (209).

It suppresses LPS-induced TLR4 signaling, and reduces
the receptor expression (210).
It activates NRF2, and protect cells from inflammation-
induced oxidative stress (211).
It attenuates airway inflammation by reducing immune
cells infiltration and induced levels of TNF-a, IL-2, and
IL-6 in asthmatic mice (212).
It protects neuronal cells from microglia-induced
cytotoxicity by suppressing amyloid b-induced TNFa
release (213).

It regulates p300 HAT
and HDACs I and II
differential binding at
promoter regions of
NF-kB subunit p65
gene (214).

Decrease in proinflammatory genes
expression in stress-induced
endothelial cells, and reduces
atherosclerosis and fibrogenesis
(214–216).

Emodin An anthraquinone compound
that is abundant in buckthorn,
knotweed and rhubarb (217).

It inhibits induced TLR4, MyD88 and TRAF6 expressions
in inflammatory pneumonia model, and decreases p38/
JNK MAPK phosphorylation and NF-kB p65 nuclear
translocation, yet activates Nrf2 pathway, thereby
suppressing inflammation (218).
It blocks the nuclear translocation of STAT1, IRF5, and
NFkB-p65 in M1 macrophages, while inhibits STAT6
and IRF4 in M2 macrophages (219).
It restores the balance between M1 and M2
hyperpolarization in macrophages (219).

It increases H3K27
trimethylation at the
promoter regions of
iNOS, TNF-a, IL6 and
IRF4 in macrophages
(219).
It decreases HDAC I
and II activity and
increases histone
acetylation (220).

Downregulation of iNOS, TNF-a,
IL6 and IRF4 in activated
macrophages (219).
It blocks NF-kB in cardiac
myocytes through HDAC inhibition
and increasing histone acetylation
(220, 221),
It blocks pyroptosis by attenuating
NOD-, LRR- and NLRP3
inflammasome pathway in hypoxic-
induced heart cells (221).
It prevents cardiac dysfunction in
pre-clinical animal models of heart
failure (222–225).

ACNs A flavonoid found in berries,
grapes, and potatoes (27).

ACNs ameliorate neuroinflammation by decreasing TLR4
expression and inactivating NF-kB, reducing
proinflammatory mediators, such as iNOS and TNF-a
(226).
They inhibit oxidative stress by activating the Nrf2/HO-1
signaling pathway (227).
They attenuate fatty liver and inflammation (228, 229).
They enhance metabolic activity (230–232).

They induce histone
H3 acetylation at lysine
residues K9, K14 and
K18 in fibrosis-related
genes in liver.
They modulate HDAC
and HAT activity (233–
235)

Decrease in liver fibrosis in rats
exposed to carbon tetrachloride
(236, 237).
They attenuate proinflammatory
TNF-a signaling and gene
expression in mice liver (238).

EA A polyphenolic compound
widely spread in fruits,
including raspberries and
strawberries, mushrooms, and
nuts (239).

EA reduces inflammatory response and oxidative stress
by inhibiting TLR4 and activating Nrf2 (240).
It reverses inflammation and adiposity (241–244) by
mitigating the activity of NF-kB (243).
It attenuates adipogenesis and adipocyte function by
suppressing PPAR- g (245–248).

It inhibits the activity of
CARM1
methyltransferase
enzyme (249–251).
It attenuates
differentiation-induced
hyper-demethylation of
histone 3 arginine 17
in human adipose-

It reduces inflammation processes
mediated by either NF-kB or
metabolic dysfunction (249–251).
It attenuates excess adipose tissue
accumulation and downstream
inflammation and metabolic
impairment (252).
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TABLE 1 | Continued

Origin Anti-inflammatory mechanism Epigenetic
modifications

Epigenetic modification effect

derived stem cells
(245).

Tanshinone
IIA

A diterpenoid, extracted from
the root of Salvia miltiorrhiza
Bunge (Danshen) (253).

It suppresses p38 MAPK signaling pathway, and
reduces arrhythmogenesis following myocardial
infarction, and enhances cardiac function (254, 255).
It inhibits the expression of TLR4, MyD88, GM-CSF, IL-
1b, TNF-a, and COX-2, and attenuates LPS-mediated
TLR4-NF-kB pathway activation (256, 257).

It reduces miR-155
expression (256–258).
It inhibits over-
expressed miR-146
and miR-155 (259).
It targets miR-155
induced levels in LPS-
induced macrophages
(260).
It inhibits the protein
levels of DNMT1,
DNMT3a, DNMT3b, as
well as, HDAC3 and
HDAC activity, at Nrf2
promoter and reduces
its methylation (261).

Reduction in LPS-induced
inflammation process.
Relative inhibition of the levels of
inflammatory markers, namely
CRP, ox-LDL, CCL-2, CD40,
and MMP-2, as well as the
proinflammatory cytokines, IL-1b,
IL-6, IL-12, and TNF-a in gingivalis-
induced atherosclerosis (259).
It suppresses the proliferation of
inflammation-induced colon cancer
cells (260).
It increases Nrf2 expression and its
downstream targets, and inhibits
TPA-induced JB6 cells
transformation (261).

Carvacrol
Thymol

Monoterepnoids derived from
the essential oil of Origanum
vulgare L. or wild bergamot
(253).

Car/Thy reduce the activation of TLR4/NF-kB signaling
pathway, whereas increase SOD1 and GSH antioxidants
through Nrf2 Activation, attenuating oxidative damage
(262, 263).
They suppress allergic inflammation associated with
asthma

Car/Thy downregulate
miR-155, miR-146a,
and miR-21 (264),.

They reduce TLR4 induced
expression and reverse miRNA-
mediated suppression of SOCS1
and SHIP1 negative regulators
(264).

BAs Active ingredient derived from
boswellic acids that are
extracted from oleo-gum-resin
of Boswellia serrata (265, 266).

It attenuates LPS-induced neuroinflammation (265).
They downregulate TLR4 receptor and MyD88
expression, and suppress NF-kB p65 and p-JNK in
hepatotoxicity (267).
BAs upregulate Nrf2 and HO-1 expression, thereby
protect liver from induced oxidative injury (268).
BAs exhibit neuroprotective effect by modulating Nrf2/
HO-1 pathway (269).

They reduce miR-155
expression levels in
chronic inflammatory
disorders (265).

They suppress IkB-a expression
levels, whereas increases SOCS-1,
resulting in decreased apoptotic
activity and amyloid protein
genesis, and eventually attenuate
chronic inflammation (265).

SFN An isothiocyanate compound
hydrolyzed from its precursor,
glucoraphanin, and found in
cruciferous vegetables from
the Brassicaceae family,
including broccoli, cabbage,
cauliflower, and kale (270, 271)

It targets monocytes/macrophages lineage and
stimulates Nrf2 pathway in chronic inflammatory
diseases (272, 273).
It activates Nrf2 pathway, and reduces NF-kBNF-kB
expression and AP-1, thus restoring endogenous
antioxidant levels and reducing inflammatory damage in
autoimmune encephalomyelitis mice model (274–279).
It acts as an indirect antioxidant, and upregulates some
phase II enzymes by enhancing Nrf2 activity (271, 280–
283).
It suppresses the direct binding between NF-kB and its
DNA consensus sequence, and thus suppresses LPS-
induced levels of TNF-a, iNOS, and COX-2 in
macrophages (168, 271, 284–286).
It suppresses both ligand-induced and ligand-
independent oligomerization of TLR4 in macrophages
(287).
It antagonizes LPS binding to TLR4/MD-2 complex by
selectively competing on MD-2 (168, 284, 285, 287,
288).
It prevents inflammation-related carcinogenesis (274).

It downregulates
induced miRNA-155
and 146a levels in
LPS-stimulated
RAW264.7
macrophages (289,
290).
It targets DNA
methylation (291–295).
It targets DNMT, and
suppresses mediated-
DNA hypermethylation
at Nrf2 promoter
region (296).

Suppression of LPS-induced
inflammation in macrophages and
NF-kBNF-kB signaling attenuation
(289, 290).
Inhibition of Inflammation, and
dependent chemopreventive effects
(291–295).
Increased Nrf2 expression and
subsequently, decreased
neurological inflammation, as well
as inflammatory-associated
cytokines, IL-6 and IL-1b (296).

AITC An isothiocyanate derived from
its precursor sinigrin, and is
abundant in different brassica
species such as mustard,
wasabi, and horseradish (120).

It enhances the nuclear translocation of Nrf2, and
represses the expression of NF-kB; subsequently, it
upregulates HO1 levels, and suppresses inflammation
(120).

It represses miR-155
levels
in murine RAW 264.7
macrophages (120).

Modulation of NF-kB and Nrf2
signaling pathways, and lowering
of induced levels of iNOS, TNF-a,
and IL-1b, thus attenuating
inflammation (120, 289)

CA A conjugated aromatic
aldehyde isolated from
Cinnamomum cassia Presl
bark (253).

It decreases NF-kB activity, and downregulates the
levels of COX-2 and iNOS, and the proinflammatory
cytokines, TNF-a, IL-1b, and IL-6, and other factors,
such as ROS, NO, and PCs; in addition to NLRP3

It decreases the
expression of miR-155
and miR-21 in
macrophages (253).

Suppression of IL-1b and IL-6
inflammatory markers in
macrophages, and dependent-
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attenuate MMP9 activity, because this stilbene is known to
inhibit JNK and NF-kB (308, 309). Moreover, JNK and NF-kB
have been shown to be regulated by HDAC complexes, which
suggests that RES can also regulate the activity of these molecules
by acting on HDACs (104–106). Although RES showed positive
outcomes in animal studies time and again, these results have not
been well translated in clinical trials (27).

Curcumin
Curcumin (CUR) is another naturally polyphenol. It is found as a
yellow pigment that is obtained from turmeric (Curcuma longa),
a flowering plant of the ginger family (155, 156). Traditionally,
CUR is widely used in food as a curry coloring or flavoring spice
(132). The phenolic compound exerts diverse bioactive effects; it
has anti-bacterial, anti-inflammatory, antioxidant and anticancer
functions (124, 310–313). Although CUR has a great many
therapeutic benefits. Its main advantage lies in its antioxidant
and anti-inflammatory effects (314, 315). CUR supplements are
usually taken three times per day, with a dosage of 400–600 mg,
and even with no side effects on kidney or liver when taken up to
12 g/day (316, 317). Only at very high doses, it may cause
stomach upset with extended use, and gastric ulcers (132). CUR
is usually combined with enhancing agents, such as piperine, to
overcome its poor absorption and low bioavailability (318–320).
Over 100 clinical trials on the anti-inflammatory activity of CUR
have been published in PubMed, showing the significance of
CUR in multiple inflammatory disorders, such as rheumatoid
arthritis, inflammatory bowel diseases, nephropathies, and some
cancers (124, 314).

CUR Mechanisms of Action as an
Anti-Inflammatory Agent
CUR has a pleiotropic mechanism of action against
inflammation (157) (Table 1, Figures 1 and 2). Firstly, it has
powerful antioxidant activity that inhibits lipid peroxide
formation and lysosomal enzymes, such as acid phosphatase
and cathepsin D (157, 158). CUR attenuates oxidative stress
during inflammation by activating the Nrf2-Keap1 pathway and
increasing the activity of antioxidant enzymes (159) (T1 &
Figures 1 and 2). By increasing the activity of serum
antioxidants such as superoxide dismutase (SOD) and
glutathione peroxidase (GSH), CUR scavenges different free
radicals, including reactive oxygen and nitrogen species (ROS
and RNS), and peroxyl radicals (156, 160–163). CUR can also
Frontiers in Immunology | www.frontiersin.org 11
inhibit different ROS-generating enzymes, such as iNOS, COX
system (COX-1 and COX-2), and 5-LOX, and suppresses the
activity of several PGs (132) (Table 1 and Figure 2). Therefore,
CUR can be considered a natural alternative to NSAIDs for
inflammation (132, 140, 156). Secondly, CUR has a potent anti-
inflammatory effect that derives from its modulation of TLR4
and MyD88 pathways in macrophages and evidenced by
blocking NF-kB activation (164, 165) (Table 1 and Figures 1
and 2). CUR inhibits the activation of MAPK and AP-1
transcription factors, and also IkB-a phosphorylation and
degradation (166, 167) (Table 1 and Figures 1 and 2). On top
of that, CUR has been suggested to non-covalently bind MD-2 (a
lymphocyte antigen responsible for LPS binding to TLR-4),
which results in a competition with LPS for the TLR4/MD-2
complex that leads to the inhibition of both MyD88-dependent
and TRIF-dependent pathways (168–170) (Table 1 and Figures
1 and 2). Interestingly, CUR inhibited M1 macrophage
polar izat ion in a dose-dependent manner through
downregulating the expression of TLR4 (171) (Table 1 and
Figure 1). These antagonistic effects to TLR4 signaling
pathways and its downstream mediators are followed by an
inhibition of proinflammatory cytokines, including TNFa, IL-
1b, and IL-6 (124, 147, 171, 172) (Table 1 and Figure 2).
Research studies suggest that CUR pretreatment protects
against T cell-mediated hepatitis in mice and that the
significant effect of CUR may be partly through inhibiting the
expression levels of TLR2, TLR4 and TLR9 in the liver (321).
Furthermore, CUR blocks the expression of cell adhesion
molecules, such as ICAM-1, which are involved in the
interaction between leukocytes and endothelial cells (124, 322)
(Table 1).

Post-transcriptionally (Table 1 and Figure 3), on the miRNA
level, several studies on RAW 264.7 macrophages revealed the
significant inhibitory effect of CUR on miR-155, which is a key
transcriptional regulator of TLR4-mediated inflammatory
reactions (173, 174). In vivo and in vitro reports confirmed the
downregulation of miR-155 expression by CUR through
degrading phosphoinositide 3-kinase PI3K/AKT pathway after
LPS stimulation (174). In clinical studies, daily intake of CUR
decreased miR-21 and miR-155 expression. This decrease was
followed by a suppression of AKT and JNK proliferation kinases,
and the transcription factor AP-1, which attenuated
inflammation via decreased NF-kB activation, TNF-a and IL-6
synthesis (182, 183).
TABLE 1 | Continued

Origin Anti-inflammatory mechanism Epigenetic
modifications

Epigenetic modification effect

inflammasome, and thus mitigates inflammation
symptoms in macrophages and different in vitro and in
vivo LPS-induced inflammation models (147, 148, 253).
It disrupts TLR4/MD-2 heterodimer via covalent adducts
formation (169, 297).
It inhibits LPS-induced oligomerization of TLR4 receptor
(298).
It activates Nrf2 pathway (299).

protection against ulcerative colitis
(300).
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At the epigenetic level, CUR exhibits pleiotropic mechanisms
to regulate multiple molecular targets (27) (Table 1 and Figure
3). Knowing that NF-kB activity is regulated, in part, through
p300 HAT-dependent actions (104). One target involves the
regulation of histone acetylation by CUR-mediated p300
inhibition in CVD experimental models (175–177). This
inhibition reduces histone acetylation on the promoter regions
of the cardio pro-hypertrophic gene, GATA binding protein
(GATA4), a protein which mediates inflammation through NF-
kB -dependent mechanisms (177, 323, 324). Besides its HAT
inhibitory actions, CUR has also been involved in the inhibition
of inflammation-induced cardiac remodeling through inhibiting
HDACs (178). Through inhibiting HDAC1 activity and thus,
increasing histone acetylation at the promoter region of tissue
inhibitor of metalloproteinase 1 (TIMP1), CUR increased
TIMP1 gene expression and, therefore, attenuated cardiac
fibrosis and inflammation (178). By increasing the expression
of TIMP1, CUR reduced the expression of the TIMP1 inhibitory
target, called metalloproteinase 2 (MMP2), which contributes to
inflammatory signaling (178, 325). Another study by Marquardt
and colleagues revealed that CUR inhibits the activity of NF-kB
in human hematopoietic Raji cells via inhibition of histone
deacetylase, HDAC1 and HDAC3 (179). In addition to histone
acetylation, CUR was shown to repress DNA hypermethylation
at CpG sites within the promoter region of peroxisome
proliferator-activated receptor-alpha (PPARa) by inhibiting
DNMTs in a non-alcoholic fatty liver disease, which results in
upregulated PPARa expression and reduced liver cell death (180,
181)., PPARa, a transcription factor that predominates in the
liver, regulates the expression of genes involved in inflammation
and several metabolic processes (326–330).

Quercetin
A plant flavonoid, quercetin (3, 3′, 4′, 5, 7-pentahydroxyflvanone) is
found in citrus fruits, apples, onions, red grapes and tea (184, 185).
This phenolic compound exhibits an anti-inflammatory,
antioxidant, chemopreventive and neuroprotective properties
(331). The estimated dosage ranges from 50 to 800 mg/day,
which is mainly dependent on dietary habits (332). The anti-
inflammatory potential of quercetin can be discerned in different
cell types of both animal and human models (333). Quercetin plays
a modulatory, biphasic and regulatory action in inflammation and
immunity, and possesses an immunosuppressive effect on dendritic
cell function (334, 335).

Quercetin Mechanism of Action as an
Anti-Inflammatory Agent
Quercetin negatively regulates LPS-induced TLR4 signaling
(Table 1, Figures 1 and 2). It reduces TLR4 expression and
prevents NF-kB translocation to the nucleus in macrophages and
human PBMCs, thereby ameliorating the inflammatory response
(166, 186, 187, 336). Also, it inhibits COX-2 and iNOS gene
expression in vitro, and significantly reduces the production of
proinflammatory cytokines via MAP kinases and NF-kB
pathway in LPS-activated macrophages (188). In this highlight,
Cho et al. show that this flavonoid suppressed the activation of
phosphorylated ERK kinase and p38 MAP kinase (not JNKMAP
Frontiers in Immunology | www.frontiersin.org 12
kinase), and inhibited NF-kB activation by stabilizing the NF-
kB/IkB complex in LPS-treated RAW 264.7 macrophages (188).

Few reports have addressed the modulation of inflammatory-
related miRNAs by quercetin (184) (Table 1 and Figure 3). The
effect of quercetin and its main metabolites on miR-155 have
been evaluated in LPS-stimulated macrophages. It has been
reported that quercetin and its metabolite, known as
isorhamnetin, downregulate the mRNA and protein levels of
the proinflammatory mediators, including TNF-a, IL-6, and IL-
1b by decreasing the expression of miR-155, which represents a
mechanism by which this polyphenol may inhibit the activation
of NF-kB, contributing to the containment of the inflammatory
process (120, 189). These two compounds can also indirectly
inhibit the NF-kB pathway through activating the Nrf2 signal
transduction cascade (120) (Table 1 and Figure 2). Nonetheless,
the direct activity of miR-155 on Nrf2 signaling remains a
promising area for further investigations in order to determine
whether Nrf2 signaling might be directly affected by miR-155. In
this context, Saadatmandi et al. revealed that miR-155 targets
Bach1, a Nrf2 signaling repressor (189). Furthermore, quercetin
has been shown to upregulate miR-146a, which is followed by a
reduction in the levels of NF-kB and the downregulation of TNF-
a, IL-6 and IL-17 (151, 191, 192). Additionally, quercetin’s
protective effect on inflammation-dependent cancer was
evident in its suppression of COX-2 in breast cancer cells via
its attenuation of p300/HAT-mediated signaling (190) (Table 1
and Figure 3).

Apigenin
Apigenin (API, 4’,5,7-dihydroxyflavone) is a plant-derived
flavonoid abundant in many fruits and vegetables, including
parsley, celery, and chamomile tea (193, 194). This compound is
widely used as an anti-inflammatory agent, and it also has
anticancer and cardioprotective properties (337, 338).

Apigenin Mechanism of Action as an
Anti-Inflammatory Agent
In different in vitro and in vivo inflammation models induced by
LPS, API causes a reduction in the levels of NO, TNF-a, IL-6, IL-1b
and PGs through the inhibition of iNOS, NF-kB and COX-2
activities (148) (Table 1 and Figures 1 and 2). A number of
recent studies have highlighted the importance of API as a potent
M1/M2 modulator, downregulating NO production and
proinflammatory cytokines (197, 339). Favoring M2 polarization,
API can also block the inflammatory processes in adipose tissue
macrophages through PPARg (196) (Table 1). In obese animal
models, it plays a role in suppressing obesity-related inflammation
(197). Balex et al. showed that API exerts its anti-inflammatory
activity in LPS-mediated acute lung injury through inhibiting the
gene expression of COX-2 and NF-kB (198) (Table 1 and Figures 1
and 2). Whereas, Zhao et al. revealed API effect in neuro-
inflammation; it reduces oxidative stress, downregulates the
TLR4/NF-kB signaling pathway, decreases the levels of IL-6 and
TNF-a, and inhibits mitochondria-mediated neuron apoptosis
(195) (Table 1 and Figures 1 and 2). In LPS-induced
macrophages, miR-155 is downregulated by API treatment
through inhibiting NF-kB (199) (Table 1 and Figure 3). Another
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study showed that succeeding miR-155 suppression by API, an
observed upregulation of two miR-155 targets, namely FOXO3a
(Forkhead Box O3a), an inhibitor of NF-kB, and SMAD2 (smooth-
muscle-actin and MAD-related proteins 2), a suppressor of TNF-a
and iNOS inflammatory molecules (199, 201, 202). In addition to
miRNA-related epigenetic modifications, API successfully
demethylated the promotor region of Nrf2, resulting in an
increased Nrf2 mRNA and protein expression in JB6 P+ skin
epidermal cells. This effect was mediated through a reduction in
the expression of the epigenetic proteins, DNMT1, DNMT3a,
DNMT3b, as well as some HDACs (200) (Table 1 and Figure 3).

Genistein
An isoflavonoid, Genistein is primarily obtained from soy-based
foods, red clover and legumes (203). Amongst many isoflavones,
genistein is widely recognized for its antioxidant and anti-
inflammatory functions, as well as, its anticancer and anti-
proliferative activity (340). This compound has been
successfully utilized as an immunosuppressive agent in vitro
and in vivo (341). Unfortunately, the oral bioavailability of
genistein and its plasma concentrations were very low in vivo,
which might affect its efficacy, and interfere with the consistency
of its pharmacological results in clinical trials (342–345).

Genistein Mechanism of Action as an
Anti-Inflammatory Agent
Genistein prevented endothelial inflammatory damage by
blocking NF-kB and the expression of the proinflammatory
cytokine, IL-6, and adhesion molecule, ICAM-1 (204) (Table 1
and Figures 1 and 2). A recent study by Xu et al. highlighted the
inhibitory effect of genistein on angiotensin II-induced vascular
Frontiers in Immunology | www.frontiersin.org 13
smooth muscle cell inflammation, in which angiotensin II
induced the expression of NF-kB, C-reactive protein (CRP),
and the phosphorylation of ERK1/2 and p-38, leading to
atherosclerotic inflammation, which is reversed after genistein
treatment (205) (Table 1 and Figures 1 and 2). Moreover, this
isoflavonoid compound enhanced PPAR-g expression,
displaying a cardiovascular protective property via the
regulatory crosstalk between p38/ERK1/2-PPARg-NFkB
signaling pathways (205). Another study linked the inhibitory
effect of Genistein on LPS-mediated NF-kB activation in
macrophages to the activation of adenosine monophosphate
kinase (AMPK), which lead to repression of inflammation
(207) (Table 1). Besides, Genistein is involved in hindering
TLR4 dimerization, and thus abolishes MyD88 or TRIF
dependent pathways, inactivating NF-kB and inhibiting its
translocation into the nucleus, which, in turn, prevents
proinflammatory cytokines transcription (206) (Table 1 and
Figures 1 and 2). In line with its anti-inflammatory properties,
Genistein possesses notable anti-oxidant activities via activating
Nrf2/NQO1 pathway (206) (Table 1 and Figure 2).

Similar to the previously mentioned polyphenols, genistein
plays a role in modulating TLR4-responsive miRNAs. Through
miR-155/SOCS1-mediated suppression of the NF-kB signaling,
genistein reversed ox-LDL-induced inflammation in human
umbilical vein endothelial cells (HUVECs) (208) (Table 1 and
Figure 3).

Epigallocatechin-3-Gallate (EGCG)
One of the most popular polyphenolic catechinsis EGCG, which
is mainly found in green tea, onions, apple skin, and plums (209).
There is an emerging group of evidence on its biological activity
FIGURE 3 | The epigenetic mechanisms involved in the regulation of TLR4 signaling pathway by phytochemicals. Created with Biorender.
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where it was found to exert remarkable anti-inflammatory,
antioxidant, anticancer, and antiangiogenetic effects (346–350).
A number of reports introduced the prominent anti-
inflammatory effect of EGCG (351).

EGCG Mechanism of Action as an
Anti-Inflammatory Agent
EGCG has been reported to suppress LPS-induced TLR4
signaling, and to reduce the receptor expression (210) (Table 1
and Figures 1 and 2). A potent activator of Nrf2, EGCG plays a
critical role in inflammation-induced oxidative stress (211)
(Table 1 and Figure 2). A recent study showed that EGCG
attenuated airway inflammation in asthmatic mice by
significantly reducing asthmatic symptoms, including
inflammatory cell infiltration, and inflammatory induced levels
of TNF-a, IL-2, and IL-6 (212). Another report highlighted the
cytoprotective role of EGCG on neuronal cells against microglia-
induced cytotoxicity and in suppressing amyloid b-induced
TNF-a release (213).

Epigenetically, EGCG was also reported to mediate
inflammation by regulating histone acetylation (214) (Table 1
and Figure 3). For example, a study by Liu and colleagues
showed that EGCG regulated p300 and HDACs I and II
differential binding at promoter regions of the NF-kB subunit
p65 gene, and, consequently, decreased proinflammatory gene
expression in stress-induced endothelial cells (214). It should be
duly noted that endothelial cells may become impaired due to
persistent inflammation, resulting in atherosclerosis and
fibrogenesis (215, 216). Since NF-kB inflammatory action is
dependent on p300-, HDAC1- and HDAC2-mediated actions
(103, 104), EGCG, therefore, successfully prevents inflammation
in endothelial cells via regulating histone acetylation at
proinflammatory gene promoters (214). Collectively, this data
outlines the anti-inflammatory activity of EGCG in regulating
both inflammation homeostasis and cardiac function via histone
acetylation-dependent mechanisms.

Emodin
Emodin is an anthraquinone that is abundant in plants, such as
buckthorn, knotweed and rhubarb (217). As a traditional
Chinese medicine, emodin has been used for viral and bacterial
infections, and for kidney and gastrointestinal disorders (27).

Emodin Mechanism of Action as an Anti-Inflammatory
Agent
Emodin significantly inhibits induced TLR4, MyD88 and TRAF6
expressions in inflammatory pneumonia model, and decreases
p38/JNK MAPK phosphorylation and NF-kB p65 nuclear
translocation, whereas it activates Nrf2 pathway, thereby
suppressing inflammation (218) (Table 1 and Figure 1).
Emodin also blocks the nuclear translocation of signal
transducer and activator of transcription 1 (STAT1), IRF5, and
NF-kB-p65 in M1 macrophages, whereas it inhibits STAT6 and
IRF4 in M2 macrophages (219). Macrophage hyperpolarization
into either M1 or M2 phenotype is detrimental (352, 353). Most
phytochemicals usually target M1 hyperpolarized macrophages.
However, emodin is able to restore the balance between M1 and
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M2 hyperpolarization through epigenetic balancing of
macrophage activation (219).

At the epigenetic level (Table 1 and Figure 3), recent reports
showed that emodin increases H3K27 trimethylation in activated
macrophages (219). This was evident at the promoter regions of
the inflammatory signaling genes, iNOS, TNF-a, IL-6 and IRF4
in macrophages, to the end result of a reduction in their
expression (219). Pertaining to its chelating properties, emodin
is considered an HDAC inhibitor that chelates zinc ions within
HDAC catalytic domains, thus regulating proinflammatory
signaling cascades (354). It, therefore, increases histone
acetylation by decreasing HDAC I and II activities (220). For
instance, emodin was recently shown to block the
proinflammatory signaling molecule, NF-kB, and pyroptosis in
cardiac myocytes through HDAC inhibition, since NF-kB
activity is regulated by HDACs (220, 221). In this regard,
HDAC inhibition has been shown to prevent/reverse cardiac
dysfunction in pre-clinical animal models of heart failure (222–
225). Through this mechanism, emodin successfully attenuated
NOD-, LRR- and pyrin-domain containing protein 3 (NLRP3)
inflammasome pathway in hypoxic-induced heart cells (221),
noting that NLRP3 inflammasome is involved in the synthesis of
proinflammatory byproducts, and mediating inflammation-
induced cell death or pyroptosis (355).

Anthocyanins
Flavonoids with three phenolic rings, anthocyanins(ACNs) are
involved in food pigmentation, and are found in berries, grapes,
and potatoes (27). Recently, anthocyanin-rich foods have proved
their metabolic efficacy in humans (230–232), and have been
effectively used to alleviate fatty liver and inflammation
(228, 229).

Anthocyanins Mechanism of Action as an
Anti-Inflammatory Agent
Notably, ACNs ameliorate neuroinflammation by decreasing
TLR4 expression and inactivating NF-kB, reducing
proinflammatory mediators, such as iNOS and TNF-a (226).
They also inhibit oxidative stress by activating the Nrf2/HO-1
signaling pathway (227) (Table 1 and Figure 1).

Not only this, but also ACNs exhibit epigenetic modulation
capacity (Table 1 and Figure 3). Protecting the liver by
mediating changes in histone acetylation, anthocyanin-rich
extract induced histone H3 acetylation at lysine residues K9,
K14 and K18 and decreased liver fibrosis in rats exposed to
carbon tetrachloride (236, 237). Indeed, K9 and K14 acetylation
is essential for proper liver function (356). Therefore,
anthocyanins were able to decrease liver fibrosis by regulating
gene expression through histone acetylation. Another study
showed that ACNs modulate HDAC and HAT activities (233–
235). However, the link between anthocyanin-mediated histone
acetylation and HDAC or HAT activities remains unclear (236,
237). Notably, increased HAT activity and therefore,
hyperacetylation of H3K9/14 at the promotor site of TNF-a,
was shown to be associated with liver inflammation, leading to
fibrosis in obesity-induced mice (357). That’s why most
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phytochemicals exhibiting hepatoprotective properties are
dependent on HAT inhibition (358). In this context, ACNs
have been reported to attenuate proinflammatory TNF-a
signaling and gene expression in murine livers (238). Not only
this, but also they decrease HAT activity and, hence, TNF-a
signaling outside the liver (233). Nonetheless, future research
should be directed towards ACNs blocking effects of
inflammation-dependent liver fibrosis via HAT inhibition.

Ellagic Acid
A polyphenolic hydroxybenzoic acid derivative, ellagic acid (EA)
is widely present in fruits, like raspberries and strawberries, as
well as in mushrooms, and nuts (239). Indeed, EA treatment has
a potent anti-inflammatory activity; it has been shown to reverse
inflammation and adiposity (241–244).

Ellagic Acid Mechanism of Action as an
Anti-Inflammatory Agent
EA is known to reduce inflammatory response and oxidative
stress by inhibiting TLR4 and activating Nrf2 (240) (Table 1 and
Figure 1). Besides, EA has been previously reported to inhibit
coactivator-associated arginine methyltransferase-1 (CARM1)
activity, which is a methyltransferase enzyme involved in
metabolic dysfunction and NF-kB-mediated inflammation
(249–251) (Table 1 and Figure 3). Aside from CARM1
expression, EA remarkably attenuates differentiation-induced
hyperdimethylation of histone 3 arginine 17 in human
adipose-derived stem cells (245) (Table 1 and Figure 3).
Obesity and excessive adipose tissue accumulation are
common triggers of downstream inflammation and metabolic
impairment (252). In differentiated adipocytes, Kang et al.
showed that EA treatment suppressed PPAR-g, a CARM1
target and an important regulator of adipogenesis and
adipocyte function that is partially coactivated by CARM1-
mediated histone methylation (245–248). Therefore, the role of
EA treatment in repressing PPAR-gmay be beneficial in the long
term. In this regard, some reports have shown that the anti-
inflammatory activity of EA is, in part, PPAR-g-dependent (359).
From this perspective, further research is required to determine
its molecular targets, and to assess the extent of EA effectiveness
in chronic inflammation. It is also imperative if we are to better
understand how this polyphenolic compound exerts its anti-
inflammatory actions epigenetically.

Terpenoids
Tanshinone IIA
A lipophilic diterpenoid, Tanshinone IIA (Tan IIA) is extracted
from the root of Salvia miltiorrhiza Bunge (Danshen) (253).
Traditionally, this herb was used to promote blood circulation,
and a study by Shang et al. illustrated its cardioprotective actions
(360, 361). Injections of sodium Tan IIA sulfonate was as an
adjuvant in cardiovascular diseases in China (362).

Tan IIA Mechanism of Action as an
Anti-Inflammatory Agent
Tan IIA treatment has been indicated to suppress the p38 MAPK
signaling pathway, thus reducing arrhythmogenesis and
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mortality incidences following myocardial infarction, and
enhancing cardiac function (254, 255) (Table 1 and Figure 1).
Additionally, this diterpenoid significantly inhibits the
expression of several inflammatory mediators, such as TLR4,
MyD88, GM-CSF, and proinflammatory cytokines, including IL-
1b, TNF-a, and COX-2, thereby attenuating LPS-mediated
TLR4/NF-kB pathway activation (256, 257). One of the most
important mechanisms for inhibiting inflammation by Tan IIA is
through reducing miR-155 expression, which is an upstream
regulator in the process of inflammation (256–258) (T1 & Figure
3). Tan IIA successfully downregulated the levels of
inflammatory factors, namely, CRP, ox-LDL, C-C Motif
Chemokine Ligand 2 (CCL-2), cluster of differentiation 40
(CD40), and matrix metalloproteinase-2 (MMP-2), as well as
the proinflammatory cytokines, IL-1b, IL-6, IL-12, and TNF-a
that were induced by Porphyromonas gingivalis infection (259).
This inhibitory effect of Tan IIA has been associated with a
relative inhibition of over-expressed miR-146 and miR-155,
thereby exerting significant anti-inflammatory and antioxidant
properties, and ameliorating P. gingivalis-induced atherosclerosis
(259). Another study illustrated that treatment with Tan IIA
suppressed the proliferation of inflammation-induced colon
cancer cells through inhibiting miR-155 levels in macrophages
(260). This confirms the anti-inflammatory activity of Tan IIA
via miRNAs, especially miR-155, which is suggested by the
aforementioned studies to be a target of Tan IIA in
inflammation. Nonetheless, the pharmacological activity of Tan
IIA is not limited to miRNAs (363). Wang and colleagues
showed that Tan IIA successfully inhibits murine skin
epidermal JB6 cells transformation induced by TPA (12-O-
tetradecanoylphorbol-13-acetate); this inhibition has been
made possible through epigenetic regulation of the Nrf2
signaling pathway (261). Tan IIA treatment decreased
methylation at Nrf2 promoter by inhibiting the protein levels
of DNMT1, DNMT3a, DNMT3b, as well as, HDAC3 and HDAC
activities, thus increasing Nrf2 expression and its downstream
targets (261) (Table 1 and Figure 3).

Carvacrol and Thymol
Monoterepnoids, carvacrol and thymol are isomers derived from
the essential oil of Origanum vulgare L. or wild bergamot (253).
The essential oil of Origanum vulgare L. was used, initially, for
treating cold and heatstroke, and the bergamot was used as an
anesthetic and antiemetic (253). Further research studied the
anti-inflammatory activity of these two bioactive ingredients,
carvacol and thymol (253).

Car/Thy Mechanism of Action as Anti-Inflammatory
Agents
Car and Thy reduce the activation of TLR4/NF-kB signaling
pathway in vivo and in vitro in inflammatory reactions, whereas
increase the expression of antioxidants, such as SOD1 and GSH
through Nrf2 Activation and attenuates oxidative damage (262,
263) (Table 1 and Figure 1).

Furthermore, by regulating miRNAs and inflammatory
factors, Car and Thy showed significant suppression of the
allergic inflammation associated with asthma (Table 1 and
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Figure 3). As illustrated by Khosravi and colleagues study, the
inflammation-associated miRNAs, including miR-155, miR-
146a and miR-21 were overexpressed in a chitin-induced
model, whereas SOCS1 and SHIP1 (miR-155 targets and
negative regulators of TLR-mediated inflammation) are
inhibited by chitin (264). Car/Thy reversed the induced
expression of TLR4, as well as, miR-155, miR-146a, and miR-
21, and reversed their effects on the negative regulators (SOCS1
and SHIP1) (264) (Table 1 and Figures 1 and 3). According to
these findings, the anti-inflammatory effects of Car/Thy have
been linked to targeting TLR-responsive miRNAs. However, the
direct targets of Car/Thy still need further investigations to be
determined, since they are not reported clearly (253).

Boswellic Acids
Extracted from the oleo-gum-resin of Boswellia serrata, boswellic
acids (BAs) are traditionally known to promote blood circulation
and relieve pain. Boswellic acids contain various ingredients,
among which is 3-acetyl-11-keto-b-boswellic acid (AKBA),
which possesses a potent anti-inflammatory activity (265, 266).

Boswellic Acids Mechanism of Action as an
Anti-Inflammatory Agent
BAs downregulate the expression of hepatic TLR4 receptor and
MyD88, and suppress that of NF-kB p65 and p-JNK in
hepatotoxicity model (267) (Table 1 and Figure 1).
Additionally, BAs upregulate Nrf2 and HO-1 expression,
thereby protect liver from DOX-induced oxidative injury
(268). Likewise, BAs also exhibit neuroprotective effect by
modulating Nrf2/HO-1 pathway (269) (Table 1 and Figure 1).
Moreover, BAs have been reported to attenuate LPS-induced
neuroinflammation, with the same effect as that of
dexamethasone (265). They reduce miR-155 and IkB-a
expression levels, while increasing SOCS-1, resulting in
decreased apoptotic activity and amyloid protein genesis,
which is, when accumulated, responsible for chronic
inflammation (265) (Table 1 and Figure 3). It’s worth
mentioning that miR-155 regulation by BAs has been
suggested to be a possible mechanism underlying the effective
role of BAs in neuroinflammatory disorders. But, the exact
targets of BAs remain an open question that requires further
verification (253).

Isothiocyanates
Sulforaphane
SFN is one of the highly studied plant-derived isothiocyanate
organosulfur compounds (270). Characterized by the presence of
a sulfocyanate group (N=C=S), SFN is found in cruciferous
vegetables from the Brassicaceae family, including broccoli,
cabbage, cauliflower, and kale (270, 271). SFN precursor,
glucoraphanin is hydrolyzed to isothiocyanate by myrosinases
enzymes (270, 364). Usually, SFN is used as a synthetic racemic
mixture of D, L-SFN in research studies (271, 365, 366). In
contrast to polyphenols, this isothiocyanate compound was
reported to have relatively high bioavailability (around 80%),
with oral dosage ranging from 20 to 40 mg in clinical trials (123,
274, 342, 367). Several reports have revealed its potential anti-
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inflammatory and antioxidant properties (274). In chronic
i nfl amma t o r y d i s e a s e s , S FN e x e r t s i t s p o t e n t
immunomodulatory effect through targeting monocytes/
macrophages and stimulating the nuclear factor erythroid-
derived 2-like 2 (Nrf2) antioxidant defense pathway (272, 273).
Clinically, over 1900 trials on SFN are published in
PubMed (123).

SFN Mechanism of Action as an
Anti-Inflammatory Agent
SFN has a dual action in modulating the redox system and
immune imbalance, through interacting with Nrf2 and NF-kB
signaling pathways (123) (Table 1 and Figures 1 and 2). These
two key transcription factors (Nrf2 and NF-kB) act both
independently and dependently via their “cross talk”, which is
not yet fully understood (123, 368). Several studies have
pinpointed the crosstalk between Nrf2 and NF-kB pathways
(271). For example, Li et al. showed that SFN activated the Nrf2
pathway through inhibiting Nrf2 ubiquitination, and
concomitantly reduced NF-kB and AP-1 expression, thus
restoring endogenous antioxidant levels and reducing
inflammatory damage in an experimental autoimmune
encephalomyelitis mice model (274–279). SFN is considered an
indirect antioxidant, because it is not involved in quenching free
radicals and ROS but, it upregulates some phase II enzymes by
enhancing Nrf2 activity (271, 280–283). Moreover, the anti-
inflammatory effects of SFN have been demonstrated in the
form of reduced levels of LPS-induced proinflammatory
mediators, such as TNF-a, iNOS, and COX-2 (168, 271, 284,
285). A recent study demonstrated, for the first time, the ability
of SFN to suppress the direct binding between NF-kB and its
consensus sequence in DNA via its thiol groups, therefore
suppressing LPS-induced proinflammatory mediators in
macrophages (286). Nonetheless, further mechanistic studies
are recommended to investigate this cross-talk machinery in
more details in different inflammatory models. In addition, one
of the novel underlying anti-inflammatory mechanisms of SFN is
its ability to suppress TLR4 oligomerization in a thiol-dependent
manner in macrophages, where SFN formed adducts with
cysteine residues in the extracellular domain of TLR4 (123,
168, 284, 285, 287). SFN suppressed both ligand-induced and
ligand-independent oligomerization of TLR4 (287).
Oligomerization is an important step for TLR4 activation and
recruitment of adaptor molecules; therefore, the reactivity of SFN
to the sulfhydryl moiety contributes to its inhibitory activities
and subsequent downregulation of NF-kB activation (287).
Similar to CUR, SFN antagonizes LPS binding to the TLR4/
MD-2 complex by selectively competing on MD-2, a large
hydrophobic pocket where LPS binds and mediates TLR4
dimerization (168, 284, 285, 287, 288). Furthermore, previous
studies have shown that SFN successfully prevented
carcinogenesis, which is partly attributed to its potent anti-
inflammatory properties (274).

Importantly, studies on the miRNA level indicated that SFN
significantly attenuated miRNA-155 and miRNA-146a levels in
LPS-stimulated RAW264.7 macrophages in a dose-dependent
manner (289, 290) (Table 1 and Figure 3). Additionally, SFN
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exhibited chemo preventive effects that have been regulated, in
part, through inhibiting inflammation via changes in DNA
methylation (291–295) (Table 1 and Figure 3). SFN attenuated
DNMT-mediated DNA hypermethylation at the promoter
region of Nrf2, thus increasing Nrf2 expression and
subsequently, decreasing neurological inflammation, and
inflammatory-associated cytokines, IL-6 and IL-1b (296)
(Table 1 and Figure 3). Hence, SFN regulates Nrf2 activity
through DNA hypomethylation, resulting in blocking
proinflammatory signaling.

Allyl-Isothiocyanate
Another aliphatic isothiocyanate, is allyl-isothiocyanate (AITC),
which is obtained from its precursor sinigrin, and is abundant in
different brassica species such as mustard, wasabi, and
horseradish (120).

AITC Mechanism of Action as an
Anti-Inflammatory Agent
Recent reports show that AITC enhances the nuclear
translocation of Nrf2, which is known to repress the
expression of NF-kB; subsequently, these actions upregulate
HO1 (Nrf2 target gene) that further suppresses inflammation
(120) (Table 1 and Figures 1 and 2).

Post-transcriptionally, AITC was reported to attenuate
inflammation in murine RAW 264.7 macrophages by
repressing miR-155 levels, and thus lowering target
proinflammatory mediators, such as iNOS, TNF-a, and IL-1b
(120) (Table 1 and Figure 3). Another study by Wagner et al.
suggested that AITC exerted its anti-inflammatory actions via
targeting miR-155, which acts on NF-kB and Nrf2 signaling
pathways (289) (Table 1 and Figure 3). In spite of this, the link
between the miR-155/NF-kB/Nrf2 signaling pathway and AITC
treatment remains questionable, therefore requiring future
verification (289). Although Nrf2 can also be regulated by
other miRNAs, including miR-27a, miR-142-5p, miR-153,
miR-144, miR-93, and miR-28, the effect of these miRNAs in
AITC-mediated macrophage regulation is still not clear to date
(369–371). Collectively, based on miRNA-regulation, the
mechanism of naturally-derived isothiocyanates on stimulated
macrophages can be a potential breakthrough in the
inflammation research arena.

Phenylpropanoid
Cinnamaldehyde
A conjugated aromatic aldehyde, cinnamaldehyde is isolated
from the barks of Cinnamomum cassia Presl (253).
Traditionally, this plant is often used to resolve symptoms of
weakness, but recently, this bioactive compound has been used in
cancer, cerebrovascular diseases, and ulcerative colitis (300, 372,
373). This action has been attributed to its anti-inflammatory
properties, as well as, non-coding RNA regulatory functions.

CA Mechanism of Action as an
Anti-Inflammatory Agent
CAmitigates inflammation symptoms by decreasing the levels of
ROS, COX-2, and the proinflammatory cytokines, such as TNF-
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a, IL-1b, and IL-6, in addition to NLRP3 inflammasome, as well
as miR-155 and miR-21 in macrophages (253) (Table 1 and
Figures 1 and 3). Further studies linked the suppression of IL-1b
and IL-6 to miR-21 or miR-155 inhibition, revealing that these
inflammatory factors are positively regulated by miR-21 or miR-
155 (300). Through this suppressive activity, CA performs its
protective effect in ulcerative colitis (300). Similar to the
aforementioned plant-derived polyphenols, CA downregulated
several proinflammatory cytokines, including IL-1b, IL-6, TNF-
a, and other inflammatory factors, such as NO and PGs, as well
as COX-2, iNOS and NF-kB (148). Such effects of CA have been
indicated in a plethora of studies using in vitro and in vivo
models of LPS-induced inflammation (147). When CA was
compared with the other aforementioned natural TLR4
modulators, some differences in the underlying molecular
mechanisms could be highlighted. For example, CA contains
a, b-unsaturated carbonyl moieties that act as electrophilic
carbon and react with the nucleophilic thiol of a cysteine,
subsequently forming Michael adducts with protein targets,
thus disrupting the TLR4/MD-2 heterodimer. In contrast to
curcumin, CA disrupts the TLR4/MD-2 heterodimer through
the formation of covalent adducts (169, 297). In comparison to
SFN, CA contains a different electrophilic group, an a,b-
unsaturated carbonyl moiety, instead of the isothiocyanate
moiety, which also forms covalent adducts with cysteine thiols
of MD-2 (288). The pharmacological properties of the
abovementioned phytochemicals on TLR4 signaling have been
determined by mass analysis experiments on purified receptors
(298). CA inhibition of LPS-induced NF-kB and IRF3 is the
main molecular mechanism underlying its anti-inflammatory
function (374). CA, however, does not show a significant action
when NF-kB is activated by MyD88 and IKKb downstream
effectors, which confirms its upstream activity on the TLR4/MD-
2 extracellular complex (374). Moreover, similar to SFN, CA
inhibits LPS-induced TLR4 receptor oligomerization and
activates Nrf2 pathway (298, 299) (Table 1 and Figure 1).
SUMMARY

In a nutshell, this review focuses on the mechanisms of different
plant-derived compounds involved in regulating inflammation
within different cell types, such as macrophages, cardiac myocytes,
adipose tissue and epithelial cells. While these mechanisms are
pleiotropic and usually target multiple sites of action in the TLR4
pathway, some of them are common between different
phytochemicals, and are significant to their established anti-
inflammatory effects. In this context, the mentioned
phytocompounds, collectively, inhibit the expression of TLR4
receptor, and block the activation of NF-kB transcription factor,
thus inhibiting the generation of the downstream pro-
inflammatory cytokines, such as TNF-a, IL-6 and IL-1b, and
the free radicals, such as NO and ROS. Furthermore, unlike their
inhibitory effect on TLR4/NF-kB cascade, these aforementioned
phytochemicals activate Nrf-2 signaling pathway, which in turn,
inhibits oxidative stress. On the other hand, there are also
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specialized specific mechanisms that are more relevant to some
phytochemicals over others. For example, genisten and CA hinder
the ligand-induced oligomerization of TLR4 receptor, while SFN
suppresses both ligand-induced and ligand-independent
oligomerization of TLR4. Moreover, CUR, SFN and CA
competitively antagonize LPS binding to MD-2 binding site, and
thus disrupt the TLR4/MD-2 heterodimer. This leads to the
inhibition of both MyD88 and TRIF-dependent pathways,
which are involved in TLR4 cascade activation. At the epigenetic
level, plant-derived compounds undergo noteworthy epigenetic
modifications that fine tune their anti-inflammatory functions. In
this review, the majority of the mentioned phytochemicals
significantly downregulated miR-155 and miR-21, both reduce
NF-kB activity and suppress inflammatory factors, such as TNF-
a, IL-6 and MAPKs, attenuating the induced-inflammation.
Beside the regulation of miRNA, the mentioned phytochemicals
play a critical role in decreasing the expression of pro-
inflammatory genes and suppressing NF- kB-dependent
inflammation in different cells through inhibiting HATs (e.g.,
p300 HAT) and HDACs (e.g., HDAC I, II and III).
Furthermore, some phytochemicals, such as CUR, API,
tanshinone IIA, and SFN downregulate DNMTs expression (e.g.,
DNMT 1, 3a, and 3b), and repress DNA hypermethylation at the
promoter region of some genes, such as Nrf2, increasing their
expression. To the contrary, RES, for instance, upregulates DNMT
3a and 3b expression, and thus mediates DNA hypermethylation
at inflammatory genes, and therefore attenuates inflammation.
Collectively, these stated similarities and differences between
phytochemicals are what substantiate, in general, their
remarkable anti-inflammatory effects, and in specific, their
differential therapeutic potential and efficacy against certain
inflammatory diseases in different cell types. Last but not least,
as noticed, TLR4/NF-kB and Nrf2 pathways are crucial
mechanisms that are targeted by almost all the mentioned
phytochemicals. Taken together, future research should further
investigate the crosstalk between the two pathways.
CONCLUSION AND
FUTURE INVESTIGATIONS

In conclusion, an evolving group of evidence has shown how
plant-bioactive compounds significantly influence both health
and disease via epigenetic modification. Although this report
covered different phytochemicals used in distinct inflammatory
experimental models and focused, in particular, on their
epigenetic regulatory mechanisms, few studies have translated
the epigenetic-mediated actions of these plant derivatives to
human models and little is understood about gene regulation
mediated by natural products in health and disease (27). Thus, it
will be of great benefit if future research is directed to revealing
the most effective phytochemicals in attenuating inflammatory-
associated dysregulations, neurodegenerative and cardiovascular
diseases. To our knowledge, how epigenetic regulation targets
certain genes, in specific, is still elusive. For instance, the
mechanism underlying histone modifications or DNA
Frontiers in Immunology | www.frontiersin.org 18
methylation in determining the patterns of transcription of
PRRs and its downstream signaling mediators throughout
infection and lineage differentiation remains unclear, and
requires deep mechanistic investigations (29). As such, future
research on innate immune cells should focus on identifying
specific epitranscriptomes. Furthermore, post-transcriptional
modifications in RNA have been known to modulate different
signal transductions (29). In this regard, a mechanistic study on
the effect(s) of the currently reported phytochemicals on an array
of inflammatory-associated miRNAs would be of great benefit to
understand how these natural compounds differentially
modulate these miRNAs, and how they ultimately attenuate
inflammatory processes. For instance, previous reports on the
regulation of miR-155 by polyphenols give a clear insight into
flavonoid mechanism in alleviating inflammation (120). There
are still other miRNAs, which are involved in macrophage
inflammatory responses, that have not been studied yet with
phytochemicals, among which are miR-467b, miR-33s, and miR-
125a (120). Also, studies have not revealed the effect of
phytochemicals on histone acylation, in specific (27). This lack
of information shed the light on the inevitability of investigating
the mechanisms by which phytochemicals modulate histone
acylation, and whether they could mitigate inflammation. In
addition to epigenetic regulations, only few studies tackled the
interactions taking place between phytochemicals (27); future
work should therefore address phytochemical-phytochemical
interactions, and elucidate the combined effect of these
interactions during inflammation, particularly at the epigenetic
level. Assessing phytochemical interactions sheds light on
understanding the pharmacokinetics of these compounds,
because these compounds usually vary in absorption,
distribution, metabolism and excretion (ADME) inside the
body (375, 376). Subsequently, studying pharmacokinetics
variations between these phytochemicals is inevitable. This
could unveil natural compounds with similar absorption rates
and distribution sites to be further explored in combinations, and
enable examining any potentiation of effect resulting from such
combinations. Another consideration is the metabolic activity of
these phytochemicals; whether the metabolites of parent
phytochemicals possess a therapeutic activity or not. For
example, in spite of emodin’s poor distribution to heart cells,
its cardioprotective effect has been reported (221, 375). This
observation has been explained in terms of metabolomics, in
which blood-circulating metabolites of parent compounds exert,
an efficacious activity that is observed in tissues having
undetectable concentrations of the parent compounds (27).
Nonetheless, most phytochemical metabolites are usually non-
bioavailable (376, 377). A fact that raises the necessity to delve
deeper into the area of phytochemical-related metabolomics. The
poor bioavailability of several phytochemicals, especially
polyphenols, is another issue to be tackled in future research.
Increasing the dose of these phytochemicals is not always safe; it
has to be mentioned that they, like other treatments, may exhibit
toxic side effects at higher concentrations (378–380). This,
therefore, brings up questions as to the phytochemical-
associated toxidrome at high concentrations, and should
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engender explorative efforts to search for new technologies that
enhance bioavailability at lower doses, such as solubilizers and
targeted drug-delivery systems (381). Multiple reports suggest
that co-administering plant-bioactive compounds with other
pharmaceutical treatments resulted in differential gene
expression, which might imply that their actions are
epigenetically-related (27, 382). For example, when curcumin
is co-administered with reinstate (SAHA; an FDA-approved
HDAC inhibitor), an enhanced effect has been observed in
ameliorating antibody-dependent neurodegeneration than that
of single treatments (382). Another report showed that
resveratrol co-treatment with metformin (anti-diabetic drug)
successfully ameliorated inflammation, and other metabolic
dysregulations in diabetic mice (383, 384). Therefore, there is a
need to understand the exact epigenetic mechanism(s) that cause
such synergism, and further explore approved, commercially
available medications in conjunction with natural compounds.
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