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Abstract: Physical engineering technology using far-infrared radiation has been gathering attention
in chemical, biological, and material research fields. In particular, the high-power radiation at the
terahertz region can give remarkable effects on biological materials distinct from a simple thermal
treatment. Self-assembly of biological molecules such as amyloid proteins and cellulose fiber plays
various roles in medical and biomaterials fields. A common characteristic of those biomolecular
aggregates is a sheet-like fibrous structure that is rigid and insoluble in water, and it is often hard
to manipulate the stacking conformation without heating, organic solvents, or chemical reagents.
We discovered that those fibrous formats can be conformationally regulated by means of intense
far-infrared radiations from a free-electron laser and gyrotron. In this review, we would like to show
the latest and the past studies on the effects of far-infrared radiation on the fibrous biomaterials and to
suggest the potential use of the far-infrared radiation for regulation of the biomolecular self-assembly.
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1. Introduction

In these days, far-infrared radiation has been frequently employed in chemical and
biomedical research fields. For example, microwave heating can be applicable for solid-
phase peptide synthesis and metal-based nanoparticle preparations [1,2]. In addition, far-
infrared lasers are often employed for biomedical research using cancer cell lines to develop
phototherapies and photo-diagnostics [3–5]. The high permeability to the biological tissue
is also effective for in vivo bioimaging [6]. Nonetheless, the target substances are often
heated by the radiation, and while the far-infrared radiation can cause remarkable structural
changes of target biomolecules, whether the radiation effect is thermal or non-thermal
remains unclear. In Figure 1, frequencies and wavelengths of lights (upper) and parameters
of the oscillation systems employed in our study are shown. The wavelengths in the
terahertz region usually range from 30 to 3000 µm and are applied to various studies
such as spectroscopy [7], radiation [8], and spectral imaging [9]. We focused on a free-
electron laser (FEL) and a submillimeter wave from a gyrotron and recently discovered that
the high-power far-infrared radiation can regulate self-association of proteins at different
far-infrared wavelengths [10–12]. The terahertz FEL (so called THz-FEL) has a double
pulse structure that is composed of micro- and macro-pulses, in which the duration of the
former is 10–20 ps and that of the latter is 4 µs [13]. The oscillation wavelength covers
from 30 to 300 µm, and the irradiation power is given as avg. 5 mJ per macropulse (see
Figure S1 for the oscillation system). The submillimeter wave from the gyrotron is a single
pulse of 1–2 ms half width having 10 W power [14]. The gyrotron oscillation system
(Figure S2) nowadays acts as a strong radiation source for nuclear magnetic resonance
(NMR) spectroscopy with the dynamic nuclear polarization (DNP) technique [15–17]. In
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addition, hyperthermia treatment using far-infrared radiation is expected to be a candidate
for the therapeutic management of cancer [18,19].

Figure 1. Frequency region of electromagnetic waves (upper) and far-infrared radiation parameters
used in this study.

2. Dissociation of Amyloid Fibril by THz-FEL Irradiation

Amyloid fibril is known to be involved in various biological phenomena such as the
onset of serious amyloidosis [20,21], biofilm formation [22,23], biosynthesis of pigment
melanin [24], protection of eggshells [25], supramolecular assembly in the body struc-
tures [26], and gene expressions [27]. In addition, amyloid fibril can be utilized as functional
biomaterials such as rigid scaffolds for cell cultivation and tissue engineering [28,29], artifi-
cial capsules and hydrogels for drug delivery systems [30,31], and functional nanofilms for
microorganism adhesion [32]. Hen-egg white lysozyme is a glycoside hydrolase composed
of 129 amino acids and forms amyloid-like fibril under acidic conditions [33,34]. In the far-
infrared spectra from 130 to 250 cm−1 (Figure 2a), the protein exhibits a strong absorption
peak at about 170–190 cm−1 (52.6–58.8 µm) and weak absorption peaks at 130–150 cm−1

(66.7–76.9 µm). The THz-FEL was tuned to 56 or 70 µm and impinged onto the lysozyme
fibril for 10 min at room temperature. There are two bands (1620 and 1650 cm−1) at the
amide I region before irradiation (Figure 2b, black line), and the irradiation at 56 µm showed
a decrease in the peak intensity at a lower wavenumber and an increase of that at a higher
wavenumber (red line). Since the amide I band at the lower wavenumber corresponds to
β-sheet and the latter band influences α-helix or non-fibrous conformations [35,36], the
spectral change by the irradiation indicates the decrease of the β-sheet-rich conformation.
The conformational analysis based on the intensity at the amide I band (Figure 2c) proved
that the proportion of β-sheet decreased from 45% before irradiation (black bar) to 20%
after irradiation (red bar) and that of α-helix increased from 5% (black bar) to 30% (red
bar) from the irradiation. β-Turn and other conformations are only slightly changed by the
irradiation. On the other hand, the irradiation at 70 µm (green line and bar) also showed
the similar effect, but the degree of conformational change is not remarkable. Congo red
staining (Figure 2d, upper) clearly showed the irradiation spot (white solid circle) distinct
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from the safe fibril state (dotted circle), and in the SEM images (below), assemblies consist-
ing of many strings (several nanometers in width and several micrometers in length) were
destroyed by the irradiation at 56 µm.

Previously, we reported that the THz-FEL can dissociate an amyloid fibril of calcitonin
DFNKF peptide [10], and the peptide fibril was dissociated similarly with the lysozyme fib-
ril. Together with this prior study, it can be implied that several kinds of amyloid fibrils can
be decomposed by the terahertz laser irradiation. Although the detailed mechanism is not
clear, it can be considered that the dissociation process may be similar to the phenomenon
where a solid aggregate is momentarily unraveled in boiling water: the extreme thermal
energy is absorbed into the fibril structure at the collective vibrational modes. Regarding
normal proteins, the FEL irradiation little damaged the whole structure and enzymatic
activity of native lysozyme [34]. Therefore, the THz-FEL can be tested as a therapeutic
strategy for amyloidosis in surgical medicine in future [37]. In addition, the terahertz laser
can also be tested to regulate the growth of microorganisms because the biofilm formation
is closely related with amyloids [38].

Figure 2. Cont.
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Figure 2. Irradiation Effect of THz-FEL on lysozyme fibril. (a) Far-infrared spectrum. (b) Mid-infrared
spectra. Black: non-irradiation; red: irradiation at 56 µm; green: irradiation at 70 µm. (c) Protein
secondary conformations before and after irradiation. The color category is the same as (b). (d) Congo
red staining (upper) and SEM observation (below). Irradiation area is shown as a white solid circle
and non-irradiation area is indicated by a white dotted circle. White scale bar: 500 µm; black scale
bar: 200 nm.

3. Promotion of Amyloid Fibrillation by the Submillimeter Wave from Gyrotron

Next, an effect of the submillimeter wave on the protein fibril is shown. The submil-
limeter wave was tuned to 720 µm and oscillated by a 420 GHz gyrotron (Figure S2). Prior
to the irradiation experiments, we confirmed that the transmittance of the submillimeter
wave against the Eppendorf tube was more than 80% at the 0–2.0 THz region (Figure S3).
The temperature increase on the surface of the sample in the tube was only around 5 K
compared to the non-irradiation area during the irradiation (Figure 3a). In the mid-infrared
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spectra (Figure 3b), the peak intensity at around 1620 cm−1 was apparently increased after
the irradiation (red) compared to that of before irradiation (black), and the conformational
analysis (Figure 3c) indicated that β-sheet was increased and α-helix was decreased after
the irradiation. Congo red staining (Figure 3d, upper) showed that fibrils were apparently
increased and SEM observation (bottom) revealed that the fibril structure changed into
solid aggregates by the submillimeter wave. The result by X-ray scattering analysis is
shown in Figure 3e. The inclination of the scattering curve from 3 nm−1 to 9 nm−1 was
larger after the irradiation (red) than that before irradiation (black), which means that the
shape of the aggregate was changed into the thick lamellar type [39]. A scattering peak at
around 3.8 nm−1 corresponds to 1.65 nm of the fibril layer, and this value is quite larger
compared to the typical size (0.9–1.0 nm) of amyloid fibril [40]. In addition, a tiny peak at
10.6 nm−1 indicates that the protein forms a cross-β-sheet conformation and the interval
distance between β-sheet chains is 0.59 nm. This value is slightly larger than the typical
size (0.4–0.5 nm) [41].

We demonstrated that the submillimeter wave can promote the fibril formation of
many kinds of peptides and proteins (GNNQQNY, Aβ1-40, SAA, DFNKF, and lysozyme) [11].
In every case, β-sheet was dominated and the conformation was more aggregated than the
pre-irradiation state. The reformed aggregate seems to be shaped larger and more rigid
than the pre-irradiation state. Therefore, it can be implied that the fibrous characteristics
such as rigidness and regularity can be altered by the irradiation. As for the mechanism, it
can be considered that the submillimeter wave can activate the intermolecular motions and
induce conformational changes in the fibrous structure. Such molecular shaking can trigger
the spontaneous association of the monomer chains to produce the stacking conformation
even without any external heating [42].

Figure 3. Cont.
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Figure 3. Irradiation Effect of submillimeter wave on lysozyme fibril. (a) Thermography camera
observation. (b) Mid-infrared spectra before (black) and after (red) irradiation. (c) Proportions of
protein secondary conformations. The color category is the same as (b). (d) Congo red staining
(upper) and SEM observation (bottom) before (−) and after (+) irradiation. White bar: 500 µm; black
bar: 1 µm. (e) SAXS spectra before (black) and after (red) irradiation: d value equals 2 π q−1.
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4. Dissociation and Re-Association of Cellulose Fiber with Far-Infrared Radiation

We explored the applicability of the far-infrared radiation to the other fibrous bioma-
terials. Cellulose fiber can be developed for cosmetic additives, anti-bacterial sheets, and
porous materials in healthcare and pharmaceuticals fields [43–45]. In addition, cellulose
fibers are applied for components of electronic devices and auto parts in mechanical indus-
tries [46,47]. In the mid-infrared spectrum (Figure 4a), a strong band at about 1050 cm−1

and middle peak around 1300 cm−1 were observed (black). The former band corresponds to
the stretching vibrational mode of the glycoside bond (νC-O), and the latter peak can be
assigned to bending vibration of H-C-O, respectively [48]. When the cellulose was irradiated
by the THz-FEL tuned to 80 µm, the former peak was decreased and the latter peak was
increased (blue). On the other hand, the former peak was largely increased after irradiation
by the submillimeter wave at 720 µm (red). Interestingly, when the cellulose fiber was
irradiated by the submillimeter wave after the THz-FEL (green), the whole spectral pattern
was almost the same as that of the original cellulose (black). Therefore, it can be considered
that the fiber was dissociated to the monomeric form by the THz-FEL, and the monomers
were re-aggregated by the submillimeter wave radiation. In the morphological images
(Figure 4b), solid fibers that are several hundred micrometers in length before irradiation
(upper left, yellow circle) were destroyed into a number of small particles after THz-FEL
irradiation (below). On the contrary, irradiation by submillimeter wave assembled the fibers
more than the original cellulose (upper right). We have ever used a mid-infrared FEL to
dissociate the cellulose aggregate for the purpose of obtaining the monomeric sugars for
the biorefinery application [49]. The mid-infrared FEL is an accelerator-based intense pulse
laser at mid-infrared wavelengths (5–10 µm). The time structure is composed of micro-pulse
and macro-pulse, and each duration is 1–2 ps and 2 µs, respectively. The oscillation en-
ergy is about 5–10 mJ per a macro-pulse. When the cellulose fiber was irradiated by the
mid-infrared FEL at 9.1 µm (νC-O), the absorption bands at 1080–1090 cm−1 were largely
reduced (Figure 4c, blue enclosure). This indicates that the glycoside bonds were dissociated
and low-molecular weight oligosaccharides were released. On the contrary, the glycoside
band around 1080 cm−1 survived after the THz-FEL irradiation (Figure 4a). Therefore, it
can be considered that the cleavage of the glycoside bonds is unlikely and the non-covalent
bonds such as hydrogen bonds can be affected in the case of the far-infrared radiation.

Figure 4. Cont.
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Figure 4. Irradiation effects of THz-FEL and submillimeter wave on cellulose fiber. (a) Infrared
spectra. Black: non-irradiation; blue: irradiation with THz-FEL; red: irradiation with submillimeter
wave; green: irradiation with submillimeter wave behind THz-FEL. (b) SEM observation. Upper
left: non-irradiation; upper right: irradiation by submillimeter wave; below: irradiation by THz-FEL.
Yellow bar: 100 µm. (c) Infrared spectra before (black) and after (red) irradiation by mid-infrared FEL
at 9.1 µm.

5. Future Aspect of the Use of Far-Infrared Radiation in Biological and Material Fields

The above results suggest that the fibrous conformations of biomacromolecules were
dissociated by the terahertz laser and associated by the submillimeter wave. This study
implies that regulation of self-assembly of biomaterials can be performed in one test tube
by using far-infrared radiations at different wavelengths. Nonetheless, more consideration
regarding the difference in the irradiation effects between the THz-FEL and the submillimeter
wave from the gyrotron should be needed because not only wavelength but also time
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structure is varied. The peak power of a macro-pulse of THz-FEL is quite larger than the
case of the gyrotron due to the shorter pulse duration (Figure 1). It can also be estimated that
one of factors for regulating the aggregation process of biomolecules is the radiation power.
Although the study on this reaction mechanism should be a next subject, the fiber biomaterials
can be recycled without any organic solvents or external heating by using both the free-
electron lasers and gyrotron continuously, which inspires the use of electromagnetic waves
at the terahertz region to a sustainable engineering system of solid textile biomaterials. In
addition, it can be expected that several types of structural proteins such as silk fibroin [50,51],
keratin fiber [52,53], laminin [54,55], and elastin [56,57] can also be targeted by the far-infrared
radiation. Those proteins form highly regularized aggregates, although the molecular sizes
are various. It is very interesting how the far-infrared radiation can activate those vibrational
states and alter the cell functions related with the biomolecular self-associations.

6. Conclusions

We demonstrated that fibrous biomolecules can be dissociated and re-associated by
using two kinds of far-infrared radiation, THz-FEL and submillimeter wave from a gyrotron.
THz-FEL can dissociate the stacking conformations of amyloid fibrils with a decrease in
β-sheet and increase in α-helix, and the submillimeter wave can promote the fibrillations
reversely. The cellulose fiber was dissociated by the THz-FEL and re-aggregated by the
submillimeter wave in a similar manner. Those reactions can be performed at ambient
temperature without any external heating. The combinatorial use of these far-infrared
radiations is expected to regulate the fibrillar biomolecules and contribute to biomolecular
engineering in biology and biomaterial fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12091326/s1, Experimental procedures; Figure S1: Oscil-
lation system of THz-FEL; Figure S2: Oscillation system of gyrotron; Figure S3: THz-time-domain
spectroscopy analysis.
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