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Radioprotectors are compounds that protect against radiation injury when given prior to
radiation exposure. Mitigators can protect against radiation injury when given after expo-
sure but before symptoms appear. Radioprotectors and mitigators can potentially improve
the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation
and/or reduced damage to normal tissues. Such compounds can also potentially counteract
the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor
meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation counter-
measures. Here, we will review the general principles of radiation injury and protection and
describe selected examples of radioprotectors/mitigators ranging from small-molecules to
proteins to cell-based treatments. We will emphasize agents that are in more advanced
stages of development.
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INTRODUCTION
Medical countermeasures (MCM) is a term utilized by the Depart-
ments of Defense and Health and Human Services that refers to
agents used to prevent (protectors and mitigators) or treat (ther-
apeutics) radiation injury. We will not discuss agents that are
solely used to treat established radiation injury (therapeutics).
Because of the threat of nuclear terrorism or nuclear accidents
(e.g., Chernobyl or Fukushima nuclear reactor meltdowns), sev-
eral governmental agencies [Department of Defense, National
Institute of Allergic and Infectious Diseases (NIAID), Biomedical
Advanced Research and Development Authority (BARDA), and
Defense Advanced Research Projects Agency (DARPA)] have been
interested in the development of agents that can protect against the
effects of ionizing radiation (IR), increase survival, and/or decrease
morbidity. As an additional benefit, some MCMs may be useful as
radioprotectors in the radiation therapy clinic provided that they
do not equally render tumors more resistant to IR.

RADIATION AND NORMAL TISSUE COMPLICATIONS
Most recent advances in radiation oncology related are due to
methods to make the radiation beam better conform to the shape
of the tumor and thereby reduce the volume of normal tis-
sue within the radiation beam and the dose to normal tissues.
These approaches include intensity modulated radiation therapy
(IMRT), stereotactic radiosurgery (e.g., using the Gamma Knife
or CyberKnife), and proton beam therapy. However, it is not
possible to exclude all normal tissues from the radiation field;
and normal tissue damage remains a dose-limiting factor in the
treatment of some tumor types (e.g., locally advanced cancers
of the cervix, lung, head and neck, and brain). Thus, normal

tissue radioprotection is a promising strategy to prevent damage
to radiosensitive tissues and organs.

Initial studies of radioprotectors and mitigators typically
involve investigation of the acute effects of total-body irradia-
tion (TBI) in rodents, using survival as the end-point. While TBI
affects multiple organ systems, death in humans and rodents in the
first 30 days is mainly due to two mechanisms: (1) gastrointestinal
(GI) syndrome, which often leads to death within 10–12 days after
exposure to 8–20 Gy of γ-rays, due to fluid and electrolyte imbal-
ance and bacterial translocation (sepsis); and (2) hematopoietic
syndrome, which leads to death within 30 days after exposure to 3–
8 Gy, due to neutropenia and thrombocytopenia (1–6). The effects
of radiation within the first 30 days are called “acute radiation
syndrome (ARS)” or “radiation sickness.” ARS follows a similar
pattern in humans and rodents, except that the LD50/30 values
(dose of whole body exposure required to reduce survival to 50%
by day 30, without medical support) are lower in humans (ca.
3.5–4 Gy) than in rodents (ca. 7–9 Gy) (7).

An effective radioprotector/mitigator should improve a 30-day
survival in rodents by protecting against GI syndrome, hematopoi-
etic syndrome, or both. It should also have a convenient mode of
delivery (e.g., by oral, subcutaneous, or intramuscular routes).
For hematopoietic syndrome, it is thought that death within
the first 30 days is due to depletion of hematopoietic progeni-
tor cells (HPCs) for white blood cell and megakaryocyte lineages,
leading to neutropenia and thrombocytopenia (1, 2). HPCs are
more radiosensitive than pluripotent stem cells (HSCs) (8–10).
However, irradiated HSCs take a long time (30 days or so) to
be recruited into the cell cycle and reconstitute neutrophils and
platelets. Thus, if an individual survives for 30 days, HSCs will have
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sufficient time to reconstitute the various bone marrow lineages,
and further hematological support is not required.

Gastrointestinal syndrome is due to depletion of intestinal stem
cells (ISCs) located at or near the base of the intestinal crypts
(11, 12). These cells die rapidly after exposure to a high dose of
radiation by apoptosis. PUMA (p53 up-regulated modulator of
apoptosis) appears to be a crucial mediator of apoptosis in ISCs.
Crypts become progressively denuded as apical cells are shed and
ISCs die or enter cell cycle arrest due to DNA damage. The vil-
lus length, number of villi per circumference, and mitotic index
decrease starting about four days after irradiation (13). Death
due to GI syndrome in mice usually occurs within 10-15 days,
depending upon the mouse strain and radiation dose. However, in
surviving animals (e.g., due to treatment with a radioprotector),
crypts begin to regenerate (as indicated by an increase in DNA
synthesis) by day 15 or so.

Although the GI system and bone marrow are rapidly reacting
systems that contribute to ARS following TBI, high dose partial
body radiation that includes the lungs can result in delayed tox-
icity that occurs 3-10 months after exposure. This syndrome is
related to repeated cycles of inflammation, eventually resulting in
pulmonary fibrosis and death, depending on the dose and vol-
ume of lung irradiated (14–17). The skin and kidneys are also
“radiosensitive” tissues in which severe effects can be observed
in individuals who receive high dose partial body irradiation.
ARS is the best understood consequence of TBI. Less is known
about the later effects of high dose partial body irradiation and
the late consequences of ARS. Much of what we know about the
sensitivity of specific tissues and organs to radiation comes from
early experience with radiation therapy, before the radiation toler-
ances of these tissues and organs were established and before the
introduction of skin sparing megavoltage radiation.

Radiation therapy is usually delivered as fractionated treat-
ments using small dose increments (1.8-3 Gy) delivered five days
per week to the tumor site(s). Total doses may vary from 30 to
80 Gy, depending upon the intent of treatment (i.e., curative vs.
palliative) and the type and location of the tumor. Side effects
from radiation have been well-studied and are classified as acute,
intermediate, or late effects (18–26). Acute effects occur during a
course of radiotherapy and are resolved within 4 weeks after the
last treatment. Examples include epidermitis and mucositis due to
injury to the skin and mucosal membranes, respectively. Interme-
diate effects are less common and occur within 8-12 weeks after
the end of radiation. An example is radiation pneumonitis, which
reflects inflammation of the lung and is typically confined to the
radiation portals. Late effects occur at least 9 months after the
end of radiation and are usually the dose-limiting factor in clini-
cal radiotherapy. Late effects include injury to specific tissues and
organs within the radiation field or in the entrance or exit paths
of the radiation beam. Other types of late effects due to irradia-
tion include carcinogenesis (second tumors caused by radiation),
teratogenesis (malformation of fetus, which is very rare because
pregnant women are rarely treated with radiation), and effects on
growth and development due to irradiation in childhood.

The likelihood of a late effect depends on the total dose of radi-
ation, the fraction size, the volume of tissue being treated, and
other treatments (e.g., chemotherapy). Late effects also depend

upon prior or subsequent surgery, genetic factors unique to the
individual patient, pre-existing vascular damage (e.g., diabetes),
hypertension, age, and other pre-existing conditions (e.g., inflam-
matory bowel disease in patients who receive abdominal irradi-
ation). The dose of radiation and/or volume of irradiated tissue
is limited due to late effects: e.g., tumors of the brain and spinal
cord and locally advanced cancers of the lung, cervix, breast, and
head and neck. Here, a selective normal tissue protector could
allow a higher dose, a larger treatment volume, and/or reduced
late normal tissue injury, thus increasing the therapeutic ratio.

A reduction in early effects (e.g., epidermitis, mucositis, cysti-
tis, and proctitis) due to a radioprotector could increase patient
comfort. Although these effects usually resolve by themselves, they
sometimes require a treatment break that delays the completion of
radiation. Concurrent chemotherapy and radiotherapy can cause
severe acute effects (e.g., debilitating mucositis and weight loss);
and here a normal tissue protector could be beneficial (27–32).
Normal tissue protection could be particularly useful in young
children undergoing cranial irradiation by protecting a central
nervous system that is not fully developed (33, 34). Effects on the
growth of bones (before epiphyseal closure) and the possibility of
a second tumor due to radiation must be considered whenever
children are treated with radiation alone or in combination which
chemotherapy.

A relatively recently recognized late consequence of thoracic
and chest wall irradiation (e.g., treatment of Hodgkin’s disease
or post-operative radiotherapy for breast cancer) is radiation-
induced heart disease (RIHD), which is usually observed at least
several years after treatment and is characterized by accelerated
atherosclerosis, cardiac fibrosis, valvular damage, and an increased
risk of cardiac-related mortality (35, 36). RIHD can occur when
part or all of the heart is included in the radiation field. This con-
dition is usually progressive; and its incidence increases with time
after treatment. A significantly increased risk of neurovascular
events (e.g., stroke or transient ischemic attack) has been observed
after cranial irradiation for brain tumors in children (37). Neu-
rocognitive decline after whole brain irradiation in adults (“radio-
therapy brain”) is common, particularly in individuals who have
also received chemotherapy. Since there is no specific treatment
for these complications, a prevention strategy is required.

MECHANISMS OF RADIATION INJURY AND REPAIR
Although IR can directly target critical cellular macromolecules
such as DNA, water (H2O) is by far the most abundant mole-
cule within cells and is thus the most likely target for radiolysis
by high energy photons (38–41). As shown in Figure 1, molecular
oxygen (O2) is a central component involved in the formation of
highly reactive free radicals; and so it is not surprising that high
concentrations of O2 potentiate the effects of IR, while low con-
centrations of O2 (hypoxia) protect cells and tissues from IR, the
so-called “oxygen effect” (42–44). The most damaging species of
free radical is the hydroxyl radical (OH) (45, 46). DNA is the most
critical target for cell survival, but significant damage to other cel-
lular molecules such as proteins and lipids is also produced (47,
48). These oxidative radicals produce two major forms of DNA
damage, double-strand breaks (DSBs) (the most lethal form of
damage) and base lesions (which are repaired by the base excision
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FIGURE 1 | DNA damage response (DDR) to double-strand DNA breaks
(DSBs) in relation to acute radiation syndrome and late effects. DSBs
caused by oxidative radicals are sensed by the MRN complex
(MRE11–RAD50–NBS1), resulting in an ATM (ataxia-telangiectasia,
mutated)-driven DDR. Gamma-H2AX (phosphorylated histone H2AX
protein) is both a participant in the DDR and a marker of DSBs. Depending
upon the dose of radiation, the type of radiation, the volume of tissue
irradiated, and other factors, the DDR may lead to some combination of
DNA repair, permanent cell cycle arrest (senescence), cell death, or survival
with DNA damage. As a result of these processes, acute and late radiation
effects may ensue, resulting in survival, death, or survival with late tissue
damage. Note that “acute radiation syndrome” refers to the consequences
of whole body radiation exposure. Acute effects of radiation may be limited
to specific tissues or organs in the case of partial body radiation exposures
or radiotherapy treatment to tumor-bearing tissue.

repair pathway) (49–52). During the processing of base lesions,
single-strand DNA breaks (SSBs) are generated, which are then
repaired by one of several mechanisms that involves a scaffolding
protein, DNA polymerase, and a DNA ligase. If two base lesions
on opposite strands are close enough, the result can be a DSB.

In DSB repair,a DNA-damaging signaling/repair complex accu-
mulates at and around the DSB site. The “MRN” complex of three
proteins (MRE11–RAD50–NBS1) senses the damage and binds to
the broken DNA ends (53). Following MRN, ataxia telangiecta-
sia mutated (ATM), a nuclear serine/threonine protein kinase, is
recruited to the MRN complex and activated through autophos-
phorylation, after which it phosphorylates a number of substrate
proteins on SQ/TQ motifs. The eventual result is the coating of
DNA surrounding the break with a set of proteins that orches-
trates the DNA repair process. These events are reviewed elsewhere
(54). DSB repair can proceed by two pathways: (1) homology-
directed repair (HDR) (orchestrated by ATM/BRCA1/BRCA2 sig-
naling), which is an error-free process; and (2) non-homologous
end joining (NHEJ), which can be accurate or can lead to sig-
nificant sequence deletions and translocations [orchestrated by
DNA-dependent protein kinase (DNA-PK)] (55, 56). HDR occurs
only in S-phase and G2, since it requires a sister chromatid as a

template for DNA repair synthesis, while NHEJ can occur in any
phase of the cell cycle, but preferably occurs during G1.

In addition to mediating DNA repair,ATM signaling also results
in activation of DNA damage-dependent cell cycle checkpoints
(e.g., S and G2/M), which allows time for damaged cells to repair
their damage, so that it is not passed on to daughter cells (Figure 1).
ATM also orchestrates the “cell fate” decision (57). Cells that have
too much damage to repair are pushed into rapid death by apop-
tosis or, alternatively, permanent cell cycle arrest (“senescence”) or
delayed death through mitotic catastrophe. ATM can also stimu-
late cell survival pathways (e.g., the anti-apoptotic transcription
factor NF-κB) (58, 59). If cells protected by NF-κB signaling
have not fully repaired their DNA damage, this can result in cells
with genomic instability, which can result in the accumulation of
mutations and, eventually, carcinogenesis, a late effect that usually
occurs at a minimum of 3–5 years after radiation exposure (60, 61).

Depending on the dose and proportion of the body exposed to
radiation, the relative apoptotic vs. surviving GI and hematopoi-
etic stem/progenitor cell populations may result in ARS (described
above), which can lead to death or survival and recovery. In the case
of partial body radiation exposure, high dose clinical radiotherapy,
or even in survivors of ARS, late complications of radiation may
ensue, the seriousness of which depends upon the specific tissue,
the radiation dose, and the volume of tissue irradiated. The mech-
anism(s) of late tissue damage is not fully understood, but may
result from damage to parenchymal stem/progenitor cells, blood
vessels, inflammation, and/or ongoing oxidative stress due to gen-
eration of reactive oxygen species (ROS) (62). Repeated cycles of
inflammation may lead to fibrosis [e.g., in lung (62–65)]; and ROS
can cause additional DNA damage by causing oxidation of DNA
bases, creating a vicious cycle. Possible outcomes include death,
survival with permanent late tissue damage of different degrees of
severity, or tissue recovery with little or no functional deficit.

RADIOPROTECTORS, MITIGATORS, AND CANDIDATE
AGENTS
AMIFOSTINE AS A RADIOPROTECTOR
No radioprotectors or mitigators are currently approved by the
Food and Drug Administration (FDA) for general use in humans
for the prevention or treatment of ARS. Although amifostine
(EthyolR) is not a new agent, to date, it is the only drug that
has been approved by the FDA to reduce the toxicity of radia-
tion therapy in the setting of cancer treatment (66). This agent
is also used to protect against renal toxicity due to cis-platinum,
a DNA cross-linking agent that is also known to cause oxida-
tive stress (67–69). Amifostine (formerly known as “WR-2721”)
was originally developed by the U.S. Army Anti-Radiation Drug
Development Program as an MCM. It is a thiol compound that
acts as a free radical scavenger to reduce the levels of oxidative rad-
icals that would otherwise attack important cellular targets, such
as DNA and other cellular macromolecules (70). Amifostine has
been used successfully to prevent xerostomia (dry mouth) due to
head and neck irradiation, which can otherwise cause permanent
dry mouth due to inclusion of the salivary glands (particularly
the parotid glands) within the radiation field (71, 72). Initially,
there were some concerns that the widespread usage of amifostine
would also protect the tumor against radiation or chemotherapy
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drugs, but accumulated experience has shown that this is not
the case (73).

In a recent report that examined 30 studies utilizing amifostine,
no conclusion could be made regarding the efficacy of amifostine
in preventing or reducing oral mucositis, because of conflicting
and confusing data (74). In a recent meta-analysis that included
multiple clinical trials in which amifostine was used to prevent
cis-platinum toxicity, there was a trend toward a reduction in the
incidence of platinum-induced ototoxicity (hearing loss due to
cochlear damage), but the trend did not reach statistical signif-
icance (75). In a study of locally advanced non-small cell lung
cancers treated with chemoradiotherapy plus or minus amifostine,
amifostine conferred a significant reduction in pain and dyspha-
gia (difficulty swallowing). And in a study of patients who received
postmastectomy radiation without or with amifostine (at different
dose levels), patients who received amifostine had a lower inci-
dence of skin toxicity, and pulmonary and soft tissue fibrosis (76).
In a recent meta-analysis of cancer treatment trials that tested
amifostine to reduce acute side effects, it was concluded that ami-
fostine did not reduce overall survival or progression-free survival
in patients who received radiotherapy plus or chemoradiotherapy
plus amifostine (73).

The most commonly accepted explanation for the lack of radio-
protection of tumors is that amifostine itself (WR-2721) is an
inactive pro-drug, which must be converted to an active drug
(WR-1065) by dephosphorylation. The conversion is usually due
to alkaline phosphatase in the cell membrane of normal endothe-
lium. Tumors, which have abnormal vasculature which is sparser
than in normal tissues and contains lower levels of alkaline phos-
phatase, are much less efficient at activating amifostine than nor-
mal tissue [reviewed in Ref. (66)]. Several other mechanisms were
proposed to explain the selective radioprotection by amifostine,
including protection of DNA by metabolites of amifostine, caus-
ing hypoxia in normal tissues by increasing oxygen consumption,
and accelerated recovery of normal endothelial cells [reviewed in
Ref. (66)].

Amifostine has several clinically relevant limitations includ-
ing: (1) the need to administer it within a narrow time window
(15–30 min) before each radiation dose; (2) its approval only for
intravenous use, although other routes of administration (e.g.,
subcutaneous) are under investigation (76, 77); and (3) toxic-
ity, including nausea, vomiting, somnolence, and hypotension.
Recently, it has been demonstrated that radioprotective doses for
amifostine appear to lie between 25 and 50 mg/kg in mice. Mature,
lineage-restricted progenitors appear to be more responsive to
the protective effects of low doses of amifostine than the more
primitive, multipotential progenitors (78).

PALIFERMIN
Palifermin is a recombinant N-terminal truncated form of ker-
atinocyte growth factor [KGF, also known as fibroblast growth
factor 7 (FGF7)], a growth factor that is produced by mesenchymal
cells and acts in a paracrine manner to stimulate the proliferation
of epithelial cells. KGF generally functions in the protection and
repair of epithelial tissues through its cognate receptor FGFR2B. Its
protective action appears to be due to a combination of stimulation
of cell proliferation and protection against apoptosis (79). Oral

mucositis is a significant toxicity in patients undergoing radio-
therapy and particularly chemoradiotherapy for head and neck
cancers. This complication frequently requires a treatment break
and reduces the quality of life in patients receiving such treat-
ment. Here, severe oral mucositis can result in weight loss due
to reduced oral intake, requirement for pain medicines, increased
risk of infections, and, in some cases, the need for hospitaliza-
tion. Mucositis is due, in part, to an imbalance between death and
shedding of oral mucosal lining cells and the ability of cells newly
recruited into the cell cycle to replace the lost cells. The result is
a partial denudation of the mucosal surface. Oral mucositis has
been traditionally managed by supportive care, including basic
oral care hygiene, appropriate pain management, and the use of
mouthwashes and oral rinses.

A variety of preclinical studies suggested that palifermin could
ameliorate the mucosal toxicity due to chemotherapy and/or radi-
ation therapy (79). Palifermin was first approved by the FDA
in 2004 for the indication of preventing severe oral mucosi-
tis in patients undergoing hematopoietic stem cell transplanta-
tion for the treatment of hematological cancers (80, 81). These
patients receive high dose chemotherapy without or with total-
body radiotherapy prior to transplantation and are at-risk for
severe (grades 3–4) mucositis. Beneficial effects of palifermin
were documented in patients receiving palifermin for 3 days prior
to the preparative regimen and for 3–5 days after transplanta-
tion. The use of palifermin has also been shown to reduce the
incidence, duration, and severity of oral mucositis in patients
treated with chemoradiotherapy for head and neck cancers and
in patients receiving chemotherapy using agents that can cause
mucositis, including adriamycin and 5-fluorouracil. Palifermin
has also been utilized to mitigate dysphagia due to esophagitis
in patients treated with chemoradiotherapy for lung carcinoma.
Interestingly, in addition to mucositis, palifermin also appears to
stimulate immune reconstitution following hematopoietic stem
cell transplantation and to reduce graft-vs.-host disease following
allogeneic bone marrow transplantation (80). Palifermin is gener-
ally well-tolerated but its usage has been associated with skin rash
and taste disturbance.

SUPEROXIDE DISMUTASE
Greenberger and colleagues have been studying the use of a super-
oxide dismutase (SOD) transgene to protect normal tissues against
injury due to IR. Here, over-expression of manganese superoxide
dismutase (MnSOD, also called SOD2) by intra-tracheal injection
of a replication deficient adenovirus containing the MnSOD trans-
gene conferred protection against lung irradiation and cytokine
production (IL-1, TNF-alpha, and TGF-beta) when administered
prior to irradiation (82). Interestingly, intra-tracheal administra-
tion of the MnSOD transgene protected normal lung but not
orthotopic Lewis lung carcinoma against pulmonary irradiation
(83). Similarly intraesophageal administration of MnSOD pre-
vented the development of radiation-induced esophagitis and
modulated cytokine expression (84, 85). In both the lung and
esophageal models, the MnSOD transgene was well-expressed in
the respective normal tissues. Incultured cell lines, the MnSOD
appeared to work, in part, by protection against radiation-induced
apoptosis via stabilization of the mitochondrial membrane (86). In
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a mouse model of radiation-induced oral mucositis, a significant
form of radiation-induced injury in patients receiving head and
neck irradiation, intraoral administration of MnSOD caused a
decrease in the extent of radiation-induced ulceration (87). As in
the case of lung and esophageal irradiation, MnSOD did not con-
fer protection of head and neck carcinoma (87). Here, addition
of amifostine to the MDSOD did not confer additional protection
beyond that due to MnSOD alone. As Cu/ZnSOD (SOD1) did
not protect mice against thoracic irradiation, it appears that mito-
chondrial localization and prevention of mitochondria-induced
apoptosis figure into the mechanism of radiation protection by
MnSOD (88).

Together, these findings suggest the possibility of utilizing
radioprotective antioxidant gene therapy to prevent or reduce the
extent of some forms of radiation injury. Here, it also appears
that transgene expression in cells within the microenvironments
of protected organs contribute significantly to the protection (89).
In this regard, a phase I study of MnSOD administered orally
was carried out in patients who received a standard chemoradi-
ation regimen for for stage III unresectable lung carcinoma. In
this study, there did not appear to be any dose-limiting additional
toxicity due to administration of the MnSOD transgene at any of
three doses (up to 30 mg per patient). Interestingly, Greenberger
and colleagues also showed that in bone marrow stromal stem
cells, doxycycline induced expression of a tetracycline regulated
MnSOD conferred radiation resistance, whereas in the absence of
doxycycline, the cells showed normal radiation sensitivity (90).
Mice fed a diet rich in antioxidants and given MnSOD showed
an increased lifespan as compared with MnSOD plus house diet,
following TBI to 9.5 Gy (91). These findings suggest that when
combined with MnSOD, the antioxidant/chemopreventive diet
reduces the extent of radiation-induced life-shortening due to
TBI in survivors of the ARS. There was no increase in detectable
tumors, or histopathologic evidence of neurodegenerative disease
in the increased number of survivors following MnSOD plus irra-
diation. Intravenous administration of MnSOD also ameliorated
the growth retardation in the newborn mice from irradiated moth-
ers (92). And MnSOD when given 24 h prior to irradiation of
pregnant mice conferred a significantly increased number of live
births. The protection appeared to be due to a remote (bystander)
effect, since increased expression of MnSOD in fetal tissues could
not be demonstrated by RT-PCR in this study.

OTHER RADIOPROTECTIVE AGENTS
Interestingly, in a screen of 13 drugs utilized during bone marrow
transplantation, tetracycline, but not other antibiotics and anti-
fungal agents appeared to protect cultured HPCs against IR (93).
As protection was observed in radiation dose–response assays,
these findings suggest that the observed radioprotection of tetra-
cycline is not due directly to its properties as an anti-microbial
agent. p53 Up-regulated modulator of apoptosis (PUMA) is a Bcl-
2 homology 3 (BH3)-only Bcl-2 family member that has been
implicated in radiation-induced apoptosis. Recently, a group of
pharmacophiles that inhibit PUMA and radiation-induced apop-
tosis have been identified (94, 95). These agents appear to work,
in part, by disrupting the interaction between PUMA and Bcl-XL.
In other studies, a p53/Mdm2/Mdm4 inhibitor, BEB55, protected

mice against radiation-induced esophagitis when administered
orally (96).

GENISTEIN
Genistein (4′,5,7-trihydroxyisoflavone) is a soy isoflavone with a
variety of cellular activities, including selective estrogen receptor
activation, protein tyrosine kinase inhibition, antioxidant activ-
ity, and free radical scavenging activity (97–100). Genistein has
been established as an anti-cancer agent, and has additionally been
demonstrated to have anti-microbial and anti-inflammatory activ-
ity in vivo (101–105). Genistein was reported in clinical trials to
reduce the adverse effects of chemotherapy and radiotherapy (106,
107). The protective effects of genistein for radiation-induced
injury to the bone marrow were observed in a murine model of
ARS, where neutrophils and platelets were protected (108, 109).
Genistein also protected bone marrow progenitor cell popula-
tions, thus preventing hematopoietic stem cell pool exhaustion
(109, 110). Genistein administration reduced radiation-induced
injury in the lung and increase survival from thoracic irradiation
in mice (111). Genistein reduced micronuclei in Lin− bone mar-
row cells and primary lung fibroblasts suggesting a direct reduction
of radiation-induced DNA damage (17, 111–113). Several mecha-
nisms have been proposed for radioprotective effects by genistein,
including activation of the DNA repair enzyme Gadd45 (114–
116), the quiescence of the cell cycle of Lin− cells in the G0/G1

phase in vivo (110, 117), and the suppression of inflammation
(14, 105, 118, 119).

CAPTOPRIL AND ACE INHIBITORS
Captopril, a sulfhydryl-containing analog of proline, is a com-
petitive inhibitor of the angiotensin converting enzyme (ACE)
protease, and reduces systemic blood pressure by blocking both
the activation of the vasoconstrictor angiotensin II (Ang II) and
the inactivation of the vasodilator bradykinin. Although capto-
pril was initially developed for the treatment of hypertension
and heart failure, it was found that captopril was also useful
in animal models of radiation-induced renal dysfunction for
increasing renal plasma flow and improving glomerular filtra-
tion (120, 121). Captopril has been investigated as a radiation
countermeasure for the pulmonary, renal, and hematopoietic sys-
tems as well as for the brain and skin (122–127). ACE inhibitors
and captopril mitigated radiation-induced pulmonary endothelial
dysfunction, radiation pneumonitis, and fibrosis in animal mod-
els (128, 129). Prophylactic administration of captopril resulted
in lower systemic blood pressure and improved renal function
following TBI in animal models (121, 130, 131) and reduced
chronic renal failure in human patients undergoing clinical radi-
ation (132). Captopril and another ACE inhibitor, perindopril,
were demonstrated to block radiation-induced hematopoietic
syndrome through accelerated recovery of erythrocytes, reticu-
locytes, leukocytes, and platelets (122, 133). The improved blood
cell recovery was associated with improved survival of specific
hematopoietic progenitor populations CFU-GM, CFU-M, and
total CFC (122). The mechanism of captopril-induced reduction
of radiation injury has not been established. Captopril mitigation
of radiation injuries may involve reduced inflammation (134) or
the transient quiescence of some cells in vivo (122, 135). However,
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in vivo effects on radiation-induced DNA damage have not been
shown (112).

3,3′-DIINDOLYLMETHANE
3,3′-Diindolylmethane is a small-molecule compound formed by
acid hydrolysis in the stomach of indole-3-carbinol (I3C), a com-
ponent of cruciferous vegetables (e.g., cabbage, cauliflower, and
broccoli) (136). 3,3′-Diindolylmethane (DIM) is a proposed can-
cer prevention agent that is available as a nutritional supplement
and has been administered safely by the oral route to humans in
repeated doses in phase I/II clinical trials (137–140). Recently, it
was found that administration of DIM in a multidose schedule
protected rodents against lethal doses of TBI up to 13 Gy, whether
DIM dosing was initiated 24 h before or up to 24 h after irradiation
(141). The dose reduction factor (DRF) (i.e., ratio of LD50/30 values
in the presence/absence of DIM) was 1.6 when DIM treatment was
begun 24 h after irradiation. Low physiologically relevant (submi-
cromolar) concentrations of DIM protected cultured cells against
radiation by a novel mechanism. DIM caused rapid activation of
ATM and phosphorylation of various ATM substrates, suggest-
ing that DIM induces an ATM-dependent DNA damage response
(DDR)-like response, and DIM enhanced radiation-induced ATM
signaling and NF-κB activation. Similarly, DIM caused ATM acti-
vation and signaling in normal tissues in rodents. However, DIM
did not protect human breast cancer xenografts (MDA-MB-231)
against radiation. In the tumors, ATM signaling appeared to
be defective. The results appear promising, but further work is
required to determine if DIM will be a useful radioprotector
and/or mitigator.

3,3′-Diindolylmethane was also shown to have cardioprotective
properties. Here, subcutaneous administration of DIM decreased
the extent of fibrosis due to adriamycin, a DNA-damaging
chemotherapy agent by a mechanisms that involves up-regulation
of BRCA1 and activation of the antioxidant transcription factor
nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) (142). DIM
mediated cardioprotection against other stressors including aortic
banding, which causes cardiac hypertrophy, due to a mechanism
involving 5′-adenosine monophosphate-activated protein kinase-
alpha2 (AMPK-α2) and mammalian target of rapamycin (mTOR)
(143). Whether DIM will protect the heart against IR has not been
described.

INHIBITORS OF RADIATION-INDUCED ACCELERATED SENESCENCE
Loss of cellular clonogenic potential following exposure to radia-
tion can be caused by apoptosis, necrosis, autophagy, and acceler-
ated cellular senescence. Recent findings suggest that accelerated
cellular senescence may be a primary effect of radiation on normal
(non-transformed, non-immortalized) epithelial and endothelial
cells and fibroblasts. Cellular senescence results in a range of
aberrant biological activities and can influence overall tissue dys-
function (144–150). The blockade of radiation-induced cellular
senescence by the pharmacological inhibitors of mTOR was suf-
ficient to prevent mucositis in mice following irradiation of the
head and neck area (145). In this study, it was demonstrated that
rapamycin blocked radiation-induced senescence, but not apopto-
sis, in primary keratinocyte in cell cultures and in vivo in a murine
model of head/neck irradiation injury.

Investigation into receptor signaling pathways that contribute
to aging-associated cellular senescence revealed the involvement
of the insulin-like growth factor-1 receptor (IGF-1R) (151, 152).
IGF-1 enhances senescence in primary cell cultures via a mech-
anism that involves increase in ROS leading to induction of the
p53/p21 pathway (153). In mouse embryonic fibroblasts, treat-
ment with IGF-1 inhibits the deacetylase activity of Sirtuin 1
(SIRT1) and promotes stability of p53, ultimately leading to induc-
tion of senescence (154). IGF-1R expression levels increase during
the development of replicative in vitro senescence in primary cor-
tical neurons (155). In agreement with these findings, a recent
study demonstrated that inhibition of IGF-1R, PI3K, and mTor
blocked radiation-induced accelerated senescence in primary lung
endothelial cells in cell culture (156).

CBLB502/ENTOLIMOD™
CBLB502 is a potent and stable agent derived from the fla-
gellin protein of Salmonella bacteria (Salmonella enterica serovar
Dublin). Its pharmacologic action is based on binding to toll-like
receptor 5 (TLR5) of targeted cells and activating NF-κB sig-
naling. Biologically, purified flagellin protects mice from lethal
doses of total-body gamma-irradiation (157). Cleveland Bio-
Labs, Inc. (Buffalo, NY, USA) identified CBLB502 (now known
as Entolimod) as a TLR5 ligand that significantly improved the
radioprotective efficacy of flagellin while having reduced toxicity
and immunogenicity (158).

A single injection of CBLB502 either before lethal TBI
(24 h prior) or up to 48 h following irradiation protected mice
from both GI and hematopoietic syndromes, with significantly
improved survival. CBLB502 also demonstrated radioprotective
and radiomitigative potential in lethally irradiated non-human
primates (158). A single intramuscular injection of CBLB502 sig-
nificantly increased the survival of rhesus non-human primates
exposed to 6.5 Gy TBI and promoted the regeneration of their
small intestine, spleen, thymus, and bone marrow when admin-
istered from 1 to 48 h after irradiation. The severity and dura-
tion of irradiation-induced thrombocytopenia and neutropenia
decreased significantly with CBLB502 treatment. Two cytokines,
granulocyte colony-stimulating factor (G-CSF) and interleukin-6
(IL-6) were identified as candidate biomarkers for the radiopro-
tective and radiomitigative efficacy of CBLB502. Induction of both
G-CSF and IL-6 by CBLB502 is TLR5-dependent, dose-dependent
within its efficacious dose range in both unirradiated and irra-
diated mammals (including rodents and non-human primates),
and critically important for the CBLB502-mediated increased sur-
vival of irradiated animals (159). Administration of either G-CSF
or IL-6 neutralizing antibody abrogated the radiomitigation by
CBLB502. These biomarkers are likely to be useful for the accu-
rate prediction of CBLB502 dose providing radioprotection or
radiomitigation in humans. Furthermore, CBLB502 was shown to
significantly reduce the severity of dermatitis and oral mucositis
caused by local radiation exposure (160). The FDA has granted
IND status to CBLB502 as a radiation countermeasure for ARS
and it is currently in clinical development.

ON01210/Ex-RAD®
ON01210 (a chlorobenzylsulfone derivative known as Ex-RAD) is
a novel, small-molecule kinase inhibitor under development as a
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radiation countermeasure. Ex-RAD provided significant protec-
tion against cobalt-60 gamma-irradiation when administered sc
(500 mg/kg) to C3H/HeN mice 24 h and 15 min before irradia-
tion. Ex-RAD’s estimated DRF is 1.16 (161). In another study,
Ex-RAD showed a significant survival benefit after prophylactic
oral administration of the drug (162).

This drug accelerated the recovery of peripheral blood elements
in irradiated mice when administered either subcutaneously (sc)
or orally (162, 163). In addition, Ex-RAD-treated mice (either
through the oral or sc route) contained higher numbers of gran-
ulocyte macrophage-colony forming units (GM-CFUs) than in
vehicle-treated mice. Bone marrow obtained from irradiated mice
indicated that Ex-RAD protected cells from radiation-induced
apoptosis after exposure to cobalt-60 gamma-irradiation (163).
Ex-RAD also assists in the recovery of the GI system, with a higher
number of surviving intestinal crypts after acute radiation expo-
sure in Ex-RAD-treated mice than untreated irradiated controls
(163). These effects may be due in part to signaling pathways that
are affected by Ex-RAD. Attenuation of ATM-p53 mediated DDR
by Ex-RAD contributes to the mitigation of radiation-induced
hematopoietic toxicity (164). Recently, Kang et al. demonstrated
that Ex-RAD manifests its protective effects through the up-
regulation of phosphatidylinositol-3-kinase/AKT pathways in cells
exposed to radiation (165). Ex-RAD has been granted FDA IND
status and has demonstrated oral efficacy (162). Oral administra-
tion holds better clinical promise as an effective countermeasure
for first responder use as well as for at-risk civilian populations in
a nuclear accident.

GAMMA-TOCOTRIENOL
Gamma-tocotrienol is one of the eight isomers (tocols) of vit-
amin E. It is a potent inhibitor of HMG-CoA (3-hydroxy-
3-methylglutaryl-coenzyme A) reductase. Gamma-tocotrienol
(GT3) has been shown to increase survival in rodents, through
ameliorating the hematopoietic and GI systems (166). When
administered 24 h before cobalt-60 gamma-irradiation, GT3 sig-
nificantly protected mice against radiation doses as high as
11.5 Gy, and its DRF as a radioprotector (24 h before irradia-
tion, 200 mg/kg dose, sc route) was 1.29 in mice. GT3 treat-
ment accelerated hematopoietic recovery in peripheral blood and
enhanced recovery of hematopoietic progenitors in bone mar-
row of irradiated mice (167, 168). GT3 treatment resulted in
significant induction of G-CSF and IL-6 in mice (170). Mouse
survival studies with GT3 suggested the most efficacious time
for drug administration was 24 h prior to irradiation, possi-
bly due to the induction of key hematopoietic cytokines dur-
ing that time window. Prophylactic GT3 administration caused
up-regulation of anti-apoptotic genes and down regulation of
pro-apoptotic genes (both at the transcriptional and the protein
levels) at 4 and 24 h after irradiation (169). The administra-
tion of G-CSF antibody abrogated the radioprotective efficacy
of GT3 (170).

δ-TOCOTRIENOL
δ-Tocotrienol has demonstrated antioxidant activity greater than
that of γ- and α-tocotrienol in the membrane system while pro-
tecting primary neuronal cells against glutamate toxicity (166).

A single sc injection of δ-tocotrienol before or after cobalt-60
γ-irradiation significantly protected mice in a 30-day survival
experiment. δ-Tocotrienol was effective at a wide dose range
of 19–400 mg/kg (171, 172). The DRF values for radioprotec-
tive treatment (24 h before irradiation) with 150 and 300 mg/kg
were 1.19 and 1.27, respectively. For radiomitigation treatment
with 150 mg/kg of δ-tocotrienol administered 2 h after irradia-
tion, the DRF was 1.1. When δ-tocotrienol was administered at
300 mg/kg dose 24 h before irradiation, it significantly reduced
radiation-induced cytopenia, suggesting its stimulatory effects
on hematopoietic recovery (171). Similar to countermeasures
mentioned above, we have demonstrated that the administra-
tion of G-CSF antibody abrogates the radioprotective efficacy
of δ-tocotrienol (173, 174). Recently, it was demonstrated that
δ-tocotrienol reduces activation of caspases 3, 7, and 8 while
increasing autophagy-related beclin-1 expression in irradiated
bone marrow cells (175). δ-Tocotrienol has been reported to
increase cell survival and regeneration of hematopoietic microfoci
and lineage−/Sca-1+/c-Kit+ stem and progenitor cells in irra-
diated mouse bone marrow cells. δ-Tocotrienol also protected
CD34+ cells from radiation-induced damage (172).

R-SPONDIN1
Human R-spondin1 (Rspo1), a 29 kDa, 263 amino acid pro-
tein acts as a mitogenic factor for ISCs and it was hypothesized
that its systemic administration would amplify intestinal crypt
cells, accelerate regeneration of irradiated intestine and amelio-
rate radiation-induced GI syndrome. Mice receiving recombinant
adenovirus expressing human R-spondin1 (a potent Wnt signal
enhancer and one of the four analogs of R-spondin) before poten-
tially lethal TBI or local abdominal irradiation had higher survival
than the control group (176). Rspo1 promoted radioprotection
against radiation-induced GI syndrome and improved survival of
mice. The mechanism was likely related to induction of the Wnt/β-
catenin pathway and promotion of ISC regeneration. Rspo1 has a
protective effect only on normal intestinal tissue but not in tumors
and thereby may increase the therapeutic ratio of chemoradia-
tion therapy in patients undergoing abdominal irradiation for GI
malignancies.

TRANSFORMING GROWTH FACTOR-β3
Radiation-induced pulmonary fibrosis is a frequently occurring
complication from radiotherapy of thoracic tumors. The trans-
forming growth factor-β superfamily plays a key regulatory role
in pulmonary fibrosis. A single thoracic irradiation of 20 Gy was
applied in mice to establish the model of radiation-induced pul-
monary fibrosis and the mice were treated by intraperitoneal
injections of recombinant transforming growth factor-β3 weekly
after irradiation (177). Transforming growth factor-β3 deceler-
ated the progress of radiation-induced pulmonary fibrosis and
hindered the recruitment of fibrocytes to lung. In addition, Th1
response was suppressed as shown by diminished interferon-γ
in transforming growth factor-β3 after irradiation, and enhance-
ment of Th2 response was marked by increased interleukin in
transforming growth factor-β3. These data suggest that TGF-β3
might be involved in the regulatory mechanism for attenuation of
radiation-induced pulmonary fibrosis.
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INJURY-MITIGATING, THERAPEUTIC CELL TRANSPLANTS:
CELLULAR THERAPY
MESENCHYMAL STEM CELLS
There has been an explosion of interest in adult stem/progenitor
cells that have the potential to repair tissues to treat individuals for
a broad range of clinical indications (178). These cells attracted
attention because of their stem-cell-like properties, but the cells
frequently repair injured tissues without much evidence of either
engraftment or differentiation. These cells have been shown to
secrete a large numbers of cytokines and chemokines (179, 180).
The pattern of secreted cytokines changes after the cell engraft-
ment into new microenvironments suggesting that these cells
could enhance repair by stimulating the regeneration of damaged
cells. These cells also suppressed the mixed-lymphocyte reaction in
culture indicating tissue repair by suppressing immune reaction.

Mesenchymal stem cells have been reported to repair vari-
ous tissues damaged by radiation exposure when injected intra-
venously (180). As stated above, the stemness of these cells was
probably not relevant to their efficacy in such indications, and
it may even be a drawback when possible complications asso-
ciated with the use of such cells are considered (181, 182). In
such cases, cells with low antigenicity and with minimal differen-
tiation potential but with adequate secretion of key modulators
of inflammation and immunity such as prostaglandin E2, tumor
necrosis factor-stimulated gene 6, and stanniocalcin-1 may profile
more optimal candidates. Furthermore, intravenous administra-
tion of mesenchymal stem cells (MSCs) genetically modified with
extracellular superoxide dismutase improved survival in irradiated
mice (183).

BONE MARROW STROMAL CELLS
There is a report suggesting that mitigation of lethal intesti-
nal injury can be achieved by intravenous transplantation of
marrow-derived stromal cells (including mesenchymal, endothe-
lial, and macrophage cell population) (184). Bone marrow-derived
adherent stromal cell transplantation increased blood levels of
intestinal growth factors (R-Spondin1, keratinocyte growth fac-
tor, platelet-derived growth factor, fibroblast growth factor-2, and
anti-inflammatory cytokines) and induced regeneration of the
irradiated host ISCs niche. These findings provided a platform
to discover potential radiation mitigators and protectors for ARS
and chemoradiation therapy of abdominal malignancies.

MYELOID PROGENITOR CELLS
Cellerant Therapeutics (San Carlos, CA, USA) has developed cul-
ture conditions to produce large numbers of mouse myeloid
progenitors from hematopoietic stem cells. Myeloid progenitor
cells (MPCs) can improve survival against high levels of radi-
ation. In collaboration with Cellerant Therapeutics, one of us
(VKS) studied MPCs for use as a bridging therapy for radia-
tion injuries (185). The aim of this study was to elucidate the
potential of mouse myeloid progenitor cells (mMPC) to mitigate
lethal doses of 60Co γ-radiation and X-rays in various strains of
mice. Different cell-doses of pooled allogeneic mMPC generated
ex vivo from AKR, C57Bl/6, and FVB mice were transfused iv
into haplotype-mismatched recipient BALB/c or CD2F1 mice at
various times after irradiation to assess their effect on a 30-day

survival. Our results demonstrated that cryopreserved allogeneic
mMPC significantly improve survival in both strains of mice irra-
diated with lethal doses of 60Co γ-radiation (CD2F1, 9.2 Gy) and
X-ray exposures (BALB/c, 9 Gy) that are known to cause ARS
in hematopoietic tissues (185). The survival benefit was mMPC-
dose-dependent and significant even when mMPC administration
was delayed up to 7 days post-irradiation. It was further shown
that mMPC administration mitigates death from ARS at radia-
tion doses up to 15 Gy (60Co γ-radiation, CD2F1 mice), which are
radiation exposure levels that cause mice to succumb to multi-
organ failure, and determined that the DRF of 5 million mMPC
administered 24 h post-irradiation of CD2F1 mice is 1.73. Even at
high doses of up to 14 Gy cobalt-60 gamma-radiation, mMPC
administration could be delayed up to 5 days in CD2F1 mice
and still provide significant benefit to a 30-day survival. Addi-
tional study is needed to monitor mMPC transplanted mice for
long term to investigate graft vs. host disease, and to evaluate the
histopathology of various organs of transplanted mice. To study
the GI tract structural integrity in mice receiving higher doses
of radiation exposure causing GI injury and mMPC treatment,
intestinal tissues were harvested at different times after irradia-
tion and analyzed for architecture, surviving crypts, villus height,
and number. The effect of infused mMPC on bacterial translo-
cation from gut to heart, spleen, and liver in irradiated mice was
studied by bacterial tissue cultures and estimated endotoxin lev-
els in serum samples. It was observed that the infusion of mMPC
significantly improved survival of mice receiving high doses of
radiation, decreased bacterial infection, and lowered endotoxin
levels in serum. The histopathology of jejunum from irradiated
and mMPC-transfused mice revealed improved gut structural
integrity compared to untreated controls. In brief, the results of
this study further support our contention that the transfusion of
mMPC acts as a bridging therapy, not only for the hematopoietic
system, but also for GI system recovery following acute, potentially
lethal radiation injury by improving intestinal structural integrity
and inhibiting bacterial translocation in the GI tract of lethally
irradiated mice.

MOBILIZED BLOOD HEMATOPOIETIC STEM CELLS AND EARLY
PROGENITORS: TOCOPHEROL SUCCINATE-MOBILIZED PROGENITOR
CELLS
It was hypothesized that tocopherol succinate (TS) would stimu-
late a G-CSF-induced mobilization of bone marrow progenitor
cells into the peripheral circulation. This hypothesis was con-
firmed clearly using several different approaches (186). First, a
direct fluorescence flow cytometric approach was used to identify
and phenotype the putative, mobilized hematopoietic stem cells in
question (186). Second, we evaluated and compared the efficacy of
whole blood infusions obtained from TS-treated mice vs. G-CSF-
treated mice for survival protection against hematopoietic ARS
when transfused into matched groups of acutely irradiated recip-
ient mice. Survival was significantly higher in the group receiving
transfused blood from TS-treated animals (187). Further, our
results demonstrated that infusions of HSC-enriched, peripheral
blood mononuclear cells (PBMC) from TS-injected mice greatly
improved survival of lethally irradiated mice (187). Once trans-
fused, these TS-mobilized progenitors acted as a bridging therapy
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for acutely irradiated, morbidly injured mice and the fostering
of time-critical recovery process(es) that principally involve dam-
aged cell-replacement and tissue renewal that aid-and-abet overall
restoration of vital organ-system function(s).

Recent studies have yielded a remarkable finding; namely,
infusion of whole blood or PBMC from TS- and AMD3100-
injected mice significantly improved survival of mice receiving
still higher, GI-syndrome-eliciting radiation doses. Histopathol-
ogy and immunostaining of jejunum from these irradiated and
TS- and AMD3100-mobilized PBMC-transfused mice revealed

significant protection of GI tissue from radiation injury (188). We
also observed that the infusion of PBMC from TS- and AMD3100-
injected mice significantly inhibited apoptosis, increased cell pro-
liferation in the analyzed tissues of recipient mice, and inhibited
bacterial translocation to various organs compared to mice receiv-
ing cells from vehicle-mobilized cells (189). Most recently, we
have observed that TS-mobilized progenitors mitigate radiation
combined injury (radiation and wound) (190). In aggregate, these
rodent-based studies strongly suggest that TS has the capacity to
mobilize progenitors from marrow into the blood. This subset of

Table 1 | Summary of radioprotector/mitigator agents and their characteristics.

Agent name Agent type Target tissue(s) Mechanism(s) of action

Amifostine Small-molecule (thiol) Salivary glands mucosa Free radical scavenger and other (see text)

Tetracycline Small-molecule (antibiotic) Bone marrow (HPC protector) Unknown mechanism not related to its anti-microbial

properties

Genistein Small-molecule (soy

isoflavone)

Bone marrow (HPC protector) Multiple mechanisms (e.g., anti-inflammatory,

antioxidant, free radical scanger, stimulator of DNA

synthesis)

Captopril (also perindopril) Small-molecule

(anti-hypertensive drug)

Kidney protector, lung, bone

marrow (HPC protector)

Angiotensin onverting enzyme (ACE) inhibitor, reduced

inflammation; mechanism unclear

3,3′-Diindolylmethane (DIM) Small-molecule (indole

derivative)

GI system bone marrow Simulates ATM signaling and DNA damage response

protection against oxidative stress

Rapamycin Small-molecule (MTOR

inhibitor)

Head and neck mucosa MTOR inhibitor; blocks radiation-induced cellular

senescence

ON01210/Ex-Rad Small-molecule (chlorobenzyl

sulfone derivative)

Bone marrow GI system Tyrosine kinase inhibitor; attenuation of ATM/p53

signaling; up-regulation of PI3 kinase signaling

γ-Tocotrienol (GT3) Small-molecule (vitamin E

isomer)

Bone marrow (HPC protector)

GI system

Antioxidant

δ-Tocotrienol Small-molecule (vitamin E

isomer)

Bone marrow Antioxidant

Palliformin Protein (keratinocyte growth

factor)

Oral and esophageal mucosa Stimulates epithelial cell proliferation; inhibits

apoptosis

Superoxide dismutase

(MnSOD)

Protein (enzyme, delivered by

gene therapy approach)

Lung, esophagus, oral

mucosa

Metabolizes ROS

CBLB502 (entolimod) Protein (flagellin derivative) GI system, bone marrow,

skin, oral mucosa

TLR5 agonist; stimulates NF-κB signaling, induction of

protective cytokines

TGF-β3 Protein (transforming growth

factor-β3)

Lung Attenuates radiation-induced pulmonary function

R-spondin1 (Rspo1) Protein (intestinal cell

mitogen)

GI system Accelerates regeneration of irradiated intestine

through the Wnt/β-catenin pathway

Mesenchymal stem cell

(MSC) transplant

Cellular therapy Bone marrow various other

tissues

Engraft and differentiation of MSCs; cytokine

production; suppression of immune response and

inflammation

Myeloid progenitor cells

(MPCs)

Cellular therapy Bone marrow GI system HPC reconstitution; preserves structural integrity of

the gut

Tocopherol succinate

(TS)-mobilized progenitor cells

Cellular therapy Bone marrow GI system HPC reconstitution, bridging therapy; protection of the

GI system

Bone marrow stromal cells Cellular therapy GI system Increases blood levels of intestinal growth factors;

induces regeneration of intestinal stem cells
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unique, tissue-reparative progenitors not only is therapeutic for
a critically injured/failing lymphohematopoietic system but also
for the GI system and perhaps other vital organ systems as well.
Together these characteristics make TS-mobilized progenitors a
suitable candidate as a bridging therapy for acute radiation victims
that can be administered in the field with minimal infrastructure
requirements.

CONCLUSION AND PERSPECTIVES
There are several promising radiation countermeasures under
development such as CBLB613 (191), CBLB612 (192), IL-12
(193), epidermal growth factor (194), fibroblast growth factor-
2 (195), fibroblast growth factor-peptide (196), insulin-like
growth factor-1 (197), tempol (198), TS (13), TPO (thrombopoi-
etin) receptor agonist (ALXN4100TPO) (199), 5-Androstenediol
(5-AED)/Neumune® (200), AEOL-10150 (201), cytokines, and
growth factors (3, 166, 202), etc. Since it was not possible to discuss
all agents under development in this review, we selected some of
those agents, which are at advanced stages of the development or
are otherwise representative of three general categories of agents:
small-molecules, proteins, and cellular therapy. The characteristics
of the agents described herein are summarized in Table 1.

We have reviewed some of the principles of radiation protection
and mitigation and discussed some of the agents under devel-
opment. The agents described represent various molecule types,
including gene therapy, small-molecule drugs, and drug-like com-
pounds (e.g., captopril, Ex-RAD), phytochemicals (plant-derived
agents) (e.g., DIM, genistein), vitamins (e.g., vitamin E derivatives:
gamma and delta tocotrienol), protein (e.g., truncated flagellin,
CBLB502), and cell-based agents. The wide variety of agents that
can function as protectors or mitigators is consistent with the
complexity of the responses of different cell types and tissues to
radiation. Examples of agents that protect normal tissues but not
tumors have been provided. Some such agents may exhibit anti-
tumor activity, particularly at higher concentrations, for example
DIM and genistein, which are proposed cancer prevention agents.
Many questions remain, such as why some compounds are strong
protectants but weak mitigators (e.g., vitamin E derivatives) and
why protectants often selectively target normal tissues and not
tumors.

Compounds being considered as radioprotectors and/or miti-
gators are typically tested in rodents using a 30-day survival as the
major end-point and in non-human primates (monkeys) using
a 60-day survival end-point. These time intervals were chosen to
reflect the ability of the compound to protect against or mitigate
ARS following whole body exposure to nuclear radiation (e.g.,
60Co or 137Cs). Later effects of whole body, near whole body, or
partial body exposures, including survivors of ARS are a relatively
understudied area in the field. These may be important because
there are other radiosensitive tissues than bone marrow and intes-
tine, including skin, esophagus, lung, and kidney. The performance
of radioprotectors/mitigators in the setting of exposure to partic-
ulate radiation – for example – neutrons, protons, and heavier
ions – is another unexplored area, as most studies utilize gamma-
radiation or X-rays. It is also of interest whether a potential
radioprotector/mitigator can block radiation-induced mutagene-
sis and, thus, carcinogenesis, since certain medical procedures (e.g.,

computerized axial tomography) are associated with exposure to
low doses of radiation. The use of combinations of protective
agents has not been extensively tested. Thus, combinations of
agents with differing mechanisms of action and/or different toxici-
ties may be superior to single agents in the same manner as combi-
nation cancer chemotherapy is often superior to individual agents.

Relative to radiation mitigators, it is an open question as to how
long after exposure to radiation the mitigator should still work.
Obviously, an agent that works within the first 24 h or longer would
be more valuable than an agent that only works within a few hours
after exposure, since it may take time to deliver the compound to
the site of a nuclear disaster. This would not be a consideration
for usage of a protector/mitigator in the radiotherapy clinic, since
here the agents can conveniently be given within a few hours of
each radiation treatment. An additional consideration applicable
to use of a mitigator in civilian or military populations exposed
to radiation is that the agent in question should have a convenient
mode of administration, e.g., by oral route or by intramuscular
or subcutaneous injection. Ideally, the compound should be easily
self-administered since access to medical care may be delayed or
limited.

Finally, it would be interesting to know if there are other
FDA-approved drugs (see section on captopril) or food additives
(see sections on DIM and genistein) that exert radioprotective or
mitigative activity and could be“repurposed”for these indications.
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