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Background: Emerging evidence has suggested that dysbiosis of the lung microbiota may be associated 
with the development of lung diseases. However, the interplay between the lung microbiome and lung cancer 
remains unclear. The aim of the present study was to evaluate and compare differences in taxonomic and 
derived functional profiles in the lung microbiota between lung cancer and benign pulmonary diseases.
Methods: Bronchoalveolar lavage fluid (BALF) samples were collected from 32 patients with lung cancer 
and 22 patients with benign pulmonary diseases, and further analyzed by 16S rRNA amplicon sequencing. 
The obtained sequence data were deeply analyzed by bioinformatics methods.
Results: A significant differentiation trend was observed between the lung cancer and control groups based 
on principal coordinate analysis (PCoA), while richness and evenness in the lung microbiome of lung cancer 
patients generally resembled those of patients with benign pulmonary diseases. Phylum TM7 and six genera 
(c:TM7-3, Capnocytophaga, Sediminibacterium, Gemmiger, Blautia and Oscillospira) were enriched in the lung 
cancer group compared with the control group (adjust P<0.05). The area under the curve (AUC) combining 
the microbiome with clinical tumor markers to predict lung cancer was 84.52% (95% CI: 74.06–94.97%). 
In addition, predicted KEGG pathways showed that the functional differences in metabolic pathways of 
microbiome varied with groups.
Conclusions: The results indicated that differences existed in the lung microbiome of patients with lung 
cancer and those with benign pulmonary diseases, and some certain bacteria may have potential to predict 
lung cancer, though future larger-sample studies are required to validate this supposition.
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Introduction

Lung cancer is one of the most common malignancies 
worldwide, posing an enormous threat to human health due 
to high morbidity (1.82 million) and mortality (1.59 million) 
per year (1,2). The lung has historically been considered a 
sterile environment. However, high-throughput sequencing 
techniques have altered the previous cognition thoroughly 
and it is recognized that there are abundant and diverse 
bacterial communities, including Proteobacteria, Firmicutes 
and Bacteroidetes as the most prevalent phyla, even in the 
healthy human lungs (3,4). In addition, accumulating 
evidence has also suggested a link between altered pulmonary 
microbiota (dysbiosis) and lung diseases, such as asthma, 
chronic obstructive pulmonary disease (COPD), idiopathic 
pulmonary fibrosis (IPF), cystic fibrosis and lung cancer (5-9). 

Furthermore, some specific microbes are known to be 
associated with cancer. For instance, Helicobacter pylori is 
recognized to be associated with the high risk of gastric 
cancer and the amount of Fusobacterium nucleatum is 
associated with the prognosis of colorectal carcinoma 
patients (10,11). However, compared with studies on the 
relationship between the microbiome and other cancers, 
the subtle association between the microbiome and lung 
cancer remains relatively unclear. Although some previous 
studies have noticed that changes of specific microbiota in 
bronchoalveolar lavage fluid (BALF), lung tissue, sputum, 
saliva and fecal samples may be related to lung cancer, 
these studies have yielded some conflicting specific results 
(9,12-16). Additionally, Gui et al. reported that Lactobacillus 
showed a promising trend in treating mice with lung cancer, 
implying that modulating the microbiome may impact 
the treatment of lung cancer (17). Therefore, we need to 
further explore the relationship between the microbiota and 
lung cancer so as to again a better understanding about the 
underlying mechanisms of their interaction. 

A previous study demonstrated that the microbiota of an 
individual could keep long-term stable, which highlights 
the potential of the microbiota as a diagnostic method 
and therapeutic target (18). As saliva and sputum samples 
are susceptible to interference by the oral microbiota 
and it is usually difficult to obtain lung tissue specimens 
from patients with advanced lung cancer, and some 
experts believe that BALF is a viable option for sampling 
of the lung microbiome because BALF microbiome will 
not be confounded by oral contamination (19-21). To 
validate the previous research and provide a more specific 
understanding about how the lung microbiome affects lung 

cancer patients versus individuals with benign pulmonary 
diseases, the present study was intended to further apply 
16S rRNA-based next-generation sequencing to investigate 
the differences in taxonomic and derived functional profiles 
in the lung microbiota in BALF samples.

Methods

Patients and sample collection

Enrolled in this study were patients who presented 
suspicious nodules on CT images and underwent clinical 
bronchoscopy at the Affiliated Hospital of Xuzhou Medical 
University (Xuzhou, China) between July 2018 and June 
2019. Patients with acute pulmonary infection, second 
primary tumors, other lung comorbidities such as COPD, 
pulmonary fibrosis and bronchiectasis and other immune 
metabolic diseases or treated with antibiotics within a 
month were excluded from the study. Finally, a total of 
54 patients were recruited in the research, including 32 
patients who were pathologically diagnosed with lung 
cancer, and 22 patients who were diagnosed with benign 
pulmonary diseases as the control. Bronchoalveolar lavage 
(BAL) was performed on the side of the lung suspicious 
nodules following a standardized protocol developed to 
minimize oral contamination (22), and then 2 mL BALF 
was collected from each patient and stored at −80 ℃ within 
30 min. In addition, prior to bronchoscopy, 10–20 mL 
sterile 0.9% saline was washed through the bronchoscope 
and divided into 5 aliquots in a sterile centrifuge tube 
to serve as the negative control. The demographic and 
clinical data of all participants including age, gender, body 
mass index (BMI), smoking history, smoking index, tumor 
markers, pathology type and tumor staging were recorded. 
The study (XYFY2019-KL110-01) was approved by the 
Medical Ethics Committee at the Affiliated Hospital of 
Xuzhou Medical University and written informed consent 
was obtained from the subjects.

Extraction of genome DNA

Total genome DNA from BALF samples was extracted using 
CTAB/SDS method. The DNA concentration and purity 
were monitored on 1% agarose gels using Qubit® dsDNA 
Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, 
CA, USA) and NanoPhotometer® spectrophotometer 
(IMPLEN, CA, USA). The isolated DNA of BALF was 
diluted to 1 ng/μL using sterile water according to the 
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concentration aimed to amplify 16S rRNA genes (V3–V4).

16S rRNA gene amplicon sequencing 

16S rRNA genes of distinct regions (16SV3-V4) were 
amplified using specific primer with the barcode and 
Phusion® High-Fidelity PCR Master Mix (New England 
Biolabs). PCR products were electrophoresis on 2% 
agarose gel for detection, and samples with bright main 
strips between 400–450 bp were chosen to be purified 
with Qiagen Gel Extraction Kit (Qiagen, Germany). 
Sequencing libraries were generated usingTruSeq® DNA 
PCR-Free Sample Preparation Kit (Illumina, USA) 
following the manufacturer’s recommendations and index 
codes were added. The library quality was assessed on 
the Qubit@ 2.0Fluorometer (Thermo Scientific) and 
Agilent Bioanalyzer 2100 system and sequenced on an 
IlluminaHiSeq2500 platform and 250 bp paired-end reads 
were generated.

Data analysis

Samples were demultiplexed using an in-house script. 
Adaptors were trimmed, and paired end sequences were 
joined using FLASH (v1.2.7). Paired sequences were input 
into QIIME 2 (2019.7). Sequences were quality filtered 
and denoised using deblur (q2-deblur) with parameters on 
400 bp amplicons to generate amplicon sequence variants 
(ASVs). A phylogenetic tree was built using fragment 
insertion into the gg-13-8-99 identity tree backbone with 
q2-phylogeny; taxonomic assignments were made with a 
naïve Bayesian classifier trained against the same reference 
(q2-feature-classifier). In cases where the classifier or 
reference database was unable to describe a taxonomic level 
(for instance, a missing genus), the taxonomy was described 
by inheriting the lowest defined level using a custom python 
script. Following sequencing and denoising, 24,285 high 
quality reads on average were retained. Alpha diversity was 
calculated as observed ASVs, Chao1, Shannon diversity, 
and Faith’s phylogenetic diversity using q2-diversity in 
QIIME 2 (2019.7). Beta diversity was measured using the 
Bray-Curtis metrics, unweighted UniFrac and weighted 
UniFrac on rarefied data (q2-diversity). PERMANOVA was 
applied to evaluate the diversity differences between groups. 
Principal coordinate analyses (PCoA) were performed to 
visualize distance of samples based on Bray-Curtis metrics, 
unweighted UniFrac and weighted UniFrac. Phylogenetic 

Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt Version 2.2.0-b) was designed 
to predict KO abundance from ASVs data, and differentially 
enriched KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathways were estimated according to the LDA 
(Linear discriminant analysis) score by LEfSe (LDA Effect 
Size). The random forest model was performed to estimate 
the importance of each differential genus and predict lung 
cancer based on the receiver-operating characteristic curve 
(ROC) by the value of the AUC. 

Statistical analysis

Wilcoxon rank sum test was used to perform hypothesis test 
on inter-group taxonomic abundance data (the occurrence 
rate >10% and the average abundance >0.5%) to obtain 
P value based on taxonomic abundance table of different 
levels and the P values were adjusted by the Benjamini-
Hochberg correction for multiple tests when required. 
The relationships between the microbial data and clinical 
parameters were assessed using Spearman correlation test. 
All statistical data analyses were performed using R software 
(Version 3.6.1). 

Results

Baseline clinical characteristics of the participants

The demographic and clinical data of the 54 participants 
including 32 patients with lung cancer and 22 patients 
with benign pulmonary diseases are shown in Table 1. No 
significant difference in age, gender, BMI, smoking status 
and smoking index was elicited between the two groups.

Alpha and beta diversity between lung cancer and control 
groups

Richness and evenness in the lung microbiome of the lung 
cancer patients generally resembled those of the patients 
with benign pulmonary diseases using observed ASVs 
(P=0.89), Chao1 (P=0.85), Shannon (P=0.086) and faith_
pd index (P=0.17) to display the alpha diversity (Figure 1A).  
However, the beta diversity of the two groups was 
significantly different (P<0.05) (Figure 1B), and a trend 
of distinct separation in microbiota composition was also 
observed in the two groups using principal coordinate 
analysis (PCoA) plot based on the bray-curtis distance 
(PERMANOVA, P<0.01) (Figure 1C), weighted and 
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unweighted UniFrac distance matrix (Figure S1). 

Taxonomic profiles of the lung microbiota composition

According to the relative abundance of the microbiota 
in the BALF samples of the two groups, classification 
and analysis were carried out on the phylum, class, order, 
family and genus and species levels. The phylum/genus 
taxonomic profiles of the lung microbiota composition 

between the two groups are presented in Figure 2A,B, and 
the microbiota composition profiles based on the family 
level are displayed in Figure S2A. At the phylum level, 
Proteobacteria, Firmicutes and Bacteroidetes were the most 
common in both the cancer and control groups. Besides, 
the mean abundance of Actinobacteria, Fusobacteria and TM7 
in both groups was greater than 0.5%. At the genus level, 
Stenotrophomonas, Prevotella, Streptococcus, Haemophilus and 
Neisseria were the core genera in the study samples. The 

Table 1 The baseline clinical characteristics of the participants

Variables Patients with lung cancer (N=32)
Patients with benign pulmonary 

diseases (N=22)
P value*

Age (years) 64.3 (8.44) 56.5 (14.30) 0.0547

Gender 0.25

Male 23 (71.9) 12 (54.5)

Female 9 (28.1) 10 (45.5)

BMI (kg/m2) 23.1 (3.09) 21.3 (2.95) 0.0782

Smoking status 1

Never smoking 15 (46.9) 13 (59.1)

Ever smokers 10 (31.2) 5 (22.7)

Current smokers 7 (21.9) 4 (18.2)

Smoking index 504 (627) 252 (375) 0.178

Tumor markers

CEA 78.05 (176.1) 3.38 (2.79) 0.00039*

NSE 27.46 (30.59) 14.43 (3.97) 0.03104*

CYFRA21-1 11.3 (25.57) 2.22 (0.92) 0.00003*

Histology

LUAD 16 (50.0) –

LUSC 9 (28.1) –

SCLC 7 (21.9) –

Tumor stage

I 7 (21.9) –

II 0 (0.0) –

III 3 (9.4) –

IV 15 (46.9) –

Limited stage 3 (9.4) –

Extensive stage 4 (12.5) –

The data are shown as the mean (standard deviation) for continuous variables and number (%) for categorical variables. *, P<0.05. BMI, 
body mass index; LUAD, adenocarcinoma; LUSC, squamous cell carcinoma; SCLC, small cell lung cancer; CEA, carcinoembryonic 
antigen; NSE, neuron specific enolase; CYFRA21-1, cytokeratin 19 fragment.
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Figure 1 Comparison of alpha-diversity and beta-diversity of the lung microbiota between patients with lung cancer and those with benign 
pulmonary diseases. (A) Observed ASVs, Chao1, Shannon and faith_pd indices were used to evaluate the evenness and richness in the 
lung microbiome between lung cancer and controls. Each p-value was calculated by Wilcoxon rank sum test; (B) difference in microbiota 
composition between the groups based on Bray-Curtis metrics was displayed by box plot according to the Wilcoxon rank sum test; (C) 
principal coordinate analysis (PCoA) of Bray-Curtis metrics. The proportion of variance explained by each principal component was 
performed in the corresponding box plot. Red and blue dot represent cancer and nonmalignant control, respectively.
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relative abundance of TM7 was significantly increased (adjust 
P=0.005634) and Proteobacteria was significantly depleted 
(adjust P=0.01388) in patients with lung cancer compared 

with benign pulmonary diseases. Additionally, at the family 
level, the relative frequency of Ruminococcaceae, c: TM7-3 and 
Chitinophagaceae were increased more significantly in lung 

Figure 2 Taxonomic profiles of the lung microbiota in patients with lung cancer and those with benign pulmonary diseases. (A) The relative 
frequency of lung microbiota in each BALF sample at the phylum level; (B) the relative frequency of lung microbiota in each BALF sample 
at the genus level. Only the mean abundance within each group >0.5% taxa is shown; (C) the two significantly different bacterial phyla and 
10 genera were displayed by box plot (Wilcoxon rank sum test. P adjust <0.05).
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cancer patients than the controls (adjust P<0.05) (Figure S2B).  
Furthermore, six genera (c:TM7-3, Capnocytophaga, 
Sediminibacterium, Gemmiger, Blautia and Oscillospira) were 
more enriched in lung cancer patients (adjust P<0.05) and 
the relative abundance of four genera (Microbacterium, 
Stenotrophomonas, Lautropia and f:Pseudomonadaceae) was lower 
than that in the control group (adjust P<0.05) (Figure 2C).

Predicted functional profiles of the lung microbiota

The LEfSe analysis was used to find significantly 
imbalanced KEGG metabolic pathways between lung cancer 
patients and benign pulmonary diseases patients, and the 
differences between the lung cancer patients versus controls 
are displayed in Figure 3. In general, there were 46 and 57 
discrepant pathways enriched in the lung cancer and control 
groups respectively. The microbiota in the BALF samples 
of lung cancer patients always showed obvious metabolic 
behaviors for the pathways of Ribosome (with the metabolic 
pathways most affected), Pyrimidine metabolism and Purine 
metabolism. Conversely, several metabolic pathways, such 
as Two component system, Flagellar assembly, and Bacterial 
secretion system were overrepresented significantly in 
patients with benign pulmonary diseases.

Potential bacterial biomarkers for lung cancer patients

A random forest model was used to predict lung cancer 
combining ten bacterial genera with the significant 
d i f f e rence  be tween  groups  ( f :Pseudomonada c ea e , 
Capnocytophaga ,  Stenotrophomonas ,  Microbacterium , 
Gemmiger, c:TM7-3, Oscillospira, Blautia, Lautropia, 
Sediminibacterium) with three clinical tumor markers (CEA, 
NSE, CYFRA21-1). The receiver operating characteristic 
(ROC) analysis was performed to validate the diagnostic 
ability of these potential biomarkers for lung cancer based 
on the significantly different genera between groups and 
tumor markers, and the calculated area under the curve 
(AUC) was 84.52% (95% CI: 74.06–94.97%). The AUC 
generated by ten remarkable differential genera and 
commonly used clinical diagnostic markers were 79.12% 
(95% CI: 66.41–91.83%) and 78.27% (95% CI: 65.73–
90.81%) to distinguish lung cancer patients and patients 
with benign pulmonary diseases (Figure 4A). The genera 
f:Pseudomonadaceae and Capnocytophaga were found to play 
a more important role among the classifier compared with 
the clinical tumor markers (Figure 4B). The heat map of the 
Spearman’s rank correlation between significantly different  

genera between groups and tumor markers illustrates that 
the microbiota, especially Capnocytophaga, Sediminibacterium 
and c:TM7-3, enriched in the BALF of lung cancer patients 
vs. patients with benign pulmonary diseases was also 
positively and significantly correlated with the markers 
CEA and CYFRA21-1 (Figure S3).

Discussion

The human microbiota is known to play a critical role in 
the development and progression of cancers by affecting 
host inflammation, immunity and metabolism (23,24). In 
this study, we examined and explored the taxonomic and 
derived functional profiles of the lung microbiome between 
patients with lung cancer versus benign pulmonary diseases, 
and found that the microbiota composition and metabolic 
activity differed significantly in BALF samples between the 
two groups.

The difference of patient clinical characteristics 
including age, gender, BMI and smoking may impact 
individual bacterial communities (16,25,26), so we ensured 
no statistically significant differences in these factors 
between the two groups, devoid of the interference with the 
final microbiota sequencing to the greatest extent. 

The trend of differentiation was observed in the overall 
structure of the microbial communities between the two 
groups based on PCoA, which is consistent with the 
findings by Tsay et al. and Liu et al. (27,28), suggesting that 
there was a significant difference in the lung microbiome 
composition between lung cancer and nonmalignant 
diseases. The a-diversity analysis results showed that there 
was no significant difference in the richness and diversity 
of microbiota in the BALF samples from the patients with 
lung cancer versus non-malignant pulmonary diseases, 
which is similar to the report from Jin et al. (29). In contrast, 
Lee et al. reported that a-diversity of the microbiome was 
significantly different between the groups (9). We think 
that the heterogeneity may be due to the difference in the 
environmental and air particulates exposures, the geography 
and diet of enrolled patients, the depth of microbiota 
sequencing, and other factors (9,19,30,31). 

Our study showed that the relative abundance of TM7 
and c:TM7-3 was significantly elevated in BALF samples 
of lung cancer patients, which is in agreement with the 
finding of Lee et al. (9). A significant increase in TM7 was 
also observed in COPD patients compared with the healthy 
controls, indicating that TM7 may play an essential role in 
COPD and lung cancer patients (32). Moreover, Yan et al. 
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demonstrated that Capnocytophaga and Veillonella could serve 
as potential biomarkers for the detection of lung cancer by 
quantitative PCR (33). In addition, Wang et al. showed that 
Veillonella and Capnocytophaga were enriched in the BALF 
samples of their 51 patients with lung cancer as compared 
with the healthy controls (16). It was found in our study 
that the level of Capnocytophaga in lung cancer patients 
was significantly higher than that in patients with benign 
pulmonary diseases, which is in concordance with previous 
studies. The stimulation of chronic inflammation by more 
Capnocytophaga may be one of the carcinogenic mechanisms 
of lung cancer, which is similar to the intrinsic relationship 
between Capnocytophaga gingivalis and oral squamous cell 
carcinoma (OSCC) (34). However, there was no significant 
increase in Veillonella in the BALF samples of lung cancer 
patients as compared with the controls. In addition, certain 
significantly differential genera in our study also differed 
from previous reports, and therefore further research is 
needed to validate the role of Veillonella in the development 
of lung cancer and verify the effectiveness of these 
differential genera. In the BALF samples of lung cancer 
patients enrolled in this study, the genus Sediminibacterium 
and Gemmiger were significantly increased versus benign 

pulmonary diseases, which, to the best of our knowledge, 
has not been reported in previous related studies. However, 
the relative abundance of the genus Sediminibacterium 
was also much higher in participants with type 2 diabetes 
mellitus (T2DM) and the genus Gemmiger was enriched 
in early hepatocellular carcinoma (HCC) versus cirrhosis 
(35,36). The role of these genera in the development of 
lung cancer remains to be further investigated in more 
larger-sample cohorts.

We further analysed the inferred metabolic function of 
the lung microbiome between the two groups based on the 
KEGG pathways predication. Ribosome and Pyrimidine 
metabolism pathways were significantly enriched in lung 
cancer patients. The above pathways were also reported 
to be correlated with the progression of breast cancer and 
lung cancer (16,37). The abnormal Ribosome biogenesis 
was reported to increase tumor cell proliferation and 
be negatively correlated with patient survival, and the 
nucleotide metabolism imbalance was closely related to 
tumor cell growth and proliferation (38,39). It was also 
found in our study that methane metabolism was enriched 
in lung cancer patients, which is consistent with the 
previous finding in colorectal cancer (40). Additionally, 

Figure 4 The random forest model  based on the microbiota and tumor markers (TMs) to distinguish lung cancer and benign pulmonary 
diseases patients. (A) Receiver operating characteristic (ROC) curves with the ten significant differential genera (AUC =79.12%), three 
tumor markers for lung cancer (AUC =78.27%) and combination of these genera and clinical tumor markers (AUC =84.52%) to predict 
lung cancer versus benign pulmonary diseases; (B) the importance of Gini coefficient was arranged from top to bottom.
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further research based on large clinical samples needs to 
focus on metabolic pathways that may be involved in the 
interaction between lung cancer and the microbiome.

In our study, all 10 distinct differential bacterial 
genera were applied to distinguish lung cancer and 
benign pulmonary diseases via building a random forest 
classifier and the AUC was 79.12%, indicating that these 
bacterial genera are closely linked to the development of 
lung cancer and in the classification of the two groups is 
moderately valuable. The combination of the bacteria and 
the clinical tumor markers showed a higher ROC value 
(AUC =84.52%) than that of the bacteria alone, suggesting 
that the joint multi-dimensional data could better predict 
lung cancer to some extent, but this model requires a 
larger sample cohort for exploration and validation. The 
f:Pseudomonadaceae and Capnocytophaga were found to play a 
more important role among the classifier compared with the 
clinical tumor markers, indicating that the lung microbiome 
may have the potential as bacterial biomarkers and new 
targets  for the treatment of lung cancer, which is worth 
further exploration. Jin et al. also built a diagnostic model 
based on age, pack year of smoking and 11 types of bacteria 
to predict lung cancer and obtained a higher AUC (29). 
However, there were some differences between previous 
studies on the bacterial genus involved in classifying and 
identifying patients with lung cancer. Therefore, future 
larger-sample and dynamic longitudinal studies are 
required to verify the association between the microbiome 
and different pathological types of lung cancer based on 
different regions and populations.

Additionally, there are some limitations to our study. 
First, the number of patients enrolled in this study is not 
large enough and lung cancer patients were not classified 
by histological subtypes or different stages, and there may 
be heterogeneity. Second, the use of specific bacteria to 
distinguish lung cancer from benign lung diseases without 
a validation cohort may result in the false positive value 
and unreliability. Third, the study is a cross-sectional study 
and only illustrates the phenomenon from microbiology. 
Although the metabolic pathways that may be involved are 
initially predicted based on the microbiome results, the 
mechanism of their interaction is not further explored.

Conclusions

In the present study, we provided new insights into changes 

in the composition of the lung microbiome and predicted 
the metabolic function of the lung microbiome in patients 
with lung cancer. The differential genera discovered in this 
study may prove to be potential bacterial biomarkers and 
new targets for the diagnosis and treatment of lung cancer. 
Further related larger-sample studies are needed to validate 
the potential of these genera as bacterial biomarkers. 
Animal research is also needed to understand whether these 
differential genera affect the development of lung cancer 
by exploring possible mechanisms or whether lung cancer 
results in changes in the microbiome.
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Supplementary

Figure S1 Principal coordinate analysis (PCoA) based on weighted (A) and unweighted UniFrac distance matrix (B). The axes are labeled 
with the variation they explain. The proportion of variance explained by each principal component by groups was performed in the 
corresponding box plot. Red and blue dot represent cancer and nonmalignant control, respectively.

Figure S2 Taxonomic profiles of the lung microbiota of lung cancer patients and patients with benign pulmonary diseases at the family level. 
Only the mean abundance within one group >0.5% taxa is shown. The significant different eight bacterial families were displayed by box 
plot (Wilcoxon rank sum test. P adjust <0.05).

Figure S3 Heat map of Spearman’s rank correlation between significant differential bacterial genera and clinical tumor markers. Spearman 
correlation coefficient r on the right side of the heat map is between −1 and 1, with r<0 as negative correlation, represented by blue and r>0 
as positive correlation, represented by red, respectively. *, P<0.05; **, P<0.01. 
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