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Background: Emerging evidence has suggested that dysbiosis of the lung microbiota may be associated
with the development of lung diseases. However, the interplay between the lung microbiome and lung cancer
remains unclear. The aim of the present study was to evaluate and compare differences in taxonomic and
derived functional profiles in the lung microbiota between lung cancer and benign pulmonary diseases.
Methods: Bronchoalveolar lavage fluid (BALF) samples were collected from 32 patients with lung cancer
and 22 patients with benign pulmonary diseases, and further analyzed by 16S rRNA amplicon sequencing.
The obtained sequence data were deeply analyzed by bioinformatics methods.

Results: A significant differentiation trend was observed between the lung cancer and control groups based
on principal coordinate analysis (PCoA), while richness and evenness in the lung microbiome of lung cancer
patients generally resembled those of patients with benign pulmonary diseases. Phylum 7M7 and six genera
(c:TM7-3, Capnocytophaga, Sediminibacterium, Gemmiger, Blautin and Oscillospira) were enriched in the lung
cancer group compared with the control group (adjust P<0.05). The area under the curve (AUC) combining
the microbiome with clinical tumor markers to predict lung cancer was 84.52% (95% CI: 74.06-94.97%).
In addition, predicted KEGG pathways showed that the functional differences in metabolic pathways of
microbiome varied with groups.

Conclusions: The results indicated that differences existed in the lung microbiome of patients with lung
cancer and those with benign pulmonary diseases, and some certain bacteria may have potential to predict

lung cancer, though future larger-sample studies are required to validate this supposition.
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Introduction

Lung cancer is one of the most common malignancies
worldwide, posing an enormous threat to human health due
to high morbidity (1.82 million) and mortality (1.59 million)
per year (1,2). The lung has historically been considered a
sterile environment. However, high-throughput sequencing
techniques have altered the previous cognition thoroughly
and it is recognized that there are abundant and diverse
bacterial communities, including Proteobacteria, Firmicutes
and Bacteroidetes as the most prevalent phyla, even in the
healthy human lungs (3,4). In addition, accumulating
evidence has also suggested a link between altered pulmonary
microbiota (dysbiosis) and lung diseases, such as asthma,
chronic obstructive pulmonary disease (COPD), idiopathic
pulmonary fibrosis (IPF), cystic fibrosis and lung cancer (5-9).

Furthermore, some specific microbes are known to be
associated with cancer. For instance, Helicobacter pylori is
recognized to be associated with the high risk of gastric
cancer and the amount of Fusobacterium nucleatum is
associated with the prognosis of colorectal carcinoma
patients (10,11). However, compared with studies on the
relationship between the microbiome and other cancers,
the subtle association between the microbiome and lung
cancer remains relatively unclear. Although some previous
studies have noticed that changes of specific microbiota in
bronchoalveolar lavage fluid (BALF), lung tissue, sputum,
saliva and fecal samples may be related to lung cancer,
these studies have yielded some conflicting specific results
(9,12-16). Additionally, Gui et al. reported that Lactobacillus
showed a promising trend in treating mice with lung cancer,
implying that modulating the microbiome may impact
the treatment of lung cancer (17). Therefore, we need to
further explore the relationship between the microbiota and
lung cancer so as to again a better understanding about the
underlying mechanisms of their interaction.

A previous study demonstrated that the microbiota of an
individual could keep long-term stable, which highlights
the potential of the microbiota as a diagnostic method
and therapeutic target (18). As saliva and sputum samples
are susceptible to interference by the oral microbiota
and it is usually difficult to obtain lung tissue specimens
from patients with advanced lung cancer, and some
experts believe that BALF is a viable option for sampling
of the lung microbiome because BALF microbiome will
not be confounded by oral contamination (19-21). To
validate the previous research and provide a more specific
understanding about how the lung microbiome affects lung
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cancer patients versus individuals with benign pulmonary
diseases, the present study was intended to further apply
16S rRNA-based next-generation sequencing to investigate
the differences in taxonomic and derived functional profiles
in the lung microbiota in BALF samples.

Methods
Patients and sample collection

Enrolled in this study were patients who presented
suspicious nodules on CT images and underwent clinical
bronchoscopy at the Affiliated Hospital of Xuzhou Medical
University (Xuzhou, China) between July 2018 and June
2019. Patients with acute pulmonary infection, second
primary tumors, other lung comorbidities such as COPD,
pulmonary fibrosis and bronchiectasis and other immune
metabolic diseases or treated with antibiotics within a
month were excluded from the study. Finally, a total of
54 patients were recruited in the research, including 32
patients who were pathologically diagnosed with lung
cancer, and 22 patients who were diagnosed with benign
pulmonary diseases as the control. Bronchoalveolar lavage
(BAL) was performed on the side of the lung suspicious
nodules following a standardized protocol developed to
minimize oral contamination (22), and then 2 mL BALF
was collected from each patient and stored at -80 °C within
30 min. In addition, prior to bronchoscopy, 10-20 mL
sterile 0.9% saline was washed through the bronchoscope
and divided into 5 aliquots in a sterile centrifuge tube
to serve as the negative control. The demographic and
clinical data of all participants including age, gender, body
mass index (BMI), smoking history, smoking index, tumor
markers, pathology type and tumor staging were recorded.
The study (XYFY2019-KL.110-01) was approved by the
Medical Ethics Committee at the Affiliated Hospital of
Xuzhou Medical University and written informed consent
was obtained from the subjects.

Extraction of genome DNA

Total genome DNA from BALF samples was extracted using
CTAB/SDS method. The DNA concentration and purity
were monitored on 1% agarose gels using Qubit® dsDNA
Assay Kit in Qubit® 2.0 Flurometer (Life Technologies,
CA, USA) and NanoPhotometer® spectrophotometer
(IMPLEN, CA, USA). The isolated DNA of BALF was
diluted to 1 ng/pL using sterile water according to the
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concentration aimed to amplify 165 rRNA genes (V3-V4).

16S rRNA gene amplicon sequencing

16S rRNA genes of distinct regions (16SV3-V4) were
amplified using specific primer with the barcode and
Phusion® High-Fidelity PCR Master Mix (New England
Biolabs). PCR products were electrophoresis on 2%
agarose gel for detection, and samples with bright main
strips between 400-450 bp were chosen to be purified
with Qiagen Gel Extraction Kit (Qiagen, Germany).
Sequencing libraries were generated usingTruSeq® DNA
PCR-Free Sample Preparation Kit (Illumina, USA)
following the manufacturer’s recommendations and index
codes were added. The library quality was assessed on
the Qubit@ 2.0Fluorometer (Thermo Scientific) and
Agilent Bioanalyzer 2100 system and sequenced on an
[luminaHiSeq2500 platform and 250 bp paired-end reads
were generated.

Data analysis

Samples were demultiplexed using an in-house script.
Adaptors were trimmed, and paired end sequences were
joined using FLASH (v1.2.7). Paired sequences were input
into QIIME 2 (2019.7). Sequences were quality filtered
and denoised using deblur (q2-deblur) with parameters on
400 bp amplicons to generate amplicon sequence variants
(ASVs). A phylogenetic tree was built using fragment
insertion into the gg-13-8-99 identity tree backbone with
q2-phylogeny; taxonomic assignments were made with a
naive Bayesian classifier trained against the same reference
(q2-feature-classifier). In cases where the classifier or
reference database was unable to describe a taxonomic level
(for instance, a missing genus), the taxonomy was described
by inheriting the lowest defined level using a custom python
script. Following sequencing and denoising, 24,285 high
quality reads on average were retained. Alpha diversity was
calculated as observed ASVs, Chaol, Shannon diversity,
and Faith’s phylogenetic diversity using q2-diversity in
QIIME 2 (2019.7). Beta diversity was measured using the
Bray-Curtis metrics, unweighted UniFrac and weighted
UniFrac on rarefied data (q2-diversity). PERMANOVA was
applied to evaluate the diversity differences between groups.
Principal coordinate analyses (PCoA) were performed to
visualize distance of samples based on Bray-Curtis metrics,
unweighted UniFrac and weighted UniFrac. Phylogenetic
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Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt Version 2.2.0-b) was designed
to predict KO abundance from ASVs data, and differentially
enriched KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways were estimated according to the LDA
(Linear discriminant analysis) score by LE{fSe (LDA Effect
Size). The random forest model was performed to estimate
the importance of each differential genus and predict lung
cancer based on the receiver-operating characteristic curve

(ROC) by the value of the AUC.

Statistical analysis

Wilcoxon rank sum test was used to perform hypothesis test
on inter-group taxonomic abundance data (the occurrence
rate >10% and the average abundance >0.5%) to obtain
P value based on taxonomic abundance table of different
levels and the P values were adjusted by the Benjamini-
Hochberg correction for multiple tests when required.
The relationships between the microbial data and clinical
parameters were assessed using Spearman correlation test.
All statistical data analyses were performed using R software
(Version 3.6.1).

Results
Baseline clinical characteristics of the participants

The demographic and clinical data of the 54 participants
including 32 patients with lung cancer and 22 patients
with benign pulmonary diseases are shown in 7able 1. No
significant difference in age, gender, BMI, smoking status
and smoking index was elicited between the two groups.

Alpba and beta diversity between lung cancer and control
groups

Richness and evenness in the lung microbiome of the lung
cancer patients generally resembled those of the patients
with benign pulmonary diseases using observed ASVs
(P=0.89), Chaol (P=0.85), Shannon (P=0.086) and faith_
pd index (P=0.17) to display the alpha diversity (Figure 1A).
However, the beta diversity of the two groups was
significantly different (P<0.05) (Figure 1B), and a trend
of distinct separation in microbiota composition was also
observed in the two groups using principal coordinate
analysis (PCoA) plot based on the bray-curtis distance
(PERMANOVA, P<0.01) (Figure 1C), weighted and
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Table 1 The baseline clinical characteristics of the participants
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Patients with benign pulmonary

Variables Patients with lung cancer (N=32) diseases (N=22) P value*
Age (years) 64.3 (8.44) 56.5 (14.30) 0.0547
Gender 0.25

Male 23 (71.9) 12 (54.5)

Female 9 (28.1) 10 (45.5)
BMI (kg/m?’) 23.1 (3.09) 21.3 (2.95) 0.0782
Smoking status 1

Never smoking 15 (46.9) 13 (59.1)

Ever smokers 10 (31.2) 5(22.7)

Current smokers 7(21.9 4(18.2)
Smoking index 504 (627) 252 (375) 0.178
Tumor markers

CEA 78.05 (176.1) 3.38 (2.79) 0.00039*

NSE 27.46 (30.59) 14.43 (3.97) 0.03104*

CYFRA21-1 11.3 (25.57) 2.22 (0.92) 0.00003*
Histology

LUAD 16 (50.0) -

LUSC 9 (28.1) -

SCLC 7 (21.9) -
Tumor stage

I 7 (21.9) -

I 0 (0.0 -

M 3(9.4) -

1Y 15 (46.9) -

Limited stage 3(9.4) -

Extensive stage 4 (12.5) -

The data are shown as the mean (standard deviation) for continuous variables and number (%) for categorical variables. *, P<0.05. BMI,
body mass index; LUAD, adenocarcinoma; LUSC, squamous cell carcinoma; SCLC, small cell lung cancer; CEA, carcinoembryonic
antigen; NSE, neuron specific enolase; CYFRA21-1, cytokeratin 19 fragment.

unweighted UniFrac distance matrix (Figure ST).

Taxonomic profiles of the lung microbiota composition

According to the relative abundance of the microbiota
in the BALF samples of the two groups, classification
and analysis were carried out on the phylum, class, order,
family and genus and species levels. The phylum/genus
taxonomic profiles of the lung microbiota composition

© Translational Lung Cancer Research. All rights reserved.

between the two groups are presented in Figure 24,B, and
the microbiota composition profiles based on the family
level are displayed in Figure S2A. At the phylum level,
Proteobacteria, Firmicutes and Bacteroidetes were the most
common in both the cancer and control groups. Besides,
the mean abundance of Actinobacteria, Fusobacteria and TM7
in both groups was greater than 0.5%. At the genus level,
Stenotrophomonas, Prevotella, Streptococcus, Haemophilus and
Neisseria were the core genera in the study samples. The
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Figure 1 Comparison of alpha-diversity and beta-diversity of the lung microbiota between patients with lung cancer and those with benign
pulmonary diseases. (A) Observed ASVs, Chaol, Shannon and faith_pd indices were used to evaluate the evenness and richness in the
lung microbiome between lung cancer and controls. Each p-value was calculated by Wilcoxon rank sum test; (B) difference in microbiota
composition between the groups based on Bray-Curtis metrics was displayed by box plot according to the Wilcoxon rank sum test; (C)
principal coordinate analysis (PCoA) of Bray-Curtis metrics. The proportion of variance explained by each principal component was

performed in the corresponding box plot. Red and blue dot represent cancer and nonmalignant control, respectively.
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Figure 2 Taxonomic profiles of the lung microbiota in patients with lung cancer and those with benign pulmonary diseases. (A) The relative

frequency of lung microbiota in each BALF sample at the phylum level; (B) the relative frequency of lung microbiota in each BALF sample

at the genus level. Only the mean abundance within each group >0.5% taxa is shown; (C) the two significantly different bacterial phyla and

10 genera were displayed by box plot (Wilcoxon rank sum test. P adjust <0.05).

relative abundance of TM7 was significantly increased (adjust with benign pulmonary diseases. Additionally, at the family
P=0.005634) and Proteobacteria was significantly depleted

(adjust P=0.01388) in patients with lung cancer compared

level, the relative frequency of Ruminococcaceae, c: TM7-3 and
Chitinophagaceae were increased more significantly in lung
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cancer patients than the controls (adjust P<0.05) (Figure S2B).
Furthermore, six genera (c:TM7-3, Capnocytophaga,
Sediminibacterium, Gemmiger, Blautia and Oscillospira) were
more enriched in lung cancer patients (adjust P<0.05) and
the relative abundance of four genera (Microbacterium,
Stenotrophomonas, Lautropia and f:Pseudomonadaceae) was lower
than that in the control group (adjust P<0.05) (Figure 2C).

Predicted functional profiles of the lung microbiota

The LEfSe analysis was used to find significantly
imbalanced KEGG metabolic pathways between lung cancer
patients and benign pulmonary diseases patients, and the
differences between the lung cancer patients versus controls
are displayed in Figure 3. In general, there were 46 and 57
discrepant pathways enriched in the lung cancer and control
groups respectively. The microbiota in the BALF samples
of lung cancer patients always showed obvious metabolic
behaviors for the pathways of Ribosome (with the metabolic
pathways most affected), Pyrimidine metabolism and Purine
metabolism. Conversely, several metabolic pathways, such
as Two component system, Flagellar assembly, and Bacterial
secretion system were overrepresented significantly in
patients with benign pulmonary diseases.

Potential bacterial biomarkers for lung cancer patients

A random forest model was used to predict lung cancer
combining ten bacterial genera with the significant
difference between groups (fiPseudomonadaceae,
Capnocytophaga, Stenotrophomonas, Microbacterium,
Gemmiger, ¢:TM7-3, Oscillospira, Blautia, Lautropia,
Sediminibacterium) with three clinical tumor markers (CEA,
NSE, CYFRA21-1). The receiver operating characteristic
(ROC) analysis was performed to validate the diagnostic
ability of these potential biomarkers for lung cancer based
on the significantly different genera between groups and
tumor markers, and the calculated area under the curve
(AUC) was 84.52% (95% CI: 74.06-94.97%). The AUC
generated by ten remarkable differential genera and
commonly used clinical diagnostic markers were 79.12%
(95% CI: 66.41-91.83%) and 78.27% (95% CI: 65.73—
90.81%) to distinguish lung cancer patients and patients
with benign pulmonary diseases (Figure 44). The genera
f:Pseudomonadaceae and Capnocytophaga were found to play
a more important role among the classifier compared with
the clinical tumor markers (Figure 4B). The heat map of the
Spearman’s rank correlation between significantly different
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genera between groups and tumor markers illustrates that
the microbiota, especially Capnocytophaga, Sediminibacterium
and ¢:TM7-3, enriched in the BALF of lung cancer patients
vs. patients with benign pulmonary diseases was also

positively and significantly correlated with the markers
CEA and CYFRA21-1 (Figure S3).

Discussion

The human microbiota is known to play a critical role in
the development and progression of cancers by affecting
host inflammation, immunity and metabolism (23,24). In
this study, we examined and explored the taxonomic and
derived functional profiles of the lung microbiome between
patients with lung cancer versus benign pulmonary diseases,
and found that the microbiota composition and metabolic
activity differed significantly in BALF samples between the
two groups.

The difference of patient clinical characteristics
including age, gender, BMI and smoking may impact
individual bacterial communities (16,25,26), so we ensured
no statistically significant differences in these factors
between the two groups, devoid of the interference with the
final microbiota sequencing to the greatest extent.

The trend of differentiation was observed in the overall
structure of the microbial communities between the two
groups based on PCoA, which is consistent with the
findings by Tsay er al. and Liu ez 4l. (27,28), suggesting that
there was a significant difference in the lung microbiome
composition between lung cancer and nonmalignant
diseases. The a-diversity analysis results showed that there
was no significant difference in the richness and diversity
of microbiota in the BALF samples from the patients with
lung cancer versus non-malignant pulmonary diseases,
which is similar to the report from Jin ez 4/. (29). In contrast,
Lee et al. reported that a-diversity of the microbiome was
significantly different between the groups (9). We think
that the heterogeneity may be due to the difference in the
environmental and air particulates exposures, the geography
and diet of enrolled patients, the depth of microbiota
sequencing, and other factors (9,19,30,31).

Our study showed that the relative abundance of TM7
and ¢:TM7-3 was significantly elevated in BALF samples
of lung cancer patients, which is in agreement with the
finding of Lee et al. (9). A significant increase in TM7 was
also observed in COPD patients compared with the healthy
controls, indicating that 7M7 may play an essential role in
COPD and lung cancer patients (32). Moreover, Yan ez al.
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Figure 4 The random forest model based on the microbiota and tumor markers (TMs) to distinguish lung cancer and benign pulmonary

diseases patients. (A) Receiver operating characteristic (ROC) curves with the ten significant differential genera (AUC =79.12%), three

tumor markers for lung cancer (AUC =78.27%) and combination of these genera and clinical tumor markers (AUC =84.52%) to predict

lung cancer versus benign pulmonary diseases; (B) the importance of Gini coefficient was arranged from top to bottom.

demonstrated that Capnocytophaga and Veillonella could serve
as potential biomarkers for the detection of lung cancer by
quantitative PCR (33). In addition, Wang ez a/. showed that
Veillonelln and Capnocytophaga were enriched in the BALF
samples of their 51 patients with lung cancer as compared
with the healthy controls (16). It was found in our study
that the level of Capnocytophaga in lung cancer patients
was significantly higher than that in patients with benign
pulmonary diseases, which is in concordance with previous
studies. The stimulation of chronic inflammation by more
Cuapnocytophaga may be one of the carcinogenic mechanisms
of lung cancer, which is similar to the intrinsic relationship
between Capnocytophaga gingivalis and oral squamous cell
carcinoma (OSCC) (34). However, there was no significant
increase in Veillonella in the BALF samples of lung cancer
patients as compared with the controls. In addition, certain
significantly differential genera in our study also differed
from previous reports, and therefore further research is
needed to validate the role of Veillonella in the development
of lung cancer and verify the effectiveness of these
differential genera. In the BALF samples of lung cancer
patients enrolled in this study, the genus Sediminibacterium
and Gemmiger were significantly increased versus benign

© Translational Lung Cancer Research. All rights reserved.

pulmonary diseases, which, to the best of our knowledge,
has not been reported in previous related studies. However,
the relative abundance of the genus Sediminibacterium
was also much higher in participants with type 2 diabetes
mellitus (T2DM) and the genus Gemmiger was enriched
in early hepatocellular carcinoma (HCC) versus cirrhosis
(35,36). The role of these genera in the development of
lung cancer remains to be further investigated in more
larger-sample cohorts.

We further analysed the inferred metabolic function of
the lung microbiome between the two groups based on the
KEGG pathways predication. Ribosome and Pyrimidine
metabolism pathways were significantly enriched in lung
cancer patients. The above pathways were also reported
to be correlated with the progression of breast cancer and
lung cancer (16,37). The abnormal Ribosome biogenesis
was reported to increase tumor cell proliferation and
be negatively correlated with patient survival, and the
nucleotide metabolism imbalance was closely related to
tumor cell growth and proliferation (38,39). It was also
found in our study that methane metabolism was enriched
in lung cancer patients, which is consistent with the
previous finding in colorectal cancer (40). Additionally,
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further research based on large clinical samples needs to
focus on metabolic pathways that may be involved in the
interaction between lung cancer and the microbiome.

In our study, all 10 distinct differential bacterial
genera were applied to distinguish lung cancer and
benign pulmonary diseases via building a random forest
classifier and the AUC was 79.12%, indicating that these
bacterial genera are closely linked to the development of
lung cancer and in the classification of the two groups is
moderately valuable. The combination of the bacteria and
the clinical tumor markers showed a higher ROC value
(AUC =84.52%) than that of the bacteria alone, suggesting
that the joint multi-dimensional data could better predict
lung cancer to some extent, but this model requires a
larger sample cohort for exploration and validation. The
f:Pseudomonadaceae and Capnocytophaga were found to play a
more important role among the classifier compared with the
clinical tumor markers, indicating that the lung microbiome
may have the potential as bacterial biomarkers and new
targets for the treatment of lung cancer, which is worth
further exploration. Jin et 4/. also built a diagnostic model
based on age, pack year of smoking and 11 types of bacteria
to predict lung cancer and obtained a higher AUC (29).
However, there were some differences between previous
studies on the bacterial genus involved in classifying and
identifying patients with lung cancer. Therefore, future
larger-sample and dynamic longitudinal studies are
required to verify the association between the microbiome
and different pathological types of lung cancer based on
different regions and populations.

Additionally, there are some limitations to our study.
First, the number of patients enrolled in this study is not
large enough and lung cancer patients were not classified
by histological subtypes or different stages, and there may
be heterogeneity. Second, the use of specific bacteria to
distinguish lung cancer from benign lung diseases without
a validation cohort may result in the false positive value
and unreliability. Third, the study is a cross-sectional study
and only illustrates the phenomenon from microbiology.
Although the metabolic pathways that may be involved are
initially predicted based on the microbiome results, the
mechanism of their interaction is not further explored.

Conclusions

In the present study, we provided new insights into changes

© Translational Lung Cancer Research. All rights reserved.
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in the composition of the lung microbiome and predicted
the metabolic function of the lung microbiome in patients
with lung cancer. The differential genera discovered in this
study may prove to be potential bacterial biomarkers and
new targets for the diagnosis and treatment of lung cancer.
Further related larger-sample studies are needed to validate
the potential of these genera as bacterial biomarkers.
Animal research is also needed to understand whether these
differential genera affect the development of lung cancer
by exploring possible mechanisms or whether lung cancer
results in changes in the microbiome.
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Figure S1 Principal coordinate analysis (PCoA) based on weighted (A) and unweighted UniFrac distance matrix (B). The axes are labeled

with the variation they explain. The proportion of variance explained by each principal component by groups was performed in the

corresponding box plot. Red and blue dot represent cancer and nonmalignant control, respectively.
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Figure S2 Taxonomic profiles of the lung microbiota of lung cancer patients and patients with benign pulmonary diseases at the family level.
Only the mean abundance within one group >0.5% taxa is shown. The significant different eight bacterial families were displayed by box

plot (Wilcoxon rank sum test. P adjust <0.05).
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Figure S3 Heat map of Spearman’s rank correlation between significant differential bacterial genera and clinical tumor markers. Spearman
correlation coefficient r on the right side of the heat map is between -1 and 1, with r<0 as negative correlation, represented by blue and r>0

as positive correlation, represented by red, respectively. ¥, P<0.05; **, P<0.01.
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