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Severe influenza associated with strong symptoms and lung inflammation can be caused

by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin

position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of

host response to this coevolution and to identify key mechanisms contributing to

copathogenesis, the lung transcriptional response of BALB/c mice infected with an

A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1

to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were

detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior

to recovery. Interestingly, a biphasic expression profile was shown for themajority of these

genes. Cytokine assays confirmed these results on protein level exemplarily for two key

inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering

strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern

for selected DEGs. Known regulatory interactions were extracted by Pathway Studio

9.0 and integrated during network inference. The hypothetic gene regulatory network

revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered

by the HA-G222 variant and correlated with a clinical symptom score indicating disease

severity.

Keywords: computational biology, gene expression, transcriptome, viral pathogenicity, immunopathogenesis,

pneumonia, mouse models, pandemic H1N1

INTRODUCTION

Influenza A viruses (IAV) cause pandemics with high morbidity and mortality (Webster and
Govorkova, 2014). The last influenza pandemic in 2009 caused by IAV of subtype H1N1
(A(H1N1)pdm09) was rather mild with a cumulative incidence of 24% (Van Kerkhove et al.,
2013). However, severe influenza cases causing an estimated number of 201,200 respiratory deaths
and additional 83,300 cardiovascular deaths in otherwise healthy adults and pregnant woman
showed the potential pathogenicity of A(H1N1)pdm09 (Dawood et al., 2012). In search of the
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cause of severe influenza cases, quasispecies (group of viruses
related by one or more mutations) of A(H1N1)pdm09 differing
in amino acid in position 222 (H1 numbering) in the viral
HA were detected (Chen et al., 2010; Kilander et al., 2010; Liu
et al., 2010; Vazquez-Perez et al., 2013; Wedde et al., 2013).
Results of a systematic review of 18 published studies, from
all continents, revealed that “D222G was associated with a
significant increase in severe disease (pooled RD: 11%, 95%
CI: 3.0–18.0%, p = 0.004) and the risk of fatality (RD: 23%,
95% CI: 14.0–31.0%, p = 0.0001). No association was observed
between themutations HAD222N, D222E, PB2-E627K, andNS1-
T123V and severe/fatal disease” (Goka et al., 2014). No virus
quasispecies bearing virulence-conferring mutations in the HA,
PB2, and NS1 predominated but, hemagglutinin (HA) variants of
A(H1N1)pdm09 including also HA residue 222 persisted across
several seasons (Bedford et al., 2015; Caglioti et al., 2016).

HA-D222G was also detected after adaptation of
A(H1N1)pdm09 isolates in mice (Ilyushina et al., 2010;
Seyer et al., 2012; Song et al., 2013). Experimental evidence for
the association of coevolution of HA-222D/G quasispecies of
the A(H1N1)pdm09 isolate Jena/5258/09 (Jena/5258) and severe
influenza with biphasic pathology was provided by us recently
(Seidel et al., 2014). The increasing amounts of the HA-G222
variant in the lung (∼8% at day 1 p.i. and up to∼27% at day 5 and
6 p.i.) of BALB/c mice after infection with the once mouse lung-
passaged Jena/5258 (mpJena/5258) (i) coincided with increasing
lung virus titers, (ii) preceded severe lung inflammation, and
(iii) were associated with a severe symptom peak on day 6 after
infection (Seidel et al., 2014). Further adaptation mutations in
Jena/5258 as well as mpJena/5258 were excluded by sequencing
the eight viral genome segments (Seidel et al., 2014). Infection
of BALB/c mice with plaque-purified mpJena/5258 HA-G222
induced strong symptoms with a maximum at day 6 p.i. (Seidel
et al., 2014). Therefore, we hypothesize that the observed
symptoms are at least partly provoked by the host response to
the observed intra-host viral evolution.

In human as well as mice, the highly dynamic and complex
influenza virus-host interactions can be accompanied by a strong
inflammatory immune response (Zou et al., 2013; Jin et al., 2014;
Shoemaker et al., 2015) and excessive lung damage (Kilander
et al., 2010; Shieh et al., 2010; Zheng et al., 2010; Vazquez-Perez
et al., 2013;Wedde et al., 2013; Seidel et al., 2014). Comprehensive
genome wide expression data involving both innate as well
as adaptive immune response help to understand molecular
mechanisms of host response during severe influenza. Global
gene expression changes have been studied using microarray
techniques in lungs of mice after infections with different IAV
subtypes and variants causing mild or severe disease (Ding
et al., 2008; Pommerenke et al., 2012; Askovich et al., 2013;
Zou et al., 2013; Shoemaker et al., 2015). Most studies have
focused on innate immune responses of the host. To the best
of our knowledge, only one study integrated both innate and
adaptive immune responses, and describes different phases of
disease as temporal changes in gene expression profile in lungs of
mice (Pommerenke et al., 2012). Recently, we used mathematical
modeling to explain the different course of influenza (mild to
severe withmono and biphasic disease dynamics) caused by three

A(H1N1)pdm09 isolates based on clinical score data in BALB/c
mice (Manchanda et al., 2014). Our modeling results suggest (i)
maximum primary pathogenicity, (ii) viral infection rate, and
(iii) rate of activation of the immune system as most important
parameters that are associated with the different pattern of
virus-specific influenza kinetics. Additional experimental studies
with one of these A(H1N1)pdm09 isolates, the mpJena/5258,
demonstrated that fast intra-host evolution of HA-222D/G
quasispecies in BALB/c mice with increasing amounts of the
HA-G222 variant in lung and trachea tissue coincide with lung
histopathology and disease severity on days 6 and 7 p.i. (Seidel
et al., 2014). These results prompted us to study dynamics of
host response to the observed quasispecies coevolution to get
further insights into the molecular mechanism underlying the
observed course of disease during coevolution of HA-222D/G
quasispecies.

A comprehensive analysis of whole genome expression
changes of lung samples obtained from BALB/c mice infected
with mpJena/5258 that consists HA-222D/G quasispecies (Seidel
et al., 2014) was performed. The time-dependent production
of two key inflammatory cytokines, interferon (IFN-γ), and
interleukin 6 (IL-6), which have been shown to be increased
during severe influenza infection (Pommerenke et al., 2012;
Goraya et al., 2015; Shoemaker et al., 2015) was confirmed
by ELISA. The use of lung and serum samples, collected
recently (Seidel et al., 2014), enables us to link the pre-existing
knowledge on quasispecies coevolution and disease dynamics
with genome expression changes in the lung. Finally, a reverse
engineering approach was applied to infer a gene regulatory
network to predict hypothetically the driving forces for the
biphasic pattern—pars pro toto—for a set of 20 DEGs.

MATERIALS AND METHODS

Animal Experiment
All trial procedures and animal care activities were conducted
in accordance with the German Animal Protection Law.
Experiment was approved by the Thueringer Landesamt
fuer Verbraucherschutz (Reference number: 02-032/12). The
animal experiment and the dynamics of disease (severity, lung
histopathology, and virological data) were described recently
(Seidel et al., 2014). Briefly, 7- to 8-week-old female BALB/c mice
(16–18 g; Charles River, Bad Sulzfeld, Germany) were infected
intranasally with 106 TCID50/20 µl of mpJena/5258 under
isoflurane anesthesia. Mock-infected mice were used as control.
Five or ten mpJena/5258-infected mice were sacrificed on day
1–7, 9, and 12 p.i. Severe lung inflammation was detected (Seidel
et al., 2014). During this experiment Seidel et al. also stabilized
one of the right lung lobes in RNAlater solution (Ambion by
Life technologies, Darmstadt, Germany) for subsequent RNA
analysis. RNA analysis of these frozen lung samples (−80◦C)
was performed with each 4 of these lung samples of infected
mice per time point (d1, 2, 3, 4, 5, 6, 7, 9, and 12 p.i.) by using
microarrays. Furthermore, sera of the same mice were used for
cytokine detection. RNA (n= 4) as well as serum samples (n= 3)
of uninfected mice were analyzed for control.
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RNA Extraction
RNA isolation was performed with the RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.
Afterwards, the amount of RNA was measured with a NanoDrop
ND-1000 spectrophotometer (Peqlab, Erlangen, Germany).

Microarray Analysis
Prior to gene expression experiments, total RNA integrity was
confirmed using the ExperionTM automated gel electrophoresis
system (BioRad, Munich, Germany). cRNA sample preparation
for hybridisation on the Illumina gene expression platform was
performed using the TargetAmpTM Nano-gTM Biotin-aRNA Kit
for the Illumina System (Epicentre/Biozym, Hess. Oldendorf,
Germany) starting with 250 ng of total RNA. Samples were
hybridized according to manufacturer’s instructions on Mouse
Ref-8 v2.0 Bead Chips (Illumina, San Diego, USA). Each
chip comprises probes of 25,700 coding and non-coding RNA
transcripts. Read outs of hybridisation signal intensities were
performed on an iScan Bead Array scanner (Illumina, San
Diego, USA), data pre-processing including spot detection,
gene mapping and averaging of replicates was performed with
iScan Control Software and GenomeStudio software (Illumina,
San Diego). The data are accessible through Gene Expression
Omnibus series [GSE67241].

Microarray Data Analysis and Gene
Regulatory Network Inference
The workflow for gene expression data analysis constructing
gene-regulatory network from time series microarray data is
visualized in Figure 1. Raw microarray data was analyzed using
the Lumi (Du et al., 2008) and Limma (Smyth, 2005) packages
of the statistical language R (Team RDC, 2009). Between-array
normalization was performed using Variance Stabilization and
Normalization (vsn) (Lin et al., 2008) with lumiN so that the
distribution of intensities should become independent of the
mean. DEGs were identified from lung samples of virus-infected
compared with mock-infected mice sacrificed on days 7 and 12 (t
= 0) p.i., using Empirical Bayes statistics with a false discovery
rate of 0.01. In order to group genes with similar expression
profile we performed fuzzy c-means (Bezdek et al., 1984)
clustering to DEG’s expression matrix. The optimal number of
clusters was estimated as previously described (Guthke et al.,
2005) based on 42 cluster validity indices.

Network inference was performed using NetGenerator
package implemented in the statistical programming language
R. The algorithm is described in detail by Guthke et al.
(2005) and Linde et al. (2015). Briefly, it is based on a set of
linear differential equations and models the temporal change of
expression intensity of the gene xi(t) at time t as the weighted sum
of the expression intensity of all the other genes and two external
stimuli u1(t) and u2(t):

dxi

dt
=

n∑

j = 1

wi,jxj (t) +

2∑

k = 1

bi,kuk (t) f or i = 1..n

The NetGenerator tool calculates the parameters wi,j and bi,k.
The parameter wi,j represents an influence of gene j on the

FIGURE 1 | Workflow. Flowchart showing the analysis of microarray time

series data utilized for the construction of gene regulatory networks using the

NetGenerator tool.

expression of gene i, while the parameter bi,k represents the
impact of external stimulus given by the function uk(t). The
external stimuli (input perturbation) u1(t) and u2(t) are modeled
from the viral titre data for two quasispecies A(H1N1)pdm09
strains taken from Seidel et al. (2014), as shown in Supplementary
Figure 1. A non-zero weight wi,j defines an interaction (edge)
of the inferred network where a positive weight is interpreted
as activation and a negative one represents the repression or
inhibition.

As the number of possible networks structure increases
exponentially with the number of genes, a small number of DEGs
was selected to be included in the network reconstruction
algorithm. In order to identify key genes, significantly
overrepresented categories (i.e., p < 0.05) were identified
using the tool DAVID (Huang da et al., 2009a,b). DAVID
is a web based functional annotation tool which provides a

Frontiers in Microbiology | www.frontiersin.org 3 August 2016 | Volume 7 | Article 1167

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Manchanda et al. Host Response to Influenzaviral Coevolution

comprehensive set of functional enrichment for a given gene list.
It uses the Fischer exact statistical test to measure the significance
of gene enrichment in annotation terms. Several studies showed
that the inclusion of prior knowledge extracted from various
literature and other database sources improves the reliability of
the network inference approach (Hecker et al., 2009; Tierney
et al., 2012; Weber et al., 2013; Linde et al., 2015). The prior
knowledge used for network reconstruction extracted from
Pathway Studio 9.0 (Nikitin et al., 2003) includes relations only
of type “direct interaction” as well as “expression.” Confidence
scores were assigned to prior knowledge interactions each used
for the network inference based on the source of the data. High
score 0.5 was given for ≥70 of supporting literature references,
low score 0.1 for between 1 and 10 of supporting literature
references and median score 0.25 for numbers of references
between 10 and 70. The prior knowledge was softly (i.e., flexibly)
integrated during the network inference. Since different data
sources might be contradictory, it is advantageous to softly
integrate them during the modeling process. The robustness of
inferred network edges was investigated by adding Gaussian
noise of mean 0 and standard deviation (sd) of 0.01 or 0.1
and repeated network inference procedure for 500 times. The
robustness of the inferred edges was quantified by the recovery
rate (frequency of repeated inference divided by 500).

Linear Regression Model for Association
between Genotype and Phenotype
A multiple linear regression model was developed with aim of
finding an association between the observed phenotype data,
which was quantified by the symptom score S, from Manchanda
et al. (2014), and the gene expression data:

S =
∑

i∈G

βixi

The function “lm” was used to performmultiple linear regression
in R. For the gene setG= {Ifng, Stat1, Tlr3, Eif2ak2}, the multiple
linear regression in theWilkinson and Roger’s notation looks like:

fit = lm(S∼ Ifng + Stat1 + Tlr3 + Eif2ak2 − 1). Here the
response data S was collected from Manchanda et al. (2014). The
explanatory data xi were collected from the current study.

Cytokine Detection in Serum
Mouse IFN-γ ELISA (BioLegend, SanDiego, USA) andmouse IL-
6 ELISA (eBioscience, SanDiego, USA) were applied according to
the manufactures instructions to determine the amounts of these
cytokines in serum.

Statistical Analysis
Pairwise significant differences between cytokine values (detected
at different days p.i.) were calculated in IBM SPSS statistics 22
with ANOVA (Kruskal-Wallis).

RESULTS

Global Transcriptome Analysis Reveals
Biphasic Host Response against Severe
A(H1N1)pdm09 Infection
Recently, coevolution of HA-222D/G variants was detected in
lungs and trachea of BALB/c mice infected with the clinical
isolate Jena/5258 as well as it’s once mouse lung-passaged variant
mpJena/5258 and linked with severe biphasic influenza (Seidel
et al., 2014). In the present study, we isolated the RNA of
lung samples collected from mpJena/5258-infected BALB/c mice
(Seidel et al., 2014) and performed gene expression profiling
to get an insight into the dynamics of host response to this
severe biphasic viral infection. Thus, the course of disease (body
weight changes, clinical score, viral replication, and quasispecies
coevolution) of studied mice was well known (Seidel et al., 2014).
RNA of lung samples of mock-infected mice was included as
control. The gene expression data was normalized and in total
1628 DEGs were identified during the whole infection process
(Figure 2; Supplementary Table 1).

Already at day 2 p.i., 968 genes were differentially expressed
(up- or down-regulated) with respect to control data indicating
a strong activation (Figure 2). Genes that are strongly expressed
during this early phase of infection include cellular factors
involved in the detection of virus-associated molecular pattern
(Supplementary Table 2). They belong to Gene Ontology
(GO):0009615, “response to virus” (Ashburner et al., 2000; Gene
Ontology, 2015). The number of up- and/or down-regulated
DEGs in response to infection decreased markedly to about 400
DEGs compared to the control at day 4 p.i. A second peak of an
increased transcriptional response was observed with 1001 DEGs
at day 7 p.i. Finally, a decrease of the number of regulated
DEGs to 308 at day 12 p.i. was observed. Many of the detected
DEGs follow the biphasic pattern in relation with the biphasic
clinical symptoms score [e.g., changes of fur and behavior after
virus infection as described recently (Manchanda et al., 2014;
Seidel et al., 2014)]. In accordance the biphasic course of the
inflammatory immune response was reflected by the levels of
the proinflammatory cytokines IFN-γ and IL-6 both detected by
ELISA in serum of infected animals (Figure 3; Supplementary
Table 3).

Cluster analysis shows that 6 clusters optimally represent the
dynamics in the dataset (Figure 4, Supplementary Figure 2).
The detailed GO enrichment analysis of the entire 6 clusters is
presented in the Supplementary Table 4.

Five of the 6 clusters, i.e., the clusters 1, 2, 4, 5, and 6
comprising the majority of 1185 DEGs (representing 83% of
all DEGs), are characterized by a distinct biphasic temporal
expression pattern over the time course of infection showing
strong up- (cluster 1 and 4) or down-regulation (cluster 2, 5, and
6) at day 2 p.i. which is followed by a stagnant recovery phase and
further up- and/or down-regulation at day 6 or 7 p.i. In addition,
Cluster 2, 5, and 6 show upregulation peaks e.g., at the day before
and/or after the disease peaks.

Clusters 1 and 4, showing strong biphasic up-regulation,
are being associated with the significantly overrepresented GO
category ‘Immune response’ (p = 1.3 × 10−22 and 6.6 × 10−23,
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FIGURE 2 | Differentially Expressed Genes (DEGs) in the lungs of BALB/c mice infected with the once mouse lung-passaged influenza virus

A/Jena/5258/09. The biphasic pattern of gene expression consists of the two peaks at days 2 and 7 after infection. Overall 1628 DEGs were identified between days

1 and 12 after infection. Bars indicate the number of DEGs on each day p.i. Different colors indicate the number of DEGs that were newly detected at the indicated

days after infection compared to control. For example, dark blue represents the DEGs, which are present at day 1 p.i. and continue to be present through the infection

process with different frequency while the orange color at day 2 p.i., represents DEGs that appeared at day 2 p.i. and were not deferentially expressed before.

FIGURE 3 | Time dependence of (A) Interferon gamma (IFN-gamma) and (B) Interleukin 6 (IL-6) levels detected in serum of BALB/c mice infected with

the once mouse lung-passaged influenza virus A/Jena/5258/09. Both cytokines were detected in serum samples of each 4 mice per time point by ELISA. Box

blots show the distribution of cytokine values. The values are summarized in Supplementary Table 3 together with the results of statistical analysis.

respectively; Supplementary Table 4). Cluster 1 contains 375
genes that were significantly up-regulated in the early phase of
the host response with a strong first peak at day 2 p.i. and
a second peak of lower intensity at day 6 p.i. followed by an
increase of mostly down-regulated genes from day 7 p.i. on.
Interesting genes involved in this cluster are e.g., Ifnb1, Il1a,
Il1b, Myd88, Rsad2, Oas1a, Mx1, which are associated with the
detection of virus and activation of innate immune responses
by antiviral type I IFNs. In accordance, the GO enrichment
analysis of genes belonging to cluster 1 showed that this cluster
mainly comprised the GO terms “inflammatory response” and
“response to virus.” Cluster 4 was associated with 327 genes that
were strongly activated on day 2 as well as on days 6 and 7 p.i.
Genes within this cluster are e.g., Ccl-3/-4/-5, Cxcl-9/-13/-16,
Stat-1/-4, Socs1, Nfkbid. They are assigned to the overrepresented

GO terms “Immune response,” “positive regulation of immune
response,” “inflammatory response,” “response to wounding,” or
“regulation of cytokine production.” Both cluster 1 and cluster
4 are enriched with many cytokines and chemokines genes
(Supplementary Figure 3A) with biphasic behavior. Cluster 2
consists of 176 genes showing a strong upregulation at day
1 p.i., weak down-regulation at day 2 p.i. and a second peak
of even stronger downregulation at day 6 p.i. and 7 p.i. GO
enrichment analysis reveals that genes belonging to this cluster
are associated with haemopoietic or lymphoid organ and blood
vessel development. Cluster 5 and cluster 6 consists of 284 and
199 genes, respectively. Both clusters are also characterized by
two strong down-regulation peaks of DEGs at days 2 and 7
p.i., which allocation coincides with temporal location of the
peaks of the clusters 1 and 4. For cluster 5, the early peak

Frontiers in Microbiology | www.frontiersin.org 5 August 2016 | Volume 7 | Article 1167

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Manchanda et al. Host Response to Influenzaviral Coevolution

FIGURE 4 | Fuzzy c-Means Clustering of DEGs Reveals 6 Cluster. Mean expression profile with standard deviation of 6 clusters, identified by fuzzy c-means

clustering. The x-axis represents the day’s p.i. whereas the y-axis represents the mean scaled log2 fold change expression for the cluster.
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was somewhat stronger than the second one, whereas the vice-
versa was found for cluster 6. In addition, upregulation was
detected in cluster 5 at day 1 p.i. as well as in cluster 5 and
6 at day 12 p.i. These two clusters are enriched with the GO
terms “cell projection morphogenesis,” and “cell morphogenesis,”
“epithelium development,” respectively (Supplementary Table 4).
Genes with biphasic expression profiles belonging to the Clusters
1 and 4 as well as 5 and 6 also contained a number of reactive
oxygen species (ROS)-related genes. Higher expression of pro-
oxidation genes such as Ncf4 and Xdh and down-regulation of
anti-oxidation genes such as Dhdh and Cat have been found
(Supplementary Figure 3B).

Cluster 3 consists of 267 genes that are more or less
continuously up-regulated until day 9 p.i. e.g., E2f1, Clspn, Prc1,
Dbf4, Kntc1. This cluster is enriched with the GO terms “cell
cycle and division,” “positive regulation of T-cell,” “lymphocytes
and leukocytes activation,” and “positive regulation of immune
system process,” which also indicate an association of the
activation of adaptive immune responses with disease pathology.
Interestingly, the immunomodulating Ifng also belongs to this
cluster. It is weakly upregulated on day 2 and about 4-times
between days 5 and 8 p.i.

Regulatory Network of Murine Influenza
Infection
The gene regulatory network was constructed by integrating
gene expression profile along with prior knowledge (see Section
Materials and Methods), extracted from Pathway Studio 9.0
(Nikitin et al., 2003). Supplementary Table 5 shows the prior
knowledge information, and their corresponding confidence
score used for network inference. As the complexity of network
structure increases exponentially with the number of genes
involved, a small number of genes should be selected to be
included in the network reconstruction.

The candidate genes selection was based on the significant
overrepresented gene enrichment analysis (see Section Materials
and Methods). A set of 20 DEGs, most of them belonging
to the overrepresented GO term “response to the virus,” with
p-value of 1 × 10−5, was considered as candidate genes
(Supplementary Table 2). The corresponding function for each
gene (Supplementary Table 6) was extracted from GeneCards
(Chalifa-Caspi et al., 2004). The GO categories other than
“response to virus” was extracted from DAVID (Huang da
et al., 2009a,b). Four of the identified candidate genes have
pairwise very similar functions and high correlation with each
other: Oas1a/Oas1b, Mx1/Mx2, Ddx58/Ifih1, and H2Q7/H2Q8.
Therefore, we searched among the huge number of genes
highlighted by the DAVID and GeneCards for additional genes
that are strongly associated with TLR and IFN-gamma signaling,
as also the case for some of the aforementioned candidate genes.
Thus, we included four genes (Stat-1/-3, Irf1, and Socs1), which
were shown to play a crucial role in feedforward and feedback
inhibition of interferon and TLR signaling during macrophage
activation (Hu et al., 2008).

The final stable regulatory network is presented in Figure 5,
which simulated kinetics fit to the expression profiles of the

selectedDEGs (Supplementary Figure 4). The network (Figure 5)
considers the two mpJena/5258 variants (HA-D222 and HA-
G222) that define the two input (perturbation) functions
(Supplementary Figure 1) and 37 edges representing 27 gene-
to-gene interactions and 10 influences of the influenza variants
on the gene expression. A subset of 15 of the gene-to-gene
interactions (colored green in Figure 5) were previously reported
and were introduced as prior knowledge as shown in the
Supplementary Table 5 extracted by Pathway Studio (Nikitin
et al., 2003). Among the remaining 12 gene-to-gene interactions,
10 were novel interactions predicted by the inferred network.
The other 2 were previously described in literature, but not
used as prior knowledge for the network inference: Ddx58
positively activating Stat3 and Mx1 (Zeng et al., 2007; Breuer
et al., 2013; Zhang et al., 2013). Among the 37 edges, we found
5 repressions or inhibitory effects and 32 activations among the
overall network.

Inflammatory Subnetwork is Robust
As a part of the inferred network shown in Figure 5, a positive
feedback loop formed by the interaction of Tlr3 − Ifng −

Stat1 was discovered. To prove the stability of this loop, the
robustness of this sub-network involving the positive feedback
loop was investigated. We constructed two differential sub-
networks involving four genes (Tlr3 − Ifng − Stat1 − Eif2ak2;
Figure 6 and Supplementary Figure 5) and six genes (Tlr3− Ifng
− Stat1− Eif 2ak2− Socs1− Ifi27l2a; Supplementary Figures 6,
7) adding one or three genes respectively, that are connected via
robust edges with the 3-gene-loop. For the robustness analysis,
we used the same algorithm as described above to construct
the network from the gene expression data (see Materials and
Methods). The robustness analysis for the 4-gene-subnetwork
was performed by adding Gaussian noise of mean 0 and standard
deviation (sd) of 0.01 and repeated network inference procedure
for 500 times. The robustness analysis reveals that all the nine
interactions were robust, i.e., the edges were recovered with a rate
of 90% at least. The results of robustness analysis under the more
stringent condition sd= 0.1 is shown in Supplementary Figure 8.
Thus, all inferred edges shown in Figure 6 has been confirmed
(with recovery rate >50%). The 4-gene-model simulation is
shown in the Supplementary Figure 5. Similar analysis was
done for the 6-gene-subnetwork with sd = 0.01. The robustness
analysis also reveals remarkably high percentage (recovery rate
≥90%) for 13 out of 14 interactions involved, with an exception
of an edge representing the influence of Influenza-2 variant to
the gene Socs1 (62%). The 6-gene-subnetwork and simulation is
shown in Supplementary Figures 6, 7. These results demonstrate
that the positive feedback loop formed by the genes Tlr3 − Ifng
− Stat1 is stable.

High Association between Phenotypic and
Genotypic Data
To find associations between the disease course and the
corresponding whole genome expression data, we used multiple
linear regression modeling. Here, the clinical (symptom) score
S observed after infection of BALB/c mice with mpJena/5258
was used as dependent response variable as described recently
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FIGURE 5 | Gene-regulatory network predicted from time series microarray data and prior knowledge. Network for 20 genes (Supplementary Table 6), 16

of them selected through GO category “response to virus.” “Jena/5258 HA-D222” and “Jena/5258 HA-G222” represent the two influenza variants found by Seidel

et al. (2014). Black edges represent the newly predicted edges by the NetGenerator tool, green edges represent edges supported by prior knowledge and confirmed

by NetGenerator exploiting the expression data and gray dotted edges represent prior knowledge not confirmed by NetGenerator. Arrow-head represents activation

or positive regulation while bar-head represents repression or negative regulation (that may also represent indirect interaction).

(Manchanda et al., 2014). The scaled gene expression ratio values
of the four genes of the 4-gene- subnetwork (i.e., Ifng, Stat1,
Tlr3, Eif2ak2) were used as dependent (explanatory) variables.
The linear regression model is shown in Materials and Methods.
Interestingly, we found that the individual influence of the
four individual independent variables is not significant (p ≥

0.3 for S∼ Ifng, S∼ Stat1, S∼ Tlr3, and S∼ Eif2ak2) whereas
a significant influence was found for the combined influence
of the four genes on the clinical score (overall p-value 0.024
for S∼ Ifng + Stat1 + Tlr3 + Eif2ak2 − 1). These results
suggest that the phenotype of the disease is controlled by overall
interactions between these independent variables rather their
individual expression.

DISCUSSION

Interestingly the dynamics of about 83% of DEGs was
characterized by biphasic up- and/or down-regulation after
infection of mice with the A(H1N1)pdm09 mpJena/5258
consisting HA-222D/G quasispecies. This biphasic pattern was
confirmed by the plasma levels of IFN-γ and IL-6, two key

inflammatory cytokines that are associated with virus-induced
inflammatory immune responses (Pommerenke et al., 2012;
Goraya et al., 2015; Shoemaker et al., 2015). Moreover, a
gene regulatory network for 20 selected DEGs was inferred
to hypothetically explain the biphasic pattern caused by the
coinfection with HA-222D/G quasispecies. The network results
suggest that a positive feedback loop of Ifng, Stat1, and Tlr3 gene
signaling is triggered by the HA-G222 variant.

As already published (Pommerenke et al., 2012) and based on
our model study exploiting the clinical score comparing different
virus strains bymathematical modeling (Manchanda et al., 2014),
we primarily assumed to identify genes with expression profile
maxima close to the early maximum of the clinical score and
another set of genes whose temporal expression maxima explain
the later peak of the clinical score. However, this working
hypothesis failed. Hence, we did not identify two sets of genes,
one with an early peak (caused by innate immunity) and the
other one with a late peak (caused by adaptive immunity) in
the measured expression profiles. In contrast, the majority of
DEGs was characterized by biphasic behavior itself (up and/or
down regulated DEGs as seen in cluster analysis). This biphasic
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FIGURE 6 | Network predicted involving the 4 genes which were part of

the positive feedback loop of the gene regulatory network. “Jena/5258

HA-D222” and “Jena/5258 HA-G222” represent the two influenza variants

found by Seidel et al. (2014). Black edges represent the newly predicted edges

by the NetGenerator tool, green edges represent edges supported by prior

knowledge and confirmed by NetGenerator exploiting the expression data and

gray dotted edges represent prior knowledge not confirmed by NetGenerator.

Arrow-head represents activation or positive regulation while bar-head

represents repression or negative regulation (that may also represent indirect

interaction).

behavior was also detected on the protein level for IFN-γ and IL-
6. Based on these results the hypothesis predicted by modeling
(Manchanda et al., 2014) needs modification.

A common feature of severe influenza is the strong
immune response, characterized by activation of epithelial cells,
macrophages and the recruitment and activation of neutrophils,
eosinophils, monocytes, and further immune cells as reviewed
in Iwasaki and Pillai (2014) and Goraya et al. (2015). Activated
immune cells are known to generate highly reactive ROS
(Rahman, 2003). ROS lead to lipid peroxidation and increase
of tissue permeability which have been implicated in the
pathogenesis of lung injury. Here, the genome expression profile
confirms a strong expression of pro-oxidation genes such as Ncf4
and Xdh along with down-regulation of anti-oxidation genes
such as Dhdh and Cat. This strong pro-oxidation stimulation
may increase lung injury and the severity of the disease. In
agreement with our findings, high levels of expression of Ifng,
IL1, IL6, Ccl4, Ccl5, Cxcl9, and Cxcl10 in the lungs of infected
mice which were associated with enhanced pathogenicity in
previous studies (Kobasa et al., 2004; Tumpey et al., 2005).
The proven strong cytokine and chemokine gene transcription
(overrepresented in gene cluster 4) may result from but also
trigger the immune cell infiltration that has been seen in the lungs
of mpJena/5258-infected mice analyzed here (Seidel et al., 2014).

The crucial role of viral HA for enhanced pathogenicity
was demonstrated with recombinant viruses expressing the HA
of a 1918 pandemic H1N1 IAV (Kobasa et al., 2004). These

recombinant viruses induced high levels of macrophage-derived
chemokines and cytokines, which resulted in infiltration of
inflammatory cells and severe hemorrhage (hallmarks of the
illness produced during the H1N1 1918 pandemic) in mice. In
the present study, we used an ordinary differential equation-
based modeling approach to infer a gene regulatory network to
hypothetically explain the correlation between the biphasic gene
expression patterns with HA-222D/G quasispecies evolution
and disease severity in mice. To our knowledge, this is the
first gene regulatory network involving two variants (HA-D222
and HA-G222 quasispecies) of A(H1N1)pdm09. We inferred
a network of 20 DEGs where 16 of them belong to the GO
category “response to virus” and four of them were included
based on the finding published elsewhere (Hu et al., 2008). Of
course, this gene selection made for modeling is biased by prior
knowledge and not comprehensive (i.e., genome-wide). Among
the 12 predicted edges of the 20-gene network there are two
gene-to-gene interactions, Ddx58 positively activating Stat3 and
Mx1, which were previously described in literature (Zeng et al.,
2007; Breuer et al., 2013; Zhang et al., 2013), but not used as
prior knowledge for the network inference. This confirms the
predictive power of modeling, despite the low quality of model
fit for the respective genes.

The inferred gene regulatory network comprises a positive
feedback loop (supported by prior knowledge) between Stat1,
Ifng, and Tlr3. The inference of this loop was confirmed
to be robust in a reduced 4-gene-network. Recently, a high
complexity for inflammatory networks, which is accompanied
by high entropy and low free energy, was shown, for a
highly pathogenic H5N1 IAV (Jin et al., 2014). This is in
accordance with our regulatory network prediction where we
found a complex regulation of Ifng (high degree of Ifng).
Another recent study (Brandes et al., 2013) also described
an elevated activation of inflammatory signaling networks in
lethal IAV infection and a positive feedback chemokine-derived
loop regulating the pro-inflammatory response. This is in
concordance with our finding of a positive feedback loop between
Ifng, Stat1 and Tlr3, where Ifng represents the pro-inflammatory
gene. IFN-γ was particularly strong induced in the severe
phase of disease. Furthermore, TLR3-IAV interaction critically
contributes to a detrimental host inflammatory response (Le
Goffic et al., 2006).While this manuscript was in progress, further
studies demonstrated that cytokine levels are regulated in a
time-dependent and IAV strain-dependent manner (Shoemaker
et al., 2015). According to Shoemaker et al. “the dynamics of
inflammation-associated gene expression are regulated by an
ultrasensitive-like mechanism in which low levels of virus induce
minimal gene expression but expression is strongly induced once
a threshold virus titer is exceeded. A systematic exploration of the
pathways regulating the inflammatory-associated gene response
suggests that the molecular origins of this ultrasensitive response
mechanism lie within the branch of the Toll-like receptor
pathway that regulates STAT1 phosphorylation” (Shoemaker
et al., 2015). This is in in good agreement with our results
where network analysis showed that the upregulation of Tlr3,
Ifng, and Stat1 was associated with disease severity. The positive
feedback loop between Tlr3 − Ifng − Stat1 presented here
was induced by the HA-G222 variant. This model-predicted
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induction warrants further experiments in mice individually
infected with the different HA-222 quasispecies. Overall, our
study shows a role of this positive feedback loop in triggering the
pro-inflammatory response in the lung of mice coinfected with
A(H1N1)pdm09 HA-222 quasispecies.

Finally, we also focused on the comparison between the virus-
induced symptoms (clinical score and body weight changes,
Manchanda et al., 2014) and the gene expression profile. A high
correlation of the virus-induced symptoms with gene expression
patterns and cytokine levels in the blood of the infected animals
was shown.

In conclusion, the coevolution of HA-222D/G quasispecies of
mpJena/5258 elicits a complex response in infected mouse lung,
characterized by a biphasic gene expression pattern. Increasing
amounts of the HA-G222 variant correlated with a substantial
upregulation of Ifng via the positive feedback loop Tlr3− Ifng−
Stat1 at day 7 p.i. We hypothesize that this finally contributed to
the observed strong pro-inflammatory response. The expression
profiles of the genes Tlr3, Ifng, Stat1, and Eif2ak2 in the lung as
well as the Il-6 and IFN-γ level in serum were biphasic like the
virus-induced symptoms (Manchanda et al., 2014; Seidel et al.,
2014). The present studymay thus serve as an indicator to suggest
that the occurrence of quasispecies provoking biphasic courses in
the host’s immune responses might be an interesting new aspect
for further exploring and comparing the host response to IAV
infections and for developing control strategies.
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