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Adaptive behavior in a nonstationary world requires humans to learn and track the statistics of the
environment. We examined the mechanisms of adaptation in a nonstationary environment in the context
of visual-saccadic inhibition of return (IOR). IOR is adapted to the likelihood that return locations will
be refixated in the near future. We examined 2 potential learning mechanisms underlying adaptation: (a)
a local tracking or priming mechanism that facilitates behavior that is consistent with recent experience
and (b) a mechanism that supports retrieval of knowledge of the environmental statistics based on the
contextual features of the environment. Participants generated sequences of 2 saccadic eye movements
in conditions where the probability that the 2nd saccade was directed back to the previously fixated
location varied from low (.17) to high (.50). In some conditions, the contingency was signaled by a
contextual cue (the shape of the movement cue). Adaptation occurred in the absence of contextual signals
but was more pronounced in the presence of contextual cues. Adaptation even occurred when different
contingencies were randomly intermixed, showing the parallel formation of multiple associations
between context and statistics. These findings are accounted for by an evidence accumulation framework
in which the resting baseline of decision alternatives is adjusted on a trial-by-trial basis. This baseline
tracks the subjective prior beliefs about the behavioral relevance of the different alternatives and is
updated on the basis of the history of recent events and the contextual features of the current environment.

Keywords: statistical learning; saccadic eye movements; inhibition of return; decision making; compu-
tational models

Learning about the statistical regularities of the environment
offers significant behavioral advantages to an organism. It enables
more accurate prediction of events in the near future, which
potentially allows for faster and more accurate behavioral re-
sponses (Nissen & Bullemer, 1987). Conversely, when the envi-
ronment changes, it will be important to know that such a change
has taken place so that behavior can be adjusted accordingly
(Brown & Steyvers, 2009; Redish, Jensen, Johnson, & Kurth-
Nelson, 2007). Indeed, inappropriate perseveration of behavior
that is no longer relevant to a task is a defining characteristic of
several neurological and psychiatric conditions (Lezak, 1995;
Luria, 1966).

That humans and other animals are highly sensitive to statistical
regularities has been demonstrated in a wide variety of domains,

from simple conditioning (Dickinson & Mackintosh, 1978) to
learning of artificial grammars (Reber, 1967; Redington & Chater,
1996) and extended sequences of spatial targets (Kinder, Rolfs, &
Kliegl, 2008; Nissen & Bullemer, 1987; Reed & Johnson, 1994;
Shanks & Johnstone, 1999). Across these various domains, the
relations between events in the environment and behavior can be
learned, even when these relations are probabilistic and subject to
noise (Courville, Daw, & Touretzky, 2006; Shanks, Wilkinson, &
Channon, 2003). In many studies learning appears to be implicit,
although whether learning can occur in the absence of awareness
is contentious (Cleeremans, Destrebecqz, & Boyer, 1998; Shanks,
2010).

In recent years, the role of statistical learning in the exploration
and interpretation of the visual world has become more widely
recognized. Through the acquisition of knowledge of the (typical)
spatiotemporal relations between visual objects, object recognition
(Fiser & Aslin, 2001; Turk-Browne, Jungé, & Scholl, 2005) and
visual search (Chun & Jiang, 1998; Eckstein, Drescher, & Shimo-
zaki, 2006; Geng & Behrmann, 2002, 2005; Jiang & Chun, 2003;
A. D. Smith, Hood, & Gilchrist, 2010) are facilitated. For instance,
in contextual cuing experiments (Chun & Jiang, 1998; Jiang &
Chun, 2003), the spatial configuration of a set of distractor items
provides information to the observer as to where the target may be
found. In more naturalistic scenes, the surrounding configuration
of “nontarget” objects may constrain the likely location of some
task-relevant target (Eckstein et al., 2006; Torralba, Oliva, Castel-
hano, & Henderson, 2006). One interpretation of these effects is
that the context elicits a prior expectation that interacts with the
sensory evidence (likelihood) to guide covert and overt attention to
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the task-relevant information. For example, cars are typically
found on the ground, rather than in the sky, and chimneys are
situated on rooftops. Long-term learning of such relations allows
the observer to restrict his or her search space and thereby speed up
localization and identification of a target.

Another type of statistical dependency that aids the allocation of
covert and overt attention concerns the temporal order of visual
events. One straightforward demonstration of learning such tem-
poral relations is the standard cuing effect observed in simple
reaction time experiments (Posner, 1980). If a cue is predictive of
where the upcoming target is likely to appear, observers are
quicker to respond to the target onset. The flip side of this facili-
tation occurs when the interval between cue and target onset is
prolonged (Maylor & Hockey, 1985; Posner & Cohen, 1984;
Samuel & Kat, 2003; Taylor & Klein, 2000): under these condi-
tions, reaction times are increased.

This inhibitory effect is thought to reflect a bias against return-
ing attention to locations that have been recently inspected either
overtly or covertly (Klein, 2000; Klein & MacInnes, 1999; Maylor
& Hockey, 1985; Posner & Cohen, 1984; Samuel & Kat, 2003;
Taylor & Klein, 2000). Inhibition of return (IOR) has been argued
to be a useful and adaptive mechanism through appeal to a statis-
tical regularity that is assumed to be operative in the natural world:
locations that have been inspected recently are unlikely to become
informative in the near future, because the information that could
be collected from that location will not have changed in the
intervening time period. Efficient information gathering is aided
by directing cognitive resources at locations that have not yet been
explored (Klein & MacInnes, 1999; Posner & Cohen, 1984).

Though intuitively appealing, the idea that IOR acts as a “for-
aging facilitator” has recently come under closer scrutiny. Dodd,
Van der Stigchel, and Hollingworth (2009) reported evidence of a
pronounced IOR effect in visual search, but not in a range of other
visual tasks that were performed on the same stimuli (e.g., mem-
orization). The effect manifested itself in longer fixation durations
preceding saccades to recently fixated locations, as well as a
reduced probability of refixation in search, compared with the
other tasks. These findings suggest a significant degree of task
dependence and flexibility in IOR. Adding to this evidence, T. J.
Smith and Henderson (2009) found only an effect on fixation
duration before return saccades in participants who were viewing
natural scenes for a memorization task. However, in this instance,
the latency effect was not accompanied by a choice bias against
returning to previously fixated locations (see also Hooge, Over,
van Wezel, & Frens, 2005).

Moreover, Farrell, Ludwig, Ellis, and Gilchrist (2010) have
pointed out that the extent to which the temporal stability assump-
tion underlying IOR holds may vary from one local environment
and task to the other. For instance, return locations (i.e., those
locations that have been recently fixated) are much more likely to
contain relevant information when one is viewing an array of
closed-circuit television screens showing dynamic environments
compared with the case of scanning a bookshelf in search of a
particular title. To determine whether IOR is adjusted to such
variations in the environmental statistics, Farrell et al. (2010)
examined oculomotor IOR in sequences of saccadic eye move-
ments generated under conditions in which the likelihood that a
target would require a saccade to location that had been recently
fixated was varied between groups of participants. The inhibitory

effect was amplified when participants were rarely directed to look
back at the previously fixated location and was abolished alto-
gether when they frequently had to look back to the return location.

Such findings raise a number of fundamental questions about
behavior. How do individuals learn about the statistics of their
environment and use those statistics to guide predictions of future
events? What happens when the statistics in the environment
change? In the specific case of visual exploration, how is it that
participants are able to adapt their behavior to the statistics of one
local environment (e.g., the lab setting in Farrell et al., 2010), but
then presumably do not generalize those statistics to different
environments (e.g., outside the lab), where they would arguably be
maladaptive? Finally, if individuals can restrict the use of statis-
tical knowledge to appropriate environments, can they learn about
the statistics of different environments in parallel? Although a
wealth of research on statistical learning has comprehensively
described the behavior of participants in stationary environments,
it rarely speaks to these more challenging cases that are arguably
more representative of natural behavior (though see Speekenbrink
& Shanks, 2010). We are concerned with how individuals learn
about their environmental statistics under nonstationary conditions
and how they apply this acquired knowledge in their oculomotor
behavior.

In this article, we examine two potential mechanisms of statis-
tical learning. A simple recency mechanism might rely on moni-
toring a short history of recent events in order to set up the
expectations for the near future. Additionally, the contextual fea-
tures of an environment might be used to retrieve knowledge of the
statistical structure of the local environment, including, for exam-
ple, where behaviorally relevant information may be and what type
of events are likely to occur. The critical distinction between these
mechanisms is whether the environmental statistics are estimated
from the recent history alone or whether an internal representation
or memory of these statistics is invoked when a relevant contextual
cue is presented. We, respectively, refer to these two mechanisms
as local tracking and contextual learning.

Local Tracking

Experimental psychology has revealed many examples where
recently processed information and events exert a stronger influ-
ence over behavior compared with information presented longer
ago (Bertelson, 1961; Jarvik, 1951; Jones, Love, & Maddox, 2006;
Speekenbrink & Shanks, 2010). It is well known that in laboratory
experiments, behavior on a given trial is frequently influenced by
the nature of the previous trial(s). These sequential effects or
dependencies occur even in stationary, randomized experimental
paradigms (Bertelson, 1961; Kirby, 1972; Remington, 1969;
Soetens, Boer, & Hueting, 1985). That is, even though the under-
lying statistics of an environment remain constant and temporal
correlations in the input sequence have been purposefully re-
moved, participants often develop expectations that stimuli will
alternate from trial to trial or stay the same (in simple two-choice
reaction time tasks: Bertelson, 1961; Cho et al., 2002; Kirby, 1972;
Remington, 1969; Soetens et al., 1985; in visual search: Maljkovic
& Nakayama, 1994, 1996; McPeek, Maljkovic, & Nakayama,
1999; Walthew & Gilchrist, 2006; and in visually guided saccades:
Anderson, Yadav, & Carpenter, 2008; Carpenter, 2001; for a
recent review on sequential effects in saccadic behavior, see Fec-
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teau & Munoz, 2003). Such biases manifest themselves as faster
and more accurate responses when the actual stimulus and re-
sponse on trial n match the expectation derived from trial n � 1.

These sequential effects might appear puzzling given that there
is rarely any actual relationship between successive trials. How-
ever, several models (Cho et al., 2002; Wilder, Jones, & Mozer,
2009; Yu & Cohen, 2008) posit that sequential effects are the
manifestation of a mechanism that is responsible for adaptation to
time-varying statistics in the nonstationary environments that are
typical of the world outside the lab. In nonstationary environments,
the statistics that govern behavior (e.g., stimulus presentation in
Anderson & Carpenter, 2006; reward delivery in Gallistel, Mark,
King, & Latham, 2001; Sugrue, Corrado, & Newsome, 2004)
change periodically, typically without any external marker to sig-
nal the change. Conceptually, the challenge for the subjects is
two-fold. First, they must identify a genuine change as distinct
from the random variability that may occur in the environment. In
case of unsignaled changes, the only way to identify a genuine
contingency change is to monitor the history of recent instances
(i.e., trials in an experimental context; Brown & Steyvers, 2009).
If new observations are inconsistent with the expectations built up
from recent instances, this would suggest that the environment has
changed. Second, having detected a contingency change, behavior
needs to be adapted to the new statistical structure.

Both challenges can be met through some fairly simple updating
algorithms. An illustration of this point may be found in a study by
Anderson and Carpenter (2006). In that study, observers simply
generated visually guided saccades to a single target that appeared
either to the left or right of a central fixation point. The probability
of a leftward or rightward target was changed abruptly at irregular
intervals. Following a change in the probability of each saccade
direction, latency gradually changed in line with the direction of
the probability variation. For example, if leftward targets became
more likely, then latency for leftward saccades gradually de-
creased.

Anderson and Carpenter (2006) modeled their data using a
simple trial-by-trial updating rule of the expectation of leftward
and rightward targets. This expectation was assumed to be a
combination of the expectation in place on the previous trial and an
additional input that depended on the nature of the previous trial.
That is, the expectation was strengthened if the previous trial was
congruent with the expectation but not if the previous trial was
incongruent. In other words, recent experience was weighted most
heavily, and experiences further in the past were progressively
discounted. When there are genuine temporal correlations in the
input, this simple form of one-trial facilitation or priming can
mediate adaptation to changing statistical regimes.

Note that such adaptation is not limited to this simplest of
situations in which the relevant feature (e.g., target location) di-
rectly maps on to the behavioral response. Behavior is still facil-
itated if the tracked feature does not form the basis of the response.
In many visual search studies, the “reported” feature is different
from the one that is repeated across trials. For instance, repetitions
of target color and target location in visual search facilitate re-
sponses to some unrelated feature of the target item, such as the
orientation of a small symbol inside it (Walthew & Gilchrist, 2006)
or on which side of the target is notched (Maljkovic & Nakayama,
1994, 1996; McPeek et al., 1999). Such findings would indicate
that facilitation through recency does not act at the level of the

motor response itself but rather helps the observer find the task-
relevant item more quickly so that the required motor response can
be decided upon sooner.

Moreover, even the facilitation of localization may be fairly
sophisticated. For instance, Kristjánsson, Mackeben, and Na-
kayama (2001) had observers perform a discrimination task at a
cued location. The target location within the cue was repeated
across trials with some probability (a “streak” condition), alter-
nated between two locations within the cue from trial to trial, or
randomly varied between these two locations across trials. Criti-
cally, the spatial location of the cue–target compound itself was
randomized. Discrimination performance was best in the streak
condition, suggesting that the facilitation of localization can even
operate in relatively abstract, object-centered co-ordinates. Similar
object-based facilitation was obtained with streaks of other cue–
target relations. For instance, consistently pairing the target with a
distinctly colored or shaped region of the cue also facilitated
discrimination (Kristjánsson & Nakayama, 2003).

In general, evidence from randomized, stationary environments,
environments with temporal correlation in the trial structure, and
environments with transitions in statistical contingencies suggests
that individuals form expectations about the future, based on some
memory for recent events. One intuitive explanation for the strong
influence of recent experience is that the behaviorally relevant
statistics of an environment will have a characteristic time scale.
More recent experience is likely to have been acquired under the
same environmental statistics and will form a more solid basis for
making predictions about the near future. As time goes by, it is
likely that a different set of statistical regularities apply. As a
result, experience acquired a longer time ago is a less reliable
predictor.

Contextual Learning

The utility of a local tracking mechanism is obvious when the
statistics of some process change without any external indicator.
However, this mechanism provides no opportunity to apply long-
term knowledge in the formation of expectations about the future.
The capacity to use stored knowledge over longer time scales is
desirable when changes in statistics are correlated with other
changes in the environment. We refer to such external markers of
a change in the environment as contextual signals. Note that many
authors use the term context to refer to the statistical structure of
the environment itself, so that an unsignaled change in the statistics
is regarded as a change in context (Yu & Dayan, 2005). In this
study, we reserve the term context for the surface features of the
environment, independent of the underlying statistics. Accord-
ingly, the statistics may change without a change in context or with
a concomitant change in context.

If features of the environment are reliable predictors of the
spatial or temporal statistics of that environment, an adaptive
system would be expected to take advantage of this predictive
power and learn such relationships. The context may activate a
plethora of expectations, for instance concerning where important
information will be and what kinds of events may occur in that
context. Expectations about the near future may then be derived
not only from the immediately preceding events but also from a
memory representation of the statistics that accompany the multi-
sensory cues that define a particular context. As a result, a change
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in context may lead to a rapid adjustment of expectations without
the need for a period of tracking the relevant behavioral vari-
able(s).

The modulating role of context in setting expectations about
future events is widely recognized in the literature on conditioning.
A good example is the phenomenon of renewal after extinction
(see review by Bouton, 2004). Conditioning experiments start by
forming a link between stimulus and response, through reinforce-
ment or pairing with an unconditioned stimulus. Extinction refers
to the reduction in responding when the stimulus is no longer
predictive of the event with which it was paired. However, extinc-
tion appears to be context specific: a stimulus–response associa-
tion formed in one context, but abolished in a different context
(typically a completely different experimental apparatus), is rein-
stated rapidly when the animal is returned to the original context in
which learning occurred (Bouton & King, 1983). In other words,
the animal does not have to “relearn” the predictive relation from
scratch, implying that extinction did not cause the original asso-
ciation to be “unlearned.”

In order to explain the dependence of extinction on context,
several authors have argued that the animal has acquired multiple
associations involving the stimulus (Bouton, 2004; Gershman,
Blei, & Niv, 2010; Redish et al., 2007): one that involves an
expectation of a future event and one that does not. The context
determines which of these memory representations is retrieved.
That is, if the current context is classified as the same as during the
acquisition phase, delivery of the stimulus produces a response. If
the current trial is seen as belonging to the extinction context, the
stimulus does not lead to a response.

An important feature of this proposal is that context itself does
not directly determine the behavioral response. Rather, the context
effectively gates the associations between stimuli and responses.
For such gating to be effective, it is vital that the agent categorizes
the current context correctly as a situation that has been experi-
enced before. In other words, the cues that make up a current
context need to be mapped on to an internal state representation
that matches these cues and contains relevant information about
the statistics operating in that context (Gershman et al., 2010;
Redish et al., 2007). If the cues do not provide a good match with
the bank of internal state representations, a new state is created for
which learning proceeds afresh. Redish et al. (2007) refer to this
process as state-splitting.

In the conditioning experiments just discussed, the context acts
to retrieve a representation of the statistical structure of the envi-
ronment, which is then used to govern how the animal responds to
the stimulus. A similar suggestion has been made in the domain of
categorization. Here, a stimulus is defined by a set of values on
multiple dimensions, and the category structure partitions the
multidimensional space into a small set of discrete categories
(Jones & Sieck, 2003; Nosofsky, 1986; Shepard, Hovland, &
Jenkins, 1961). Lewandowsky and colleagues (Lewandowsky &
Kirsner, 2000; Lewandowsky, Roberts, & Yang, 2006) have
shown that subjects can learn to associate different contextual cues
(e.g., the color of a stimulus) with different category structures.
Again, the context itself does not produce a behavioral response
(the signaled category) but rather dictates how a subject processes
and responds to an incoming stimulus.

The examples reviewed in this section suggest that in addition to
simple recency, knowledge of different environments may be

associated with different contextual cues. The context does not
control behavior directly, but indirectly through an internal repre-
sentation of the environmental structure. Once the current context
has been recognized and categorized, expectations about future
events and the consequences of particular actions can be formed
and tested against experience. The critical issue we focus on here
is whether such contextual learning gates associations that do not
involve particular stimuli or objects, but instead embody more
abstract temporal regularities in the world. In particular, we ask
whether contextual learning can inform people’s expectations
about the relevance of previously visited locations, irrespective of
the identity of those locations or the information they contain.

Mechanisms for Adaptation of Oculomotor IOR

Given the limited resolution of human vision, gaze shifts are
critical for the uptake of visual information from the environment
(Findlay & Gilchrist, 2003). Moreover, shifting gaze to an object
or region of interest frequently forms the starting point of purpose-
ful behavior (e.g., when catching a ball, we first tend to fixate it).
As such, it is clearly of some importance that the mechanisms
involved in gaze shifting can be flexibly tuned to the statistical
properties of the environment. IOR is a particularly instructive
phenomenon in this regard. It may be viewed as an expression of
knowledge of the “average” statistics of the environment, which
can be modulated by the temporally local statistics (as in Farrell et
al., 2010). Oculomotor IOR is therefore a good candidate behavior
to inform the broader issue of the role of learning and context in
the adaptation of gaze shifting mechanisms in nonstationary envi-
ronments.

Consider how a local tracking mechanism could give rise to
adaptation of IOR. In the paradigm of Farrell et al. (2010), subjects
generate short sequences of two saccadic eye movements. The
second movement may direct the eyes back to the previously
fixated location or to one of two locations that have not yet been
fixated in that sequence. Suppose that individuals have an expec-
tation that the current sequence will be of a similar type as the
previous sequence. If the previous sequence required a return
saccade, the response associated with the return location on the
current trial may be selectively facilitated. Likewise, if the previ-
ous sequence required a saccade to a new location, responses to the
two new locations may be selectively facilitated on the current
trial. If the cue triggering the second saccade matches the expec-
tation, the target-directed response will be initiated more rapidly,
resulting in a latency advantage. In this way, local tracking could
lead to average matching to the statistical properties of the envi-
ronment (e.g., Walthew & Gilchrist, 2006).

Now consider the influence of context. It may be that partici-
pants learn to associate the experimental context (e.g., the lab
setting: the eye tracker, the types of displays used, the experi-
menter, etc.) with the relevant temporal statistics operating in that
environment. As a consequence, presentation of the cues that
define this particular context could enable participants to retrieve
an internal model of the associated environmental statistics. This
internal model may then be used to instantiate a certain amount of
bias toward or away from certain locations depending on whether
they had been recently visited.

We studied the contribution of both types of mechanism to the
formation of expectations about future events in a nonstationary
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environment. Specifically, we introduced step-changes in the prior
probability that participants were directed to look back at the
previously fixated location. To assess the contribution of a local
mechanism (Experiment 1), we examined whether IOR is adapted
to the local statistics when the changes in prior probability were
unsignaled or “hidden” (Anderson & Carpenter, 2006; Brown &
Steyvers, 2009; Sugrue et al., 2004). Under such conditions, any
adaptation would presumably be mediated by a pure recency
effect.

We then explored the contribution of contextual cues in learning
about the environmental statistics, first in concert with a local
tracking mechanism (Experiment 2) and then in isolation (Exper-
iment 3). In both these experiments, the different levels of prior
probability were marked with a surface feature of the visual
environment: the shape of the cue that signaled the target for the
upcoming saccadic eye movement. Provided that this shape change
was sufficiently salient for our subjects to differentiate the contexts
internally (Gershman et al., 2010; Redish et al., 2007), it might be
possible for them to retrieve the relevant statistical knowledge as
and when they encounter a particular contextual cue.

General Method

Materials and Procedures

All experiments reported in this article were performed with
variants of the gaze-contingent saccade sequencing paradigm used
in our previous work (Farrell et al., 2010; Ludwig, Farrell, Ellis, &
Gilchrist, 2009), illustrated in Figure 1. At the start of each
sequence, observers were presented with a single ring on the
screen (1.5° radius). Each of the four possible ring locations was

used equally often as the starting point but randomly intermixed.
Subjects were asked to fixate in the center of the ring. Following
accurate fixation, the experimenter launched the trial. Three addi-
tional rings appeared in the periphery, with a 7°separation between
adjacent rings.

A cue presented at fixation signaled to the observer where to
look next. An invisible “tolerance” region (3° radius) around the
target ring was used to classify the accuracy of the saccade online.
Provided the saccade landed within this tolerance region, the
second cue was presented after a delay of 390 ms, and the partic-
ipant was to direct his or her gaze to the indicated target circle. If
the first saccade was inaccurate, the sequence was abandoned. If
either the first or the second saccade was inaccurate, a 100-ms low
tone (500 Hz.) was played. Upon successful completion of a
sequence, a higher tone (750 Hz) sounded. Each combination of
starting position and the three possible first target rings (i.e., 12
combinations) was repeated six times in a block, randomly inter-
mixed. The choice of the second saccade target was primarily
determined by the experimental condition (i.e., return or new,
which varied probabilistically).

Two types of movement cues were used across the experiments:
a single line segment (measuring 0.5°; Figure 1A) or an arrowhead
(Figure 1B), made up of two line segments half the size of the
single one. Cues and rings were black and presented on a mid-gray
background. Stimuli were viewed from a distance of 57 cm on a
21-in. CRT monitor (either an Eizo Flexscan T965 [Eizo Nanao
Corp., Hakusan, Japan] or a LaCie Blue Electron [LaCie Group,
Paris, France). Eye movements were monitored with either the
EyeLink II or the EyeLink 1000 systems (SR Research, Kanata,
ON, Canada), the former sampling at 500 Hz and the latter at 1,000
Hz. Only the position of the dominant eye was tracked.

All experiments involved a variation in the prior probability of
refixation on the second saccade. The return location is one of
three potential target locations for the next saccade. The return
probability in any one sequence was either low (1/6) or high (3/6).
A block of trials contained an equal number of low and high return
probability sequences. As a consequence, the overall return prob-
ability in a block was equal (2/6): across a block, the return
location was just as likely to be the target for the next saccade as
either of the two new locations.

In Experiments 2 and 3, the movement cue (arrowhead vs. line)
covaried with the return probability; in these cases, the cue-
probability mapping was counterbalanced across observers. If
there was no cue variation (Experiment 1), only line segment cues
were used, as in our previous work (Farrell et al., 2010; Ludwig et
al., 2009). Participants were never informed about the possibility
of statistical variation or the mapping between the different cues
and return probabilities.

Only second saccades were analyzed, as a function of whether
they were directed to return or new locations and whether the
return probability was low or high. The latency of the second
saccade was defined with respect to the presentation of the second
movement cue. In the offline analyses, we adopted a somewhat
more liberal accuracy criterion than in the online measurement
(Farrell et al., 2010). A movement was classified as accurate if it
started within the acceptance region of the currently fixated ring
and ended within the quadrant of the target ring. Errors were coded
as saccades that started within the acceptance region of the cur-
rently fixated ring but landed in the quadrant of a nontarget ring.

Figure 1. Schematic trial sequence examples with two types of move-
ment cues. Time runs from top to bottom. A. Line cues: The orientation of
the line tells the subject where to look next. The eyes are directed to a new
location within the sequence on the second saccade. B. Arrowhead cues:
The eyes are directed to a return location on the second saccade.
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Errors can be of different types, depending on the target location.
When the target of the movement is a return location, erroneous
movements can only be directed to new locations. However, when
the movement should be directed to a new location, an error may
be directed to the other new location or to the return location.

The average frequencies of the different types of errors across
all experimental conditions are listed in Table 1, but these were
generally too low for meaningful analysis. Latencies were trimmed
to exclude any observations shorter than 80 ms and longer than
1,000 ms. The overall number of correct trials included in the
latency analyses reported below ranged from 102 to 279 across all
participants and experiments. Median saccade latencies were an-
alyzed throughout, given the small number of observations per
participant in some conditions (see Footnote 1).

Participants

We tested 30 participants in each experiment, so in total data are
reported from 90 participants (65 female, 25 male; 17–48 years
age range). Participants were either paid or received course credits.
All reported normal or corrected-to-normal vision. Each partici-
pant performed five blocks of 72 trials. The first block was
discarded as practice, and in the first two experiments, the return
probability for this practice block was equal throughout (with a
constant, single line segment cue). In the final experiment, the first
block was indistinguishable from the remaining blocks but never-
theless discarded as practice.

Experiment 1

In the first experiment, we asked whether human subjects learn
about the environmental statistics when the statistics vary locally
in time and these variations are unsignaled in any way to the
subject (Anderson & Carpenter, 2006; Brown & Steyvers, 2009;
Sugrue et al., 2004). As reviewed earlier, the only way to tell that
the statistics have changed is by keeping track of a sufficiently
short-term history of past trials. If such local tracking occurs, we
would expect to observe adaptation of oculomotor IOR in response
to the statistical variation. Recall that the overall return probability
in a block of trials was equal. Therefore, if subjects do not keep
track of the recent history of trials or have a temporal weighting
window that stretches too far back in time, we would not expect to
see any adaptation at all.

Method

Participants performed sequences of two saccadic eye move-
ments as illustrated in Figure 1A. Only line cues were used. After
an initial practice block in which the return probability was equal
(i.e., 2/6) throughout, participants performed four experimental
blocks of 72 trials. Every 18 trials, the return probability was
changed from low to high, or vice versa.1 These changes were not
signaled to the participant.

Table 2 shows the structure of the four experimental blocks
when the first experimental block started with a low return prob-
ability (for half of the participants, the first experimental block
started with a high return probability). We were predominantly
interested in behavior after a transition in the return probability.
The first 18 trials of each block were discarded, because these were

preceded by the same contingency at the end of the previous block
and a short break in between blocks to rest the participant and
recalibrate the eye tracker.

Results and Discussion

Figure 2A shows the mean (of median) saccade latency for each
of the four cells of the experimental design (target location: return,
new; return probability: low, high). These data were subjected to a
2 � 2 analysis of variance (ANOVA). The main effect of target
location was significant F(1, 29) � 17.91, p � .01, �2 � .38,
replicating the standard oculomotor IOR effect in saccade se-
quences (e.g., Farrell et al., 2010; Hooge & Frens, 2000; Ludwig
et al., 2009; Vaughan, 1984). There was no main effect of return
probability, F(1, 29) � 1.16, p � .29, �2 � .04, or interaction
between the two factors, F(1, 29) � 0.90, p � .35, �2 � .03.

The lack of an interaction between target location and return
probability might seem to suggest that no adaptation took place in
this situation where the statistical variation was unmarked. How-
ever, participants will necessarily have had to experience a certain
number of trials for adaptation to the new contingency to occur, as
a single switch (i.e., a return trial after a run of new trials) does not
necessarily indicate a change in the statistics generating the indi-
vidual trials. Accordingly, when the previous contingency in-
volved a low return probability, we would have expected that IOR
should be large to begin with and gradually decrease as the
observer is exposed to more trials under the high return probabil-
ity. Conversely, when the previous contingency involved a high
return probability, IOR should be small to begin with, but increase
with exposure to the new contingency. At the gross level of the
overall data, it is possible that these opposite changes cancel each
other out.

The critical question then is how IOR evolves over the course of
the 18 trials within a single contingency. To address this question,
we analyzed the saccade latencies at this finer time scale, as
follows. Over the course of four blocks, observers were presented
with 16 series of 18 trials. The first series of each block was
discarded as explained earlier. For each participant, this left six
high return probability series that followed a period of low return
probability and six low return probability series that followed a
high return probability series. These series were divided in bins of
six trials, and for each bin, we computed an IOR score (defined as
the difference in latency between return and new saccades), sep-
arately for the low-and high return probability conditions. Note
that we could, in principle, have looked at the change in IOR over
time using smaller bins. The reason we chose bins of six trials was
to ensure that even in the low return probability condition, the
expected frequency of a return trial per bin would have been one.
Across six series of 18 trials then, the maximum number of return
trials for any bin was six, in the unlikely event of a perfect observer
who made no errors. Given this constraint, it was not possible to

1 Clearly under these conditions the number of sequence we could
collect from each individual participant was relatively limited. For in-
stance, the maximum number of valid trials is 216 in this experiment. For
half of these trials, the return probability would have been low and under
these conditions the number of return trials is, by definition, small (max-
imum of 18 across four blocks).
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perform this particular analysis on a finer time scale without there
being missing values for a large number of participants.

Figure 2B shows the result of this analysis. The figure shows a
gradual divergence over time between the IOR effects under the
two contingencies. A 2 (return probability) � 3 (bin) ANOVA
indicated a marginal effect of return probability, F(1, 29) � 3.18,
p � .09, �2 � .10. There was no main effect of bin, F(2, 58) �
0.35, p � .71, �2 � .01, and no interaction between return
probability and bin, F(2, 58) � 0.99, p � .38, �2 � .03.

Although it is difficult to draw firm conclusions from a marginal
effect in a single experiment, we believe it is appropriate to
conclude that either modest adaptation to the different contingen-
cies occurred or that at least some participants must have produced
a clear adaptation effect (a sufficient number to obtain a marginal
effect). Certainly toward the end of any one contingency, IOR
appears clearly dependent on the return probability. The rationale
of the fine-scale analysis shown in Figure 2B suggests that we
should see a crossover in the magnitude of IOR over the course of
the 18 trials from one contingency. However, the IOR effect is
identical for the two contingencies in the first bin of six trials. This
does not necessarily mean that there is no crossover but rather
indicates that the crossover may have happened relatively rapidly
over a time scale that we do not have the resolution to detect. To
the extent that learning occurred then, the data suggest that the
local mechanism operates on a relatively rapid time scale.

To determine the time scale over which the recent history of
actual trial events influenced behavior, we examined how the
saccade latency depends on previous trials as a function of the
recency of those trials, as is typically done in the analysis of
sequential effects in conventional reaction time paradigms (Ber-
telson, 1961; Cho et al., 2002; Kirby, 1972; Remington, 1969;
Soetens et al., 1985). In the following analysis, we conditionalized

the saccade latency on the previous two trials, irrespective of the
underlying return probability.

We examined unbroken runs of three consecutive correct trials.
If the sequence was broken by an erroneous or anticipatory move-
ment, the counting of correct sequences started afresh from the
next correct trial. Because each of the three trials may be an R or
N trial (where return and new trials are denoted as R and N,
respectively), there are 23 possible sequences to examine. We code
these sequences as character triplets such as RRR, RRN, and so on.
The final character indicates the “current” trial, the middle char-
acter corresponds to the immediately preceding trial (n � 1), and
the first character corresponds to the trial before that (n � 2).

Figure 3 shows the eight different sequence types along the
abscissa. Data are shown separately for return and new trials (solid
and dashed lines, respectively; data from Experiment 1 are shown
by the square symbols). Going from the outer data points to the
innermost data points, the current trial is increasingly inconsistent
with the recent trial history. Therefore, the signature of sequential
dependencies is a latency peak near the middle of the graph (e.g.,
NNR and RRN sequences; see Cho et al., 2002; Soetens et al.,
1985).

The functions in Figure 3 are broadly consistent with this
signature pattern, particularly for new trials. The peak is modified
here by the overall longer latencies of return trials (i.e., the basic
IOR effect), which elevates the left-hand function and produces an
asymmetry in the data. Additionally, disregarding the actual return
probability means that the number of new trials will be approxi-
mately double the number of return trials. The inevitable conse-
quence is that the function relating mean latency on return trials to
the trial history are more noisy. Nonetheless, a trend for latencies
to increase as the previous trials become less consistent with the
current saccade is evident.

Table 1
Mean Proportion of Errors in Experiments 1–3

Experiment

Low return probability High return probability

R-N N-N N-R R-N N-N N-N

1 .01 .02 .00 .03 .01 .00
2 .02 .03 .01 .03 .02 .01
3 .01 .03 .01 .03 .02 .01

Note. In the column headings, the first character corresponds to the target location, where R and N identify
return and new locations, respectively. The second character corresponds to the endpoint of the erroneous
saccade. Note that N-N corresponds to a target in a new location and an erroneous saccade to the other new
location.

Table 2
Design of Experiment 1

Block

Trials within block

1–18 19–36 37–54 55–72

1 p � 1/6, cue � - p � 3/6, cue � - p � 1/6, cue � - p � 3/6, cue � -
2 p � 3/6, cue � - p � 1/6, cue � - p � 3/6, cue � - p � 1/6, cue � -
3 p � 1/6, cue � - p � 3/6, cue � - p � 1/6, cue � - p � 3/6, cue � -
4 p � 3/6, cue � - p � 1/6, cue � - p � 3/6, cue � - p � 1/6, cue � -

Note. p corresponds to the return probability; “cue � -” indicates line cue.
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To statistically assess this trend, we subjected the data from
Figure 3 to an ANOVA with the following repeated factors: target
location (return vs. new), 1-back similarity (same or different
movement type as required on the current trial), and 2-back sim-
ilarity (same or different movement type as the current trial). For
instance, the 1-back effect can be gauged by comparing the two
outermost data points with the two innermost data points for each
of the two subsets of data. Only those observers who contributed
to all eight points in the figure were included (29/30 participants).

The main effect of target location was significant, F(1, 28) �
17.36, p � .01, �2 � .38. This simply reflects a robust overall
oculomotor IOR effect. More important, the main effect of 1-back
similarity was also significant, F(1, 28) � 7.27,p � .05, �2 � .21.
Saccade latency was consistently increased if the current trial was
of a different type than the previous trial (e.g., if the target
appeared at a new location on the current trial, but appeared at the
return location on the previous trial). There was no effect of 2-back
similarity, F � 0.83, p � .37, �2 � .03. The two-way interaction
between 1-back and 2-back similarity was significant, F(1, 28) �
9.81,p � .01, �2 � .26. This interaction is most likely attributable
to the elevated latency for RRR trials. As it turned out that this was
the only experiment in which this interaction was reliable, we will
not focus on it in detail.

To conclude, this sequential effects analysis suggests a robust
facilitation effect when the immediately preceding trial is of the
same type as the current sequence. This finding does not imply that
any adaptation to a switch in the statistical contingency should be
complete after a single trial. However, Figure 2B suggests that it
only takes a relatively small number of trials dominated by one
type (e.g., new) or the other (e.g., return) to (a) overcome the
preceding contingency and (b) reach a new steady state of adap-
tation to the new contingency. Indeed, visual inspection of Figure
2B suggests that a steady state may already be reached within 7–12
trials of a change in contingency. The sequential effects analysis
suggests that this state may be achieved through the operation of a
local facilitatory mechanism that looks back to the immediately
preceding trial.

The finding that we get some degree of adaptation at all in this
experiment is surprising for a number of reasons. In most previous
studies that required subjects to track the hidden state of some
variable (Anderson & Carpenter, 2006; Gallistel et al., 2001;

Sugrue et al., 2004), the environment changed relatively infre-
quently. That is, each contingency was presented for at least 50
trials in Sugrue et al. (2004; monkey observers), 70 trials in
Anderson and Carpenter (2006; humans), and �40 min in Gallistel
et al. (2001; rats). In contrast, in our experiment, the environment
changed much more frequently (every 18 trials). Moreover, in our
experiment, the statistical variation concerned a quantity that was,
presumably, not as behaviorally salient as something like the rate
of reward in previous studies (Baum & Davison, 2004; Davison &
Baum, 2000; Gallistel et al., 2001; Sugrue et al., 2004). Like
Anderson and Carpenter (2006), we “only” varied the likelihood
that a particular location would become the target for the next
saccadic eye movement. Unlike Anderson and Carpenter (2006),
however, this location did not correspond to a fixed spatial point in
head-centered or retinotopic co-ordinates, because the starting
point and first target location were completely counterbalanced in
our experiment.

The results of Experiment 1 provide evidence for the involve-
ment of a recency mechanism that facilitates responses congruent
with recently experienced trials. Indeed, a sequential effects anal-
ysis suggested that this mechanism was predominantly driven by
the immediately preceding trial. As reviewed in the Introduction,
sequential effects involving the previous trial are ubiquitous in
experimental psychology, both in randomized and correlated ex-
perimental designs, and in stationary and nonstationary environ-
ments.

Our findings are novel in that they concern facilitation of a
correlation between two consecutive movements, primed by a
previous sequence, rather than a single motor response. Moreover,
facilitation is not bound simply to a fixed location in space or a
fixed movement vector. Instead, the facilitation of different move-
ment programs has to occur “on the fly,” once the first eye
movement of the sequence has at least been specified and probably

Figure 2. Inhibition of return (IOR) effects under low and high return
probability conditions in Experiment 1. A. Mean of the median latencies of
saccades to return and new locations. B. Temporal evolution of IOR after
a switch from one contingency to the other. All error bars are within-
subject standard errors of the mean.

Figure 3. Sequential effect analyses for all three experiments. R and N
refer to return and new trials, respectively, indicated by the solid and
dashed lines. In the character triplets, the final character refers to the
current trial (bold typeface), the middle character to the previous trial
(1-back), and the first character to trial before the previous one (2-back).
Error bars are within-subject standard errors of the mean.
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even completed. Although a local mechanism may appear as a
simple, repetitive priming mechanism, what is being primed is
clearly quite an abstract variable that has to be matched to specific
movement vectors online.

Experiment 2

Although local tracking is a useful mechanism to adapt to
hidden changes in statistics, a number of theories from the animal
learning literature suggest that contextual cues may be used to
make predictions about future events (Bouton, 2004; Gershman et
al., 2010; Redish et al., 2007). In the next two experiments, we
examined the role of context by consistently pairing the environ-
mental statistics with a particular cue. In Experiment 2 we asked
whether—and to what extent—the adaptation to the statistical
variation observed in Experiment 1 is aided when this variation is
consistently signaled by a change in a surface property of the
environment, namely, the shape of the cue. As in Experiment 1, the
overall return probability across a block of trials was equal. If the
context was ignored, we would expect to see the same effects as in
Experiment 1. To the extent that subjects used the context, we
would expect to see more pronounced adaptation.

Method

Experiment 2 closely mirrored the design of Experiment 1,
except that the two contingencies were paired with different types
of movement cues. The two types of cues are illustrated in Fig-
ure 1. For half of the participants, a low return probability was
signaled by the oriented line segment and a high return probability
was associated with the arrowhead cue. This mapping was re-
versed for the other half of the participants. The mapping remained
constant throughout the four experimental blocks of 72 trials.
Accordingly, the cue switched every 18 trials in synchrony with
the change in the return probability. Participants were not told
about the statistical variation and its mapping onto the different
cues.

Table 3 shows the structure of the four experimental blocks in
the same format as shown for Experiment 1 in Table 2. For the
purpose of illustration, the table shows a session that starts with a
low return probability in the very first experimental block, which
was paired with a line cue. However, both the order of the two
contingencies and their mapping with the different contextual cues
were counterbalanced across participants. As in Experiment 1, the
first 18 trials of each block were discarded.

Results and Discussion

Figure 4A shows the mean saccade latencies in the four critical
conditions. It is immediately obvious that the interaction between
target location and return probability is more pronounced in the
presence of the contextual cue (compare with Figure 2A): substan-
tial IOR is observed in the low return probability conditions, but is
almost abolished when the return probability is high. We found a
large main effect of target location (return vs. new), F(1, 29) �
15.09, p � .01, �2 � .34; in contrast, the main effect of return
probability was not significant, F(1, 29) � 1.24, p � .27, �2 � .04.
Critically, the interaction between these two factors was reliable,
F(1, 29) � 9.33, p � .01, �2 � .24.

As before, we examined how IOR evolved over the course of
presentation of a given contingency in bins of six trials. Figure 4B
shows a clear separation between the two contingencies, essen-
tially right from the start of a new contingency. The figure and
statistical analysis are based on the 29 participants who contributed
to all six cells in this breakdown of the data. Unsurprisingly, we
obtained a clear main effect of return probability, F(1, 28) �
13.23, p � .01, �2 � .32. There was no main effect of bin, F(2,
56) � 1.24, p � .30, �2 � .04, and no interaction between return
probability and bin, F(2, 56) � 0.10, p � .91, �2 � .00.

One implication of the pattern of results in Figure 4B is that the
change in context allows participants to immediately adopt the
appropriate “task set” in the form of a bias toward return or new
locations. As a result, it is tempting to conclude that the influence
of a local tracking mechanism was eliminated—or at least, re-
duced—under these conditions. Once again, analysis of the se-
quential effects at a finer time scale can shed light on this issue.
For the purpose of this analysis, we focused on the local sequences
of trials that participants actually experienced, ignoring both the
return probability as before and the changing contextual cues.

Figure 3 (circles) shows the outcome of this analysis. The
increasing latencies going from outside inward once more suggest
the slowing of response times when the current trial does not
match the trials that preceded it. The data from the 29 (of 30)
participants who contributed to all eight data points were subjected
to the same statistical analysis as in Experiment 1. The main effect
of target location was again significant, F(1, 28) � 9.10, p � .01,
�2 � .25, reflecting the standard oculomotor IOR effect. The main
effect of 1-back similarity was near the significance threshold, F(1,
28) � 3.89, p � .06, �2 � .12. There was no main effect of 2-back
similarity, F(1, 28) � 1.37, p � .25, �2 � .05, and the interaction

Table 3
Example of the Sequence of Trials for a Single Participant in Experiment 2

Block

Trials within block

1–18 19–36 37–54 55–72

1 p � 1/6, cue � - p � 3/6, cue � � p � 1/6, cue � - p � 3/6, cue � �
2 p � 3/6, cue � � p � 1/6, cue � - p � 3/6, cue � � p � 1/6, cue � -
3 p � 1/6, cue � - p � 3/6, cue � � p � 1/6, cue � - p � 3/6, cue � �
4 p � 3/6, cue � � p � 1/6, cue � - p � 3/6, cue � � p � 1/6, cue � -

Note. p corresponds to the return probability; “cue � -” indicates line cue; “cue � �” indicates arrowhead cue.
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between 1-back and 2-back similarity was not significant, F(1,
28) � 1, �2 � .02.

The contrast between the results from the first two experiments
demonstrates the contribution of context above and beyond the
local tracking demonstrated in Experiment 1. Although some ad-
aptation appeared to occur when abrupt changes in the return
probability were unsignaled to the participant (Experiment 1),
adaptation was more pronounced and immediate when these
changes were paired with an external change in the subject’s
environment (Experiment 2). The local sequential analysis sug-
gested that a local mechanism was still operative.

The results from Experiment 2 show that subjects adapted
almost immediately to a switch in contingency. In line with con-
textual influences observed in animal learning (Bouton, 2004;
Gershman et al., 2010; Redish et al., 2007), this would suggest that
the context acts to retrieve a representation of the statistics that
operate in the temporally local environment. As reviewed earlier,
such gating by context presupposes that subjects have categorized
the different contexts as distinct situations and have internally
represented the statistics that apply in these situations. Before
accepting these inferences from our data, we sought to assess the
importance of the short-term stability and periodic alternation
between contexts (and their associated statistics).

Experiment 3

In the final experiment, we asked whether some short-term
stability (i.e., over a number of trials) in the context and statistics
is necessary for the pronounced effect of context on adaptation.
Although context and contingency switched fairly rapidly in Ex-
periment 2, the periodic nature of the switches between cues may
have made the changes in context more salient, which could have
facilitated contextual learning in different ways.

For instance, the “blocked” presentation of the different contin-
gencies means that a context-blind local mechanism will, eventu-
ally, match the environmental statistics (cf. Experiment 1). As a
result, when the context switches, the output of a local mechanism
could be used to update the association between the previous
context and the internal estimate of the return probability at that
point.

Alternatively, it is possible that no genuine associations between
cues and statistics are formed at all. The change in context may
simply signal to the subject to reset the internal estimate of the
return probability to some neutral baseline expectation and to start
local tracking afresh. As a result, when the context changes,
adaptation to the new contingency no longer involves “overcom-
ing” the previously built-up bias, but can instead proceed from a
more neutral starting position.

Note that both of these processes could have been operative to
account for the strong adaptation seen in Experiment 2. The periodic
switches in contextual cues may have encouraged expectations to be
reset. An episode of local tracking could then be used to update the
association between context and statistics. Indeed, this may be how
associations are initially acquired. Over time, the influence of reset-
ting expectations and local tracking may diminish, and expectations
are set in accordance with the learned mapping between context and
statistics. Clearly, the data from Experiment 2 alone do not allow us
to identify very precisely whether—and how—a genuine association
is formed.

In this regard, there is one straightforward manipulation that
should be very informative. If the different contingencies and their
contextual cues are randomly intermixed, the temporal correlation
between trials is removed. That is, a randomly mixed sequence of
low and high return probability trials is indistinguishable from a
constant, equal return probability sequence of trials. As a result,
one trial is no longer predictive of the likely nature of the upcom-
ing trial(s), thereby removing the correlation on which adaptation
under a context-blind local mechanism would be dependent. If
clear evidence of adaptation is obtained under these conditions, we
can be confident that subjects have formed a genuine association
between contextual cues and the statistical structure of the envi-
ronment defined by those cues.

Method

Experiment 3 consisted of four experimental blocks in which
return probability varied between low and high, and this variation
was consistently paired with a different context (line or arrowhead
cues; counterbalanced between participants). However, the differ-
ent contingencies now no longer alternated in series of 18 trials but
were randomly intermixed throughout the four blocks. As the
different contingencies were no longer presented in alternating
series, there was no need to discard the first 18 trials of each block;
accordingly, data from all four of the experimental blocks were
included in the analyses that follow.

Participants performed one practice block as before, but the
practice block was now indistinguishable from the experimental
blocks. That is, both cue types were used, and they mapped on to
the return probability variation in exactly the same way as the
remaining blocks that were used in the following analyses. We
changed the nature of the practice block from previous experi-
ments on the basis of an a priori expectation that participants
would find it difficult to adapt to the different contingencies under
these challenging conditions. Therefore, we considered it prudent
to give the participants as much exposure to the variation in
context and statistics as possible.

Figure 4. Inhibition of return (IOR) effects under low and high return
probability conditions in Experiment 2. A. Mean of the median latencies of
saccades to return and new locations. B. Temporal evolution of IOR after
a switch from one contingency to the other. All error bars are within-
subject standard errors of the mean.
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Results and Discussion

The overall latency results are shown in Figure 5A, and are very
similar to the results from Experiment 2. There were main effects
of target location and return probability, F(1, 29) � 22.02, p � .01,
�2 � .43, and F(1, 29) � 5.48, p � .05, �2 � .16, which,
respectively, revealed an IOR effect and an overall latency reduc-
tion when the return probability was high. Most important, the
interaction between target location and return probability was
significant, F(1, 29) � 21.39, p � .01, �2 � .43.

Without the periodic structure present in Experiments 1 and 2,
we were not able to perform the binned analysis of IOR shown in
Figures 2B and 4B. However, we did assess the magnitude of IOR
under the two contingencies on a blockwise basis. Figure 5B
shows the evolution of IOR across the four experimental blocks
(based on the 28/30 participants who contributed to all eight cells
of this analysis). The low and high return probability conditions
were already well separated in their IOR effect by the second
experimental block. The main effect of return probability was
significant, F(1, 27) � 13.51, p � .01, �2 � .33, and a small
interaction effect approached significance, F(1, 27) � 2.31, p �
.08, �2 � .08. These results show that participants can acquire the
association between context and environmental statistics relatively
rapidly (i.e., after one or two blocks of exposure, if the practice
block is included as relevant exposure), with some slight sugges-
tion of further changes with more extended practice.

Experiment 3 was designed to prevent the contribution of a
context-blind local tracking mechanism to adaptation to the dif-
ferent contingencies. Nevertheless, it is possible that such a mech-
anism was still in operation, as was found in Experiment 2.
Figure 3 (diamonds) displays the results of the sequential effects
analysis for Experiment 3, alongside the conditionalized latencies
from the other two experiments. The visual similarity in the pattern
of sequential effects was confirmed statistically (based on the
28/30 participants who contributed to all data points). Once again,
there were main effects of target location and 1-back similarity,
F(1, 27) � 11.03, p � .01, �2 � .29, and F(1, 27) � 6.88, p � .05,
�2 � .20, respectively, with an advantage for a repeated trial type
(return or new). As in Experiments 1 and 2, there was no main
effect of 2-back similarity, F(1, 27) � 0.00, p � .97, �2 � .00, and
the interaction between 1-back and 2-back similarity was not
significant, F(1, 27) � 0.22, p � .64, �2 � .01. Even under these

conditions then, a local recency mechanism seemed to be operat-
ing, looking back to the immediately preceding trial only.

It is remarkable that participants were able to learn about the
statistics of the two contexts (see Figure 5), considering that
the contingency changes were very frequent in comparison with
the previous experiments and that the temporal correlations in the
input trial sequence were deliberately removed. These results
provide clear evidence that participants formed genuine associa-
tions between the contextual cues and the different contingencies.
A context-blind, local tracking mechanism is unlikely to have
supported associative learning between context and statistics in the
absence of temporal structure in the input sequences. The finding
that there was nonetheless a dependence in saccade latency across
successive trials may seem puzzling, but agrees with other dem-
onstrations of sequential effects in uncorrelated environments
(Bertelson, 1961; Cho et al., 2002; Kirby, 1972; Remington, 1969;
Soetens et al., 1985).

Up to this stage, we have sought to characterize the contribu-
tions of local and contextual mechanisms empirically. We can now
use these data to understand more precisely how the outputs of
these mechanisms are utilized by the oculomotor machinery re-
sponsible for making decisions about when and where to move the
eyes next. To this end, we need to incorporate local and contextual
influences in an overall model of saccadic choice and latency.

An Evidence Accumulation Account of IOR and Its
Adaptation to the Local Statistics

In our previous work (Farrell et al., 2010; Ludwig et al., 2009),
we have successfully used an evidence integration framework to
account for the inhibitory effect in both saccade latency distribu-
tions and in choice accuracy. Various sequential sampling and
accumulator models form part of this general class of models
(reviewed in Luce, 1986; Ratcliff & Smith, 2004; P. L. Smith &
Ratcliff, 2004). They all assume that evidence in favor of discrete
response alternatives is accrued over time, and a choice is made
when the integrated evidence exceeds some criterion level. Vari-
ability in choice and latency is accounted for by assuming one or,
typically, more sources of variability, either within or between
trials.

As a particular instantiation of this general class, we (Farrell et
al., 2010; Ludwig et al., 2009) have adopted the linear ballistic
accumulator model (LBA; Brown & Heathcote, 2008) to account
for IOR and its variation with the environmental statistics. The
LBA is a conceptually and computationally simple model of
decision making. It assumes that choice is governed by a race
between deterministic accumulators, with variability in choice and
latency following from variability in the rate and starting point of
accumulation (this variability applying separately and indepen-
dently to each accumulator). Each accumulator represents one
response alternative and the one that crosses a decision criterion
first determines choice. The response latency is a combination of
the decision time (i.e., the time it takes for an accumulator’s
activation to exceed the criterion) and a nondecisional component
reflecting peripheral sensory and motor processes.

In previous fits of the standard LBA model to empirical data, we
have shown that the basic IOR effect is best accounted for as a
slowing in the (mean) rate of accumulation associated with the
return location (Farrell et al., 2010; Ludwig et al., 2009). Criti-

Figure 5. Inhibition of return (IOR) effects under low and high return
probability conditions in Experiment 3. A. Mean of the median latencies of
saccades to return and new locations under low and high return probability
conditions. B. IOR over the course of the four experimental blocks. All
error bars are within-subject standard errors of the mean.
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cally, the variation in IOR with environmental statistics is not
expressed in the accumulation rate, but is entirely accounted for by
a change in the amount of evidence that needs to be accumulated
for a decision to be made (Farrell et al., 2010). This effect is
consistent with the psychological interpretation of the starting
point as an index of the prior belief that a particular response will
be called for. That is, starting points are higher for accumulators
that represent decision alternatives with a greater (subjective) prior
probability (Basso & Wurtz, 1998; Carpenter & Williams, 1995;
Churchland, Kiani, & Shadlen, 2008). When the return probability
is high, the baseline of the return accumulator is moved closer to
criterion; when the return probability is low, the baseline is moved
further away from criterion. Given the results of the present set of
experiments, the critical question is how the starting point moves
toward or away from criterion as a result of exposure to different
statistical contingencies. In particular, we ask by what mechanism
the starting point tracks beliefs about which response alternatives
are likely to become relevant.

There are various candidate mechanisms that could be imple-
mented to update the subjective beliefs encoded by the starting
points of accumulation: for example, stored exemplar representa-
tions (Logan, 1988, 2002; Nosofsky, 1986; Speekenbrink &
Shanks, 2010), iterative Bayesian belief updating (Speekenbrink &
Shanks, 2010; Wilder et al., 2009; Yu & Cohen, 2008), and
sequential Monte Carlo integration (Brown & Steyvers, 2009).
One major aim of the modeling presented here is to explore what
the critical ingredients are for any model to capture our results. For
the purpose of demonstrating the overall viability of our proposal,
a very simple form of associative learning provides an effective
and parsimonious account of the complete pattern of data across all
three experiments reported in this article.

A Model of Belief Updating

Basics of the model. In this section, we specify a “front end”
to the accumulation of evidence to threshold. This front end is a
simple belief updating model that specifies how the starting points
of accumulation vary from trial to trial. Given the starting-point
adjustments produced by the model, the saccadic decision is mod-
eled as a standard race to threshold, with IOR built-in as an
attenuation of the mean accumulation rate of the accumulator
representing the return location(Farrell et al., 2010; Ludwig et al.,
2009). This attenuation remains constant and unaffected by the
changes in the statistical contingencies. Without it, no IOR would
be predicted. Any change in the magnitude of IOR is solely
mediated by the changes in the starting points.

Like the experimental data presented here, the model focus is
restricted to the second saccade of a sequence. The updating of
the starting points is assumed to occur sometime after the offset
of the first saccade of the sequence and before the presentation
of the second movement cue. At that point in time, there are
three response alternatives, and the participant does not yet
know which one will be cued next. However, from previous
experience and the context of the current trial, he or she will
have some expectation of having to go back to the previously
fixated location or having to move on to a new location.

In our experiments, the response alternatives, in terms of the
specific vectors involved, and their mapping onto response types
(return vs. new) change from one trial to the next. The different

accumulators may be regarded as coding these more abstract
response types. Alternatively, they may be tied more closely to the
oculomotor machinery and regarded as specific movement vectors
that have been assigned either return or new status. This assign-
ment will need to occur on every trial, presumably after complet-
ing the first saccade of the sequence. For the present purposes, we
need not commit to one view or the other.

Model specification. The starting point associated with the
return location is denoted R. The starting points of the accumula-
tors representing the new locations are N1 � N2 � N; they are
treated identically because from the model’s perspective, the two
locations are not differentiated. We define a vector, y, to indicate
the nature of a given trial: y � {1, 0} and y � {0, 1} for return and
new sequence types, respectively. We also define a context vector:
x � {1, 0} for line cues and x � {0, 1} for arrowhead cues.

The context vector, x, is associated with the different trial types,
y, through a set of weights, wij, where i � 1, 2 indexes the context
variable and j � 1, 2 indexes the different types of sequences.
Standard learning rules may be now used to update these weights
from one trial to the next. We used a simple learning rule (Sutton
& Barto, 1981) with weight decay:

wij�n	 � 
wij�n � 1	 � cjxi�n � 1	yj �n � 1	, (1)

where n indexes trial. The left-hand section of Figure 6—labeled
weight update—illustrates this simple associative network. The
figure shows an example in which the context of the trial just
completed was an arrowhead cue, and the sequence called for a
return movement: in other words: x2 � 1 and y1 � 1. Equation 1
states that only the weight connecting arrowheads with return
movements, w21, will be strengthened. None of the other weights
are strengthened because the product xiyj will be 0 for these
weights. The extent of facilitation is encoded by the learning rate,
cj, which depends on the nature of the preceding trial. That is,
facilitation of a return movement can only be attributed to one
accumulator, whereas facilitation of movements to new locations
need to be distributed across two locations. For convenience, we
simply set c2 � c1/2.

Although only one weight will be strengthened at a time, all
weights are updated according to Equation 1. As such, they are all
subject to a certain amount of decay, which is controlled by
parameter 
. This parameter is constrained to lie between 0 and 1,
which will determine the time constant of the system’s memory.
When 
 � 1, there is no forgetting: any facilitation is simply added
to the previous weight value, and all other weights retain their
previous value. When 
 � 0, there is no memory at all, and
weights will simply fluctuate between 0 and cj solely on the basis
of the immediately preceding trial. Intermediate values of 
 make
the temporal evolution of the weights “leaky” and prevent the
weights from growing without bound, while still retaining some
memory of the previous trial history.

Although we have predefined different context representations,
it is clear that these are probably created online as the system is
exposed to different contexts. For instance, in Experiment 1, there
is only ever one context: using the mapping defined previously,
x(n) � {1, 0} for all n. As a result, the weights projecting from unit
x2 are never updated by Equation 1, that is, w2. (n) � 0 for all n.
In this situation, the second context essentially does not exist, and
there is no internal state representing this context (Gershman et al.,
2010; Redish et al., 2007). In Experiments 2 and 3, the second
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context unit and the weights projecting from that unit may be
created as soon as, or shortly after, a new context is encountered.
The creation of a new context unit and associated weights corre-
sponds to the process of state splitting. We have not formally
implemented this process but envisage it as occurring along the
lines put forward by Redish et al. (2007): a new state is created as
soon as the cues that make up the current situation cannot be
matched to any of the existing internal states.

Once the first saccade on the current trial has been completed,
the model is in a position to adjust the starting points of the three
accumulators for the second saccade based on the current context:

R�n	 � �
i

wi1�n	xi�n	

and

N�n	 � �
i

wi2�n	xi�n	, (2)

for the return accumulator and two new accumulators, respec-
tively. Note that the influence from the previous trial is mediated
by the current values of the weights.

The middle section of Figure 6 —labeled belief update—
illustrates how the weight update carried over from the previous
trial impacts on the starting points of the three accumulators on the
current trial. In the example shown, the context (arrow cue) re-
mains constant across the two trials. Based on the presentation of
the arrow cue on trial n, the return starting point is strengthened,
whereas the remaining starting points are subject only to passive
decay (shown as a reduction in contrast in the figure).

The right-hand portion of Figure 6—labeled evidence integra-
tion—shows how the updated starting points feed through into the
temporal dynamics of the race to threshold. The adjustment of the
starting point for the accumulator representing the return location
is illustrated by the upward arrow on the left of the panel. Assum-
ing a return target is presented on the current trial, the return
accumulator wins the race easily. Clearly, the more such trials
occur in close succession, the shorter the latency of return move-

ments will be, thereby reducing the magnitude of IOR when the
return probability is high.

One important point to make is that the model for belief updat-
ing does not contain separate mechanisms for local tracking and
contextual learning, despite our initially separate treatment of these
mechanisms. The weights carry both sources of information, with
context-gated learning reflected in the second term of Equation 1,
and an additional dependence on the previous trial through the
weight decay component. In other words, tracking the statistics of
the environment is inherently local and contextual. As will be
shown next, this feature of our model allows it to capture the data
from all three experiments reported here, despite the simplicity of
the updating rule.

Simulations

Having formalized a model for the updating of subjective prior
probabilities of alternative responses, we set out to determine
whether the model could account for the qualitative patterns of
data obtained in our experiments. We therefore simulated the
model, coupled with the evidence accumulation assumptions of the
LBA model (Brown & Heathcote, 2008; Farrell et al., 2010;
Ludwig et al., 2009).

In these simulations, we aimed for a satisfactory qualitative fit,
rather than a precise quantitative fit on the data from individual
participants. These simulations represent a demonstration of suf-
ficiency. In doing so, they provide a compelling demonstration of
how a relatively simple updating scheme can give rise to what
appears to be quite sophisticated behavior, namely, adaptation to
locally varying temporal statistics, gated by surface features of the
context.

In the simplest form described here—assuming initial weights
of 0 and setting c2 � c1/2—the updating model is characterized by
just two free parameters: weight decay, 
, and the learning rate
associated with the return location, c1. The simulations reported
were performed with a common set of parameters, chosen to give
a satisfactory qualitative fit to our data from all three experiments:

 � 0.72 and c1 � 0.1.

Figure 6. Schematic of a belief updating model. Events in the previous trial (the context and whether the cue
directed a saccade toward a return or new location) are used to adjust the association between context and trial
types (weight update). The weights are used to adjust the starting points of three accumulators representing the
three response alternatives on the current trial (belief update), given the current context. Once the starting points
are set and the second movement cue is presented, evidence in favor of the alternative responses, based on the
stimulus directing the current saccade, is accumulated toward a decision criterion (evidence integration).
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In order to generate (mean) latencies, and in particular produce
IOR, the complete system also requires specification of the pa-
rameters of the accumulation process, as implemented by the LBA
model. The following LBA parameters required specification:
mean accumulation rates for target and nontarget locations, atten-
uation in the mean accumulation rate for return locations, variabil-
ity in accumulation rate, and the nondecisional delay. Following
Ludwig et al. (2009) and Farrell et al. (2010), IOR was imple-
mented by attenuating the mean accumulation rate associated with
a return location via a multiplicative constant. In contrast to
standard implementations of the LBA (particularly those in Lud-
wig et al., 2009 and Farrell et al., 2010), we did not include
variability in the starting point, precisely because this is what the
updating model was designed to account for. The decision crite-
rion, used as a scaling parameter, was set to 1 (Farrell et al., 2010;
Ludwig et al., 2009).

These accumulation parameters bring the total number of pa-
rameters up to seven for the complete system. However, in the
simulations reported below, the LBA parameters were not free but
were obtained by averaging parameter estimates across observers
in the baseline—equal return probability—condition of Farrell et
al. (2010). These five values are listed in the caption of Figure 7,
along with the detailed simulation procedure.

Panels A–C in Figure 7 show the model’s predictions for Ex-
periments 1–3. We examine each experiment in turn. As explained
before, in Experiment 1, there is only one context, and only the
weights projecting from that context are updated. As the context
does not change, every time a return movement is required, the
return accumulator is facilitated on the subsequent trial. Likewise,
every time a movement to a new location is required, the two
accumulators representing these new locations are boosted for the
subsequent trial. Under these circumstances, the model behaves in
accordance with the way the local mechanism was characterized
informally at the start of this article.

For the simulated data, we computed the temporal evolution of
IOR across a series of 18 trials in any one contingency, in exactly
the same way as we did for our empirical data shown in Figures
2B. In line with the informal description of a local mechanism
presented earlier, the initially small IOR effect grows rapidly when
switching from a high to low return probability, and a large IOR
effect decreases rapidly when switching in the opposite direction
(Panel A).

Figure 7B shows a simulation of Experiment 2 when there is
more than one context, and both the context and the return prob-
ability switch every 18 trials. The simulated data pattern now
shows much less of a temporal dependency in that the effect of
contingency on mean IOR is present very early on after a switch,
as was found in Experiment 2 (see Figure 4). Because the param-
eters of this simulation were identical to those used in the gener-
ation of Panel A, the difference between the two panels is entirely
due to the contextual variation that was present in the experiment
and the simulation.

Figure 7C shows the simulation results when both the context
and return probability vary from trial to trial, but remain yoked,
mirroring the design of Experiment 3. As in the experimental data
(see Figure 5), the model produces the observed interaction be-
tween return probability and trial type (return vs. new), such that
a larger IOR effect is found when the return probability is low
(compared with the high return probability condition).

Finally, the data from all three simulations were subjected to the
same sequential effects analysis performed on the empirical data.
Figure 7D demonstrates a strong dependence on the preceding
trials in all three simulated experiments, as was obtained empiri-
cally at least for the nonreturn trials (the empirical data for return
sequences are much more noisy, as pointed out in the discussion of
the sequential effects of Experiment 1). This finding is important
and may be related to a point made in relation to the sequential
effects analyses shown in Figure 3. When considering the data
alone, it seemed puzzling that even when a purely local mechanism
could not mediate adaptation to intermixed contingencies, a strong

Figure 7. Simulation results. A. Temporal evolution of inhibition of
return (IOR) after an unmarked switch from one contingency to the other
(constant context). B. Same as A, but the contingency is signaled by a
contextual cue. C. Mean simulated latency under randomly intermixed
contingencies. D. Sequential effects analysis examining simulated latency
contingent upon the preceding two trials, analogous to Figure 3. The free
parameters of these simulations are given in the text. The parameters of the
accumulation process are fixed to the mean parameter estimates from the
baseline condition of Farrell et al. (2010). These are mean target accumu-
lation rate (vT � 0.0057), mean nontarget accumulation rate (vD � 0.0013),
standard deviation around the mean accumulation rate (�v � 0.0013),
inhibitory rate attenuation for return locations (m � 0.90), nondecision
time (Ter � 115.43), and � � 1 (decision criterion). Each simulation
involved 72,000 trials. On each trial, accumulation rates were drawn from
Gaussian distributions. The means of these distributions were determined
by whether the accumulator coded a target (vT) or nontarget (vd) location
and was then further adjusted by the multiplicative constant representing
IOR if that location corresponded to a return location (m). The standard
deviation of the distributions was kept the same (�v). With the starting
points and the accumulation rates in place for a given trial, the outcome of
the race is known: (� � b)/a specifies the time to reach threshold for an
accumulator, with � � 1 as the decision criterion, b the starting point of an
accumulator, and a its accumulation rate. The saccade latency is the time
to threshold of the winning accumulator, plus the additional nondecisional
delay (Ter).
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dependency on the immediately preceding trial was nevertheless
observed. The modeling suggests an explanation for why this
should be and indeed generates a prediction that may be assessed
against the data.

The model, as implemented here, assumes that the facilitation
from the previous trial is context selective. The starting points are
updated in a manner that is contingent on the current context. If the
context is repeated, the facilitation of the response congruent with
the previous sequence is carried through in the starting point of the
accumulator representing that response. However, if the context is
not repeated, the facilitation derived from the previous trial will be
expressed in the starting point only when its context is presented
again. By that time the weight under consideration will have
decayed to some degree. As a result, the model predicts a stronger
sequential effect from the previous trial when the context is re-
peated, compared with when the context switches. This is a pre-
diction that can be tested with the data from Experiment 3.2

For the purpose of this test, we examined the 1-back effect
because this was the only reliable sequential effect to emerge from
Experiment 3. As this effect did not interact with the nature of the
current sequence, we pooled across sequence type (i.e., whether
the current trial was return vs. new) and simply conditionalized
saccade latency on whether the preceding (n � 1) trial was of the
same or different type as the current trial. The other conditional
constraint—not included in the previous analyses—was whether
the context remained the same or switched. The 1-back effect
(different–same) was 24 ms ( 5 ms, standard error of the mean
[SEM]) when the context remained the same, but only 8 ms ( 3
ms, SEM) when the context switched. The model predictions for
these two contrasts came to 17ms and 4 ms, respectively (recall
that no attempt was made to obtain a precise quantitative fit to
these data).

To assess whether this difference was reliable, we performed a
2 � 2 ANOVA on the observed median saccade latencies, with
1-back similarity and context switch as the two repeated measures
factors. All 30 participants contributed to this analysis. There was
a main effect of 1-back similarity, which is essentially the same as
that reported in the original sequential effects analysis, F(1, 29) �
20.22, p � .001, �2 � .41. There was no main effect of context
switch, F(1, 29) � 0.43, p � .52, �2 � .02. Most important, the
interaction between context switch and 1-back similarity was
significant, F(1, 29) � 15.21, p � .001, �2 � .34. The prediction
of the model of a stronger 1-back effect when the context remains
the same is clearly supported by the empirical data.3

To conclude, our model of belief updating is inherently local
and context-selective. If only ever one context is encountered,
the model simply implements a form of 1-trial priming with
memory decay (as reflected in weight decay). When a situation
is classified as a new context, the effect of the previous trial is
context dependent and only emerges in behavior if the matching
context is presented before decay has undone the facilitation.
With only two free parameters that were kept constant across
simulations of all three experiments, this simple model pro-
vided a good account for (a) the overall patterns of mean
saccade latency, (b) the temporal evolution of IOR, (c) the
nature of the sequential effects, and (d) the context dependency
of these sequential effects.

General Discussion

Adaptation to the statistical structure of the environment is
clearly beneficial for any organism. Such adaptation will be more
challenging under nonstationary conditions, that is, when the sta-
tistical structure varies (Speekenbrink & Shanks, 2010). Given the
frequency of gaze shifts and their importance for visually guided
behavior in general, a key question is how the underlying mech-
anisms involved can be flexibly tuned to the local environmental
statistics. We have targeted oculomotor IOR in particular, because
IOR itself may be seen as an assumption about the statistical
structure of the world. However, our results should be seen in the
broader context of the role of learning and context in adaptive
visual-saccadic behavior.

In this article, we have shown that learning operates over a rapid
time scale and in a context-selective manner to enable adaptation
of oculomotor behavior to the statistical properties of the environ-
ment. Moreover, we have developed an extremely simple, yet
powerful, model of how such context-gated adaptation could oc-
cur.

Adaptation in our experiments essentially involves learning the
correlation between two successive movements. Our subjects were
able to acquire this correlation even when any one statistical
contingency was presented for a relatively short period of time (�
18 trials). This is all the more impressive because this correlation
cannot be characterized in terms of specific spatiotopic locations
or movement vectors but instead refers to a more abstract temporal
relationship between successive events. Moreover, the expression
of this knowledge has to take place on the fly, in a short time
window (i.e., between the offset of the first saccade and the
appearance of the second movement cue).

When the statistics of the environment changed, subjects learned
to match the new contingency. Adaptation was particularly pro-
nounced and rapid when a surface feature of the environment, a
contextual cue, changed along with the statistics. Indeed, subjects
were able to acquire the mapping between context and statistics
and use it to guide their behavior even when different contingen-
cies were randomly intermixed. As a result, they could retrieve a
representation of the statistical structure of the environment when

2 We thank Mike Mozer for pointing out this prediction of the model.
3 There is a corollary prediction that can be made if this logic is followed

further. Given that the analysis just described shows that switching con-
texts dilutes the 1-back effect, and given that the frequency of the context
switches was larger in Experiment 3 than Experiments 1 and 2, we would
predict the magnitude of the sequential effect to decrease across the three
experiments. This prediction is expressed in the slopes relating local
sequence to mean latency in Figure 7D. The slopes of each pair of
functions get shallower in going from Experiment 1 to Experiment 3. The
same effect appears to be present in Figure 3. To assess this prediction, we
conditionalized the data from all three experiments only on the nature of
the previous trial (pooling over sequence type). We performed a mixed-
factor ANOVA with 1-back similarity as the repeated measures factor and
experiment as a three-level between-subjects factor. The critical interaction
between 1-back similarity and experiment did not reach significance, F(1,
29) � 0.25, p � .78, �2 � .01. Therefore, there was no statistical evidence
for the prediction that the 1-back effect should decrease as context switches
become more frequent. Unfortunately, however, the power of detecting this
interaction involving a between-subjects factor was very limited (the
observed power with 
 � .05 was estimated as .09).
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confronted with a particular contextual cue. The context did not
directly dictate the required response, but rather influenced how an
incoming stimulus was processed: that is, the context gated which
correlation structure was brought to bear on current experience.

Our general proposal is that expectations about the current
properties of the environment are encoded in the baseline activity
of units that represent the evidence in favor of different decision
alternatives (Farrell et al., 2010). These subjective beliefs about the
structure of the environment are assumed to be continually updated
in light of experience. The importance of our findings is that they
provide compelling evidence that this updating operation is inher-
ently local—driven by recency—and context-dependent. That is,
the carryover from recent experience manifested in one-trial prim-
ing effects and sequential effects in general is modulated by the
context. If the context changes, the influence of recent experience
is much diminished. This would seem ecologically adaptive: when
the cues that make up a particular context change, recent history
may be a less reliable guide to what is likely to happen in the near
future.

We have presented one particularly simple instantiation of a
context-selective belief-updating mechanism. When coupled with
standard assumptions about the dynamics of the visual-saccadic
decision process, this model provides an excellent and parsimoni-
ous account of all major patterns in the data.

Belief Updating and Its Impact on Choice and Latency

There are two parts to the general theory outlined here. One is
a mechanism of belief updating; the other is an evidence-
integration mechanism. Belief updating sets the starting points of
accumulation (Anderson & Carpenter, 2006; Cho et al., 2002). We
opted for a simple associative learning network for the belief
updating component and ballistic accumulation for the subsequent
evidence integration process. We are not wedded to these specific
mechanisms and alternatives could have been used, possibly with
at least as much success. However, we believe both components
are well justified from both theoretical and practical perspectives.

Evidence integration. With regard to the integration mech-
anism, the choice for a “race-to-threshold” model generally, and
the LBA model (Brown & Heathcote, 2008) in particular, was
motivated by the following considerations. First, accumulator and
sequential sampling models have a long history of success in
accounting for both choice probabilities and the latency distribu-
tions of correct and error decisions (among many others: Brown &
Heathcote, 2005; LaBerge, 1962; Link & Heath, 1975; Luce, 1986;
Ratcliff, 1978, 1988; P. L. Smith & Ratcliff, 2004; P. L. Smith &
Vickers, 1988; Usher & McClelland, 2001; Vickers, 1970). Alter-
native methods for deriving the latency predictions in the present
study would involve either arbitrarily scaling the expectations or
perhaps mapping the expectations onto parameters of some de-
scriptive latency distribution. Neither of these approaches would
be theoretically principled or desirable, and both would involve
more free parameters than we have adopted here.

Second, many of these models assume a certain amount of
variability in the starting point of accumulation, which is typically
considered a source of internal noise. The updating model pre-
sented in this article, as well as previous work by Cho et al. (2002)
and Anderson and Carpenter (2006), instantiate an important and
natural hypothesis about the origin of starting point variability: at

least part of it reflects the trial-to-trial variability in subjects’
expectations about which response alternatives are likely to be
relevant based on the recent history of experiences.

Third, the idea of integrating evidence to a decision threshold
has received strong neurophysiological support in the domain of
visual-saccadic decision making. Recordings from a variety of
neural circuits involved in eye-movement programming support
the notion of accumulating evidence from the stimulus (i.e., like-
lihoods) from a baseline level of activity that indexes the prior
probability of a movement alternative (for reviews, see Gold &
Shadlen, 2001, 2007; P. L. Smith & Ratcliff, 2004; Schall, 2003).

Finally, the LBA model was used in our previous work to
account for latency distributions and choice accuracy in our
saccade-sequencing paradigm (Farrell et al., 2010; Ludwig et al.,
2009). By placing the belief updating mechanism in the context of
the same model, we can demonstrate the plausibility of the pro-
posed front end by accounting for our previously reported finding
that the environmental statistics uniquely affect the starting point
of accumulation.

Belief updating. Moving on to the belief updating mecha-
nism itself, our simple rule for updating associative weights is
equivalent to exponential filtering models. Such models have been
applied very successfully in accounting for adaptation in nonsta-
tionary reward environments (Corrado, Sugrue, Seung, & New-
some, 2005; Sugrue et al., 2004), sequential effects in two-choice
reaction time tasks (Yu & Cohen, 2008), and attentional priming in
visual search (Mozer, Shettel, & Vecera, 2006). Moreover, Yu and
Cohen (2008; see also Wilder et al., 2009) have shown that, in the
context of accounting for sequential effects in randomized para-
digms, exponential filtering approximates the optimal, normative
Bayesian solution for iteratively updating expectations on the basis
of past experience, while being more biologically and psycholog-
ically realistic than the full-blown Bayesian solution.

To make the link with exponential filtering more explicit, for a
given context i and unit representing sequence type j, there will be
a history of inputs. This history forms a time series of instances of
either zero or positive (0 or cj) amounts of facilitation, depending
on the nature of the previous sequence and context. Now define a
set of temporal weights, described by an exponential function of
the form ��k	 � e�k⁄�, where k denotes the number of trials in the
past—that is, the current trial is k � 0 and gets a weighting of 1,
and trial n � 1 gets a weighting of �(1). Exponential filtering
involves weighting the current and previous inputs with � and then
summing them. This weighted sum corresponds to the strength of
association between context i and sequence type j, encoded by wij

in our model.
This formulation in terms of an exponential moving window

over past and current inputs is equivalent to our learning rule with
weight decay, specified by Equation 1 (Sutton & Barto, 1981).
Specifically, the decay parameter 
 relates to � through � �
�ln(
)�1. In our simulations, we set 
 � .72. Using the expo-
nential filtering formulation, this value corresponds to a time
constant of around three trials. This limited memory demand is
well within the realm of biological possibility (e.g., Sugrue et al.
(2004) reported time constants of nine trials for their choice data in
monkeys). Note that a time constant of approximately three trials
does not necessarily imply that we should have obtained n-back
effects beyond the immediately preceding trial. Apart from the
issue of whether there is the statistical sensitivity to detect such
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longer reaching sequential effects, the weight decay formulation
demonstrates that the influence of a trial n-back is absorbed by the
trials that follow it. The time constant merely provides an estimate
of how long it takes for the influence of any one trial to decay to
a certain level: ��3	 � 0.37 (i.e., 37% of the maximum weight).

Several other forms of belief updating could have been imple-
mented. We have already briefly mentioned the optimal Bayesian
approach, which is particularly well suited to the iterative nature of
the belief updating mechanism (prior expectations are combined
with current observation to set the expectation for the subsequent
trial or episode). Another possible candidate is an exemplar-based
scheme (Logan, 1988, 2002; Nosofsky, 1986; Speekenbrink &
Shanks, 2010), with each combination of context and sequence
type laying down a distinct memory trace. Upon encountering a
specific context, subjects may retrieve a subset of memory traces
on the basis of similarity of the traces to the current context.
Expectations may then be set in accordance with the frequency of
return and nonreturn traces in the subset. Finally, a class of very
promising methods is based on sequential Monte Carlo integration
or particle-filtering models (Brown & Steyvers, 2009; Sanborn,
Griffiths, & Navarro, 2006). These models offer a more psycho-
logically realistic approximation to the normative Bayesian solu-
tion. Discrete particles correspond to possible “world states” (here:
combinations of the two contextual cues and the two different
sequence types). Every time one state is experienced, particles
corresponding to that state are propagated while other particles are
replaced. The distribution of particles across the different states
then approximates the probability distribution of these distinct
states, which may be translated into subjective expectations. The
number of particles available determines the memory (i.e., time
constant) of the system: with a psychologically plausible, limited
set of particles, their distribution will be most heavily influenced
by recent experience.

The important issue is why these different schemes can account
for the way that expectations are updated with experience. The
reason is that, like our model, they all have the capacity to track a
variable that closely reflects the frequency of the two different
sequences (return, new), in a context-selective manner. In addition,
this variable may be computed over some limited time window
that is weighted toward more recent events. Finally, the models
allow for some flexible adjustment in the size of this time window,
so that the extent of past discounting may be adapted to the
volatility of the environment. These are the critical ingredients to
enable context-gated adaptation in a nonstationary world.

Adaptation Cued by Context Alone

When changes to the structure of the environment are coupled
with changes in some of the (surface) features of that environment,
the context may act to retrieve a representation of what kind of
events are likely to occur in the “new” environment. This descrip-
tion of the contextual mechanism appears to imply that assump-
tions about the statistical structure of the world should be relatively
independent on recent experience acquired under a different con-
text. Indeed, for the contextual mechanism to have any ecological
utility, it would seem desirable to be able to set expectations on the
basis of the context alone, regardless of the immediately preceding
history.

However, our model relies on the continual updating of the
association between contextual cues and the learned correlation
between two eye movements in a sequence. Contextual weights
necessarily decay when not topped up with trials under the context
they represent (see Equation 1). Suppose the context switches. As
the number of intervening trials grows, the subject will be less able
to appropriately set the starting points when switched back to the
previous context. Indeed, this is the reason why the simulation of
Experiment 2 (Figure 7B) still shows some gradual build-up and
decrease in the magnitude of IOR after a context and contingency
switch. This reliance on recency in setting the contextual weights
drives the sequential effects in the model (and, we argue, in our
participants).

It is therefore reasonable to ask whether we have in fact imple-
mented the contextual mechanism as conceptualized at the outset.
That is, can our model adjust expectations on the basis of contex-
tual signals alone, even after a paucity of experience in that
context?

This capacity is easily incorporated in the model. It may be that
subjects acquire the relevant associations by continually updating
the contextual weights, but over time come to treat these weights
increasingly as fixed. In our formulation, such a change could be
instantiated by letting 
 grow to 1 and cj decrease to 0 in Equation
1. As a result, subjects may immediately retrieve the appropriate
representation of the likelihood of refixation, given a certain con-
textual cue. In this state, the system would be much more robust to
intervening trials from different contexts and contingencies.

The model makes a clear prediction of the empirical signature of
such a transition: robust and more immediate adaptation with a
much smaller dependency on the recent trial history. We believe
the data sets presented here are not sufficiently diagnostic to really
allow us to detect such a transition, for instance, through a block-
wise sequential effects analysis. The assumption of continual up-
dating (and decay inherent in the updating operation) appears to
work for the empirical data reported here, so that additional as-
sumptions about changes in the parameters controlling belief up-
dating did not seem warranted.

Context-Based Adaptation in Natural Environments

An important feature of the modeling is that it addresses the way
in which memory for the statistics in the world can guide future
behavior. One natural question is then to what extent the described
contextual association mechanism is operative in more complex,
naturalistic environments. In our experiments, there were only two
contingencies, and their associated contextual cues were the only
features of the test displays that varied. It is clear that under these
rather restricted conditions, the statistics of two environments can
be learned in parallel effectively. However, in naturalistic settings,
it is not entirely clear what counts as a context.

It is likely that humans will have representations of the statis-
tical regularities that operate in different environments (e.g., office
environment, street scene, and so on; Tversky & Hemenway,
1983). These representations may be exemplar-based, with the
relevant representation retrieved on the basis of similarity match-
ing (Nosofsky, 1986; Speekenbrink & Shanks, 2010). The capacity
to store and retrieve such representations presumably will be
subject to the same constraints that limit storage in and retrieval
from long-term memory in general (Shiffrin & Atkinson, 1969).
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Moreover, which representation is retrieved may be subject to
similar constraints as categorization in general (Rosch, 1978). For
example, if a precise match to a current environment is unavail-
able, the representation from a superordinate category may be
used. Alternatively, a new category may be created (Love, Medin,
& Gureckis, 2004), a process described by Redish et al. (2007) as
state splitting.

A related issue is what triggers an episode of tracking the
relation between a contextual cue and behaviorally relevant vari-
able. One possible mechanism is prediction error feedback (Redish
et al., 2007). When presented with a certain context and having
“chosen” what variable(s) to predict, behavior will be governed by
expectations retrieved from memory. As long as those expectations
are matched with a frequency that is appropriate given the natural
uncertainty in an environment, there is no need to alter the asso-
ciative weights any further. However, if expectations are violated
more frequently, a new episode of learning may be triggered (see
also Love et al., 2004).

The learning of relatively arbitrary contextual associations, as
demonstrated in our experiments, suggests that there will be con-
siderable flexibility in what counts as a separate context or situa-
tion. In addition, it is likely that there also will be flexibility in the
choice of what behaviorally relevant variable to predict in a given
context. This choice in itself will be governed by the task demands.
In a relatively simple saccade-sequencing task such as the one used
here, any information that is predictive of the upcoming saccade
may be used to perform the task more efficiently. Presumably, this
is why the distinction between return and new locations mattered
to our subjects. However, that is not to say that the likelihood of
refixation will always be an important variable for subjects try to
track and predict (Dodd et al., 2009; T. J. Smith & Henderson,
2009). Had we varied the likelihood of, say, second saccade targets
being on the left-hand side of our display configuration, it is likely
that subjects would have learned and used this statistical regularity
to their advantage (Geng & Behrmann, 2002; Walthew & Gil-
christ, 2006). Indeed, it is likely that several variables can and will
be tracked simultaneously, in order to adjust behavior to the
demands of the temporally and spatially local environment and
task. A challenge for the future is to identify what characteristics
of the trial sequence and contextual features are used by subjects
to update their expectations and the generality of the learning
mechanisms involved.
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