
International  Journal  of

Environmental Research

and Public Health

Article

Determinants and Prediction of Injury Severities in
Multi-Vehicle-Involved Crashes

Xiuguang Song 1,2, Rendong Pi 1,2, Yu Zhang 3, Jianqing Wu 1,2,* , Yuhuan Dong 4, Han Zhang 5

and Xinyuan Zhu 6

����������
�������

Citation: Song, X.; Pi, R.; Zhang, Y.;

Wu, J.; Dong, Y.; Zhang, H.; Zhu, X.

Determinants and Prediction of Injury

Severities in Multi-Vehicle-Involved

Crashes. Int. J. Environ. Res. Public

Health 2021, 18, 5271. https://

doi.org/10.3390/ijerph18105271

Academic Editors: Adam Glowacz,

Jose A Antonino-Daviu,

Muhammad Irfan,

Thompson Sarkodie-Gyan

and Zhixiong Li

Received: 14 April 2021

Accepted: 13 May 2021

Published: 15 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Qilu Transportation, Shandong University, Jinan 250061, China; songxiuguang@sdu.edu.cn (X.S.);
pirendong@mail.sdu.edu.cn (R.P.)

2 Suzhou Research Institute, Shandong University, Suzhou 215123, China
3 Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University,

Shanghai 201804, China; zhyu@tongji.edu.cn
4 Shandong High-Speed Group Co. Ltd., Jinan 250002, China; 18119447201@163.com
5 Shandong High-Speed Construction Management Group Co. Ltd., Jinan 250002, China; 16zhanghan@163.com
6 Shandong High-Speed Engineering Consulting Group Co. Ltd., Jinan 250061, China; sdgszxy@163.com
* Correspondence: jianqingwusdu@sdu.edu.cn

Abstract: Multi-vehicle (MV) crashes, which can lead to great damages to society, have always been
a serious issue for traffic safety. A further understanding of crash severity can help transportation
engineers identify the critical reasons and find effective countermeasures to improve transportation
safety. However, studies involving methods of machine learning to predict the possibility of injury-
severity of MV crashes are rarely seen. Besides that, previous studies have rarely taken temporal
stability into consideration in MV crashes. To bridge these knowledge gaps, two kinds of models:
random parameters logit model (RPL), with heterogeneities in the means and variances, and Random
Forest (RF) were employed in this research to identify the critical contributing factors and to predict
the possibility of MV injury-severity. Three-year (2016–2018) MV data from Washington, United
States, extracted from the Highway Safety Information System (HSIS), were applied for crash injury-
severity analysis. In addition, a series of likelihood ratio tests were conducted for temporal stability
between different years. Four indicators were employed to measure the prediction performance of
the selected models, and four categories of crash-related characteristics were specifically investigated
based on the RPL model. The results showed that the machine learning-based models performed
better than the statistical models did when taking the overall accuracy as an evaluation indicator.
However, the statistical models had a better prediction performance than the machine learning
models had considering crash costs. Temporal instabilities were present between 2016 and 2017 MV
data. The effect of significant factors was elaborated based on the RPL model with heterogeneities in
the means and variances.

Keywords: multi-vehicle crash; statistical model; machine learning; unobserved heterogeneity;
crash costs

1. Introduction

Road traffic injuries have become the eighth-leading cause of death for people of all
ages, which remains a serious problem globally. Road traffic injuries are the first cause
of death among people 5–29 years of age [1]. Traffic crashes also severely impact social
and economic loss [2]. According to the National Highway Traffic Safety Administration
(NHTSA), there were 33,654 traffic-related fatalities that involved 51,872 cars in 2018. Single-
vehicle (SV) crashes and multi-vehicle (MV) crashes accounted for 56.80% and 43.20%,
respectively [3]. However, the number of cars involved in MV and SV crashes accounted for
63.15% and 36.85%, respectively, indicating that MV crashes had more causalities compared
to SV crashes. In other words, MV crashes can result in a greater social property loss and
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cause greater damage to roadside structures and vehicles [2]. As stated above, it is vital to
investigate the relationship between crash risk factors and injury-severity in MV crashes. It
should be noted that a crash that involves two or more cars is referred to as MV, whereas a
crash involving one car is regarded as SV in this study.

In general, existing studies on MV crashes have mainly focused on two categories:
critical risk factors analysis and the prediction of injury-severity. As for crash risk factors
analysis, many researchers have investigated the relationship between the crash risk fac-
tors (i.e., alcohol) and crash injury-severity via statistical models. Binary discrete models,
such as the binary logit model or probit model, have widely been used in the studies re-
lated to two crash severity levels. Multiple levels of crash severity can be investigated by
multinomial models. There have also been many studies that aimed to analyze the unob-
served heterogeneity of crash risk factors. Venkataraman et al. [4] employed the random
parameter negative binomial model to investigate the heterogeneity in road segments, and
the number of vehicles involved in the crash was one of ways to aggregate crashes. The
results showed that the heterogeneity could be captured through the random parameters.
Seraneeprakarn et al. [5] studied injury-severity in SV and MV crashes that involved
at least one hybrid vehicle, and they noted that the estimation model that empowered
heterogeneities in the means and variances of random parameters endowed much more
flexibility in analyzing the data with the unobserved heterogeneity. Rahimi et al. [6] con-
ducted comprehensive research on the determinants of the injury-severity of truck drivers
in single-vehicle truck crashes by developing a random threshold random parameters
hierarchical ordered probit model. The increase in probability for fatalities was linked
with a wide range of variables (i.e., driver’s education, presence of curves on roadways,
and high-speed limit). Shao et al. [7] analyzed the influence of variables related to injury
severity in truck-involved rear-end crashes. To analyze data between 2006 and 2015
from the United States for both SV and MV crashes, three random parameters probit
models were developed. Specifically, they identified a significant difference between
car-strike-truck crashes and truck-strike-car crashes. In another study conducted by
Rezapour et al. [8], the differences in SV and MV crashes on downgrades was inves-
tigated via the ordered logit model. They identified that there were four significant
variables: safety equipment use, lighting conditions, posted speed limit, and lane width,
in SV and MV crashes. Hong et al. [2] investigated the impacts of crash risk factors on
MV crashes via a double-hurdle approach. By analyzing the data collected from 2011 to
2017 in South Korea, they found that driver violations (i.e., improper distance between
vehicles, reversing, and passing) significantly increased the likelihood of injury-severity
in MV crashes.

With respect to the prediction of injury-severity, some studies applied machine learn-
ing methods to predict the possibility of the injury severity outcomes in recent years.

Support Vector Machine (SVM) has often been used as a prediction tool in traffic-
related studies. Li et al. [9] investigated the prediction performance of the SVM model for
motor vehicle crashes. It was found that the SVM model was more accurate and effective
than the traditional Negative Binomial (NB) model was. Besides, some studies analyzing
crash risk factors also used SVM models [10,11]. Random Forest (RF) was also used to
predict crash injury-severity. In a study conducted by Harb et al. [12], RF was employed to
reveal the associations between crash avoidance maneuvers and crash characteristics (i.e.,
driver characteristics and vehicle characteristics). It was found that drivers characteristics
were the most important factors in all types of crashes. In addition, to achieve a better
prediction performance, many researchers employed various kinds of measures to predict
crash injury-severity. Sameen and Pradhan [13] used the Recurrent Neural Network
(RNN) to predict the injury severity of 1130 crashes collected from 2009 to 2015. Besides
that, the back-propagation neural network (BPNN), nearest-neighbor classification (NNC),
and K-means clustering were also employed to make predictions about the possibility of
injury-severity outcome [14,15].
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As summarized above, previous studies have mostly focused on the analysis of
the MV crash risk factors. However, limited studies have considered the unobserved
heterogeneity and temporal stability on MV crashes. Besides, few studies have predicted
the possibility of the injury-severity on MV crashes by using machine learning methods.
This was because of the complications that these crashes may have and the potential errors
in the model estimations. In this paper, to bridge these gaps in the previous studies,
a random parameter logit model with heterogeneities in the means and variances was
developed to investigate the crash risk factors in MV crashes. Furthermore, three methods
(traditional statistical methods, advanced statistical methods, and machine learning-based
methods) dominated the analysis of crash data. To further investigate the differences
between advanced statistical models and machine learning-based models, two categories
of models were employed to identify the critical contributing factors and to predict the
possibility of crash injury-severity.

In the remainder of this paper, we begin by elaborating on statistical and machine
learning-based methodologies. A series of likelihood ratio tests on temporal stability are
presented. A detailed model evaluation system including four indicators is introduced.
The model estimation results and conclusions are then presented, which is followed by the
description and processing of data.

2. Methodology

In this paper, two kinds of methods, including statistical methods (RPL) and machine
learning-based methods (RF), were developed to analyze the critical risk factors and
predict the probability of crash injury severities, respectively. This section presents a brief
introduction to the above-mentioned methods and the processing of crash data.

2.1. Data Processing

The data used in this research were MV crashes collected from HSIS, which provides
a large number of major risk factors and outstanding quality of the crash data. The Federal
Highway Administration (FHWA) has established this database, which contains 10-state
highway safety data since 1987. The three-year (2016–2018) crash data in Washington were
utilized in this study. However, as stated in Section 3, only the 2017–2018 crash data were
employed after a series of log-likelihood ratio tests.

The investigation of these crashes was based on the “Guidebook for State Data Files
California.” According to the variables of “numvehs,” which represents the total number of
cars involved in the crash, only crash records involving more than two cars were selected
for this study. There were 26,026 MVs reported by the police between 2017 and 2018.
After removing the insufficient crash information, 13,478 MVs were left within 2 years
(2017–2018). However, each crash record was established on the occupants’ information,
indicating that other detailed crash information (i.e., driver characteristics and road charac-
teristics) were doubled, except for the occupants’ information. This can result in a serious
collinearity of data. To solve this problem, the related information of the first vehicle
involved in MV crashes should be reserved. To be precise, the selection of the first vehicle
was based on the “vehno,” which represents the vehicle number.

The “severity” representing the most severe injury in the crash was employed as the
determinant variable. The explanatory variables shown in Appendix A were classified
into four categories: driver characteristics, road characteristics, crash characteristics, and
occupant characteristics. Factors such as physical condition, helmet, and vehicle violation
were found significant on injury-severity level according to some previous research [4–8].
Due to the high account of missing values, they were not considered in this study. How-
ever, these indicators can also be represented with other indicators, such as road surface
condition, roadway classification, and driver age/gender. More detailed information on
data processing is shown in Figure 1.
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Figure 1. Flowchart of data processing.

2.2. Random Parameters Logit Model (RPL)

The unobserved heterogeneity originating from various explanatory variables (such as
driver characteristics, environmental characteristics, vehicle characteristics, and roadway
characteristics) and the energy dissipation via the vehicle structure were crucial in the
analysis of crash risk factors. In addition, the resulting effect of energy dissipation varied
from occupant physical condition, vehicle safety equipment, and bone mass [5]. Many
previous studies emphasized the importance of taking the unobserved heterogeneity into
consideration while analyzing crash-related factors. Furthermore, random parameters
logit (RPL) models [16–19], random parameters logit models with heterogeneities in the
means [20,21], and random parameters logit models with heterogeneities in the means and
variances [5,22,23] have all been successfully utilized in the investigation of crash injury-
severity. Hence, to account for the unobserved heterogeneity, the random parameters logit
model with heterogeneities in the means and variances was used in this study.

To achieve a random parameter logit model, an injury-severity propensity function
Vki was defined, as shown in Equation (1):

Vki = Xkiβk + εki (1)

where Vki determines the probability of injury-severity category k (property damage only,
possible injury, and fatal) in crashes i, and Xki is a vector of explanatory variables (driver
characteristics, road characteristics, crash characteristics, and occupant characteristics)
and presents a vector of the estimable parameters for injury-severity level k. Given the
crash-specific unobserved heterogeneity, the estimable parameters βk are allowed to vary
from different observations through a density function, where ϕ represents a vector of
parameters of the density function. In addition, εki is a random term that follows a type I
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extreme value (i.e., Gumbel) distribution. Thus, the calculation of the probability for each
crash injury-severity level is shown in Equation (2) [24]:

Pi(k) =
∫ eXki βk

n
∑

i=1
eXki βk

f (β|ϕ )dβ (2)

where Pi(k) represents the possibility of crash i with injury-severity level k. Furthermore,
the random parameters with heterogeneities in the means and variances is defined as
Equation (3) by Seraneeprakarn et al. [5].

βk = β + δkZk + σk exp(ωkWk)υk (3)

where β represents the mean estimated parameters across all crashes, Zk is a vector of
crash-related variables capturing the heterogeneity in the means for all crashes, and δk is
the corresponding vector of estimated parameters. Wk is a vector of crash-specific variables
that explain the heterogeneity in the standard deviation σk with corresponding parameter
vector ωk, and υk is a disturbance term.

2.3. Random Forest

Random Forest (RF), Support Vector Machine (SVM), and Back-Propagation Neural
Network (BPNN) had all been widely and successfully used in predicting the possibility
of injury-severity outcome [25–28]. Choosing a suitable method for the crash prediction
is critical. In addition, the crash datasets are high-dimensional, imbalanced, and have
a large sample size. The determinant variable was divided into three categories. SVM
cannot handle well datasets with a large sample size. A large sample size would take
a long computational time. Besides, SVM is good at binary classification rather than
multi-classification. The Back-Propagation Neural Network (BPNN) would also take a
long training time, and the structure of the neural network is often determined based on
experience. It restricts the generalization of the model. Furthermore, the performance of
BPNN has a strong dependence on the sample. Imbalanced datasets are not conducive
to the prediction of BPNN. However, the RF is good at dealing with high-dimensional
datasets and would take less computational time than others at the same sample size. In
addition, RF considers the interactive influence between each feature during the training.
This makes the prediction results more reliable. Therefore, the RF was utilized in this paper
to further validate and evaluate its ability in the performance of crash prediction.

Random Forest (RF) is an ensemble learning method. RF is based on bagging by
taking decision trees as the base learner, which was proposed by Breiman in 2001 [29].
Given the input dataset represented as (xi,yi), xi represents all the crash-related explanatory
variables, and yi is the injury severity. The construction of the RF model is shown in
Figure 2, which consists of three parts:

(a) The construction of a training set. The training set is extracted from the original
dataset by using bootstrap. Additionally, the bootstrap is a kind of nonparametric Monte
Carlo method, ensuring each sample has the same chance to be selected.

(b) Decision-tree generation. Each decision-tree is generated by part of all features,
which is randomly selected. That is, each decision-tree is a base learner.

(c) Results combination. Each training set will be classified by their own decision-tree.
Then, the final classification result is the mode value in the all-decision-tree prediction
result. In addition, each decision-tree result has the same weight in the final vote.
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2.4. Model Evaluation

According to previous studies [13,30], a test dataset was used to evaluate the prediction
performance of different models, and the prediction results for each model can be described
by a confusion matrix (also called an error matrix) [31], as shown in Table 1. To make full
use of the crash datasets and to perform a robust evaluation, a 10-fold cross-validation was
used in this paper for evaluating the predictive performance of the RF model [32].

Table 1. Confusion matrix (error matrix) of an injury-severity level prediction model.

Actual

Predicted Injury-Severity Level
Actual

Number of
Crashes

Property
Damage Only

(PDO)

Injury
(I)

Fatal
Injury

(FI)

Injury-Severity
Level

Property
Damage Only
(PDO)

P11 P12 P13 N1
R11 R12 R13

Injury (I) P21 P22 P23 N2R21 R22 R23

Fatal Injury (FI) P31 P32 P33 N3R31 R32 R33

Note: P, the prediction result; R, the ration of the prediction result over the number of crashes; N, actual number
of crashes.
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In this error matrix, the column values are the predicted results while the row values
are the actual results. That is, Pij is defined as the number of crashes with injury-severity
level i, but it is predicted as j. Rij is the ratio of the prediction result over the number of
crashes with injury-severity level j. Furthermore, the overall correct prediction ratio is
calculated as Equation (6).

Roverall =

s
∑

i=1
pii

s
∑

i=1
Ni

(4)

Additionally, for each injury-severity level i, the calculated value Rii can indicate the
correct prediction ratio.

However, under particularly crash-related conditions (weather, vehicle type, driver
age, etc.), the indicator Roverall may not provide reliable results. There are two reasons:
(a) A large account of crashes are from one specific severity level, such as Property Damage
Only (PDO), which accounted for a large portion in many crash datasets. An insensitive
prediction model would regard all the crashes as a specific frequent severity level, which
would result in a higher Roverall. However, a sensitive model would regard the specific
frequent severity level as the same as the other severity levels, which may have a lower
Roverall; and (b) Roverall indicated that the value of each injury-severity level was equal.
That is, the social influence and property loss caused by the different injury-severity levels
were equal [14].

Hence, in this study, another three indicators aiming to evaluate the prediction accu-
racy were used. These indicators took crash-related economic costs in the evaluation of
prediction performance, as can be shown in Equation (7).

CCCi = ECCi + QALYCCi (5)

The comprehensive crash cost (CCC) consisted of two parts: economical crash costs
(ECC) and quality-adjusted life years (QALY). It is worth explaining the meaning of QALY
to gain a further understanding of Equation (7). QALY is an indicator that can estimate
the value of the lost quality-of-life due to crashes by quantifying the value of some behav-
iors people would take to avoid injury or death [33]. That is, ECC and QALY represent
observable and unobservable costs due to crashes, respectively [34].

Moreover, the comprehensive crash cost of 2017, as shown in Table 2, was updated by
using the consumer price index (CPI) and median usual weekly earnings (MUWE) based
on Crash Costs for Highway Safety Analysis (CCHSA) [33].

Table 2. 2017 comprehensive crash unit cost based on injury-severity level (USD).

Injury-Severity
Level

Economic Crash
Costs

QALY Crash Unit
Costs

Comprehensive
Crash Unit Cost

Property Damage
Only (PDO) 12,456 0 12,456

Injury (I) 46,132 97,535 143,667
Fatal Injury (FI) 588,738 3,173,900 3,762,638

Note: QALY, quality-adjusted life years.

Based on the comprehensive crash cost of 2017, the actual overall costs of crashes
(AOCC) and the predicted overall costs of crashes (POCC) were defined as Equations (8)
and (9), respectively.

AOCC =
j

∑
i=1

NiCCCi (6)

POCC =
s

∑
i=1

s

∑
i=1

pijCCCj (7)
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Furthermore, the overall prediction mean absolute error (OPMAE), overall predic-
tion absolute percentage error (OPAPE), and overall prediction root-mean-squared error
(OPRMSE) were defined as Equations (10)–(12), respectively. Both OPMAE and OPRMSE
can evaluate the absolute errors between the predicted and actual costs. The OPAPE was
used to measure the relative errors between them.

OPMAE =
|AOCC− POCC|

N
(8)

OPAPE =
|AOCC− POCC|

AOCC
× 100% (9)

OPRMSE =

√
(AOCC− POCC)2

N
(10)

3. Results and Discussion

In this section, likelihood ratio tests of temporal stability were conducted, and the
prediction performance of the two selected models was comprehensively measured. First,
two series of likelihood ratio tests were conducted to examine the temporal stability
of three-year crash datasets. Secondly, the process of determining various parameters
for machine learning-based models was elaborated in detail. Thirdly, the prediction
performance among these models was evaluated by comparing four indicators (Roverall,
OPMAE, OPAPE, and OPRMSE). The final step was to analyze the effects of significant
variables on injury-severity.

3.1. Likelihood Ratio Tests

Many previous studies found that the critical factors of crash injury severity showed
temporal instability [35]. Considering this, a series of tests were conducted in this paper to
examine the differences between different years’ MV crashes via likelihood ratio tests.

To comprehensively examine the temporal stability of MV crashes injury severity, two
series of likelihood ratio tests were conducted. The first series of likelihood ratio tests were
utilized to identify whether the different estimated parameters were stable between two
individual years. This likelihood ratio test is defined as [35,36]:

χ2
t1 = −2[LL(βy1y2)− LL(βy1)] (11)

where LL(βy1y2) is the log-likelihood at convergence for the model estimating parame-
ters from y2 while using data subset y1, whereas LL(βy1) denotes the log-likelihood at
convergence for the model using data from y1’s data. For each model comparison, the
test was carried out the other way around based on the y1 subset and y2 subset to obtain
two different results. That is, taking the estimated parameters of the 2017 model as the
starting values and employing them in the 2016 data, the χ2 between 2017 and 2016 can
be calculated. The calculated χ2 was 35.06 with 9 freedoms in this dataset, illustrating
that the null hypothesis that the 2017 and 2016 data are the same can be rejected at a high
confidence level (the corresponding confidence level more than 99.99%).

Likewise, other two-year periods can be identified as equal to the null hypotheses
being rejected at a high confidence level except the 2017 and 2018 data. Table 3 shows χ2

values with degrees of freedom in parentheses and confidence level in square brackets.
Cells in italics indicate the null hypothesis that the temporal stability cannot be rejected at
a high confidence level (>95%).
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Besides, for investigating the temporal stability between the joint model and each
separate model, the second series of likelihood ratio tests can be written as [35]:

χ2
t2 = −2[LL(β2017–2018)−

2018

∑
2017

LL(βi)] (12)

where LL(β2017–2018) identifies the log-likelihood at the convergence of the model corre-
sponding to all available year data (2017 and 2018), and LL(βi) represents the log-likelihood
at convergence of the model with only one year (2017 or 2018) data. The value of χ2 was
1.62 with 14 degrees of freedom (the corresponding confidence level was about 0.00%).
This result showed that the null hypothesis that the contributing factors of crash injury
severity in separate models is of temporal stability cannot be rejected at a high confidence
level. The estimated parameters of the joint model can be utilized for analysis.

Table 3. Likelihood ratio test results between different years.

2016 2017 2018

2016 - 35.06 (9)
[>99.99%]

32.02 (10)
[>99.96%]

2017 7.48 (13)
[12.42%] - 3.56 (10)

[3.49%]

2018 8.94 (13)
[22.25%]

2.84 (9)
[2.97%] -

3.2. Model Estimation

The prediction accuracy with the number of trees was evaluated using the learning
curve, which aimed to find the best prediction accuracy. As shown in Figure 3, the
prediction accuracy reached its maximum value when the number of trees was 652, which
indicated that the RF model constructing 652 trees obtained the best prediction performance.
According to previous research, the number of optimal features used for splitting was to be
set as the square root of all features.
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3.3. Model Prediction and Discussion

As shown in Table 4 the OPAPE of the statistical models was 3.61%, while the machine
learning-based model was 27.12%. In the comparison of these two methods, the OPAPE
values of the statistical model were lower than those of the machine learning-based model.
That is, the statistical model had a better performance concerning crash costs than the
machine learning model had. However, the overall prediction accuracy of the machine
learning-based model was higher than that of the statistical model (the Roverall of the
statistical model was 56.59%, and the Roverall of the machine learning-based method was
67.16%). Furthermore, the statistical and machine learning-based models had a similar
trend, respectively, regarding OPMAE and OPRMSE.

Table 4. Comparison of model prediction based on four indicators.

Methods
Statistical Methods Machine Learning Methods

RPL RF

Roverall 56.59% 67.16%
OPMAE 2143 14,076
OPAPE 3.61% 27.12%
OPRMSE (USD millions) 137 895
POCC (USD millions) 252 153
AOCC (USD millions) 243 209

Note: Roverall, the overall correct prediction ratio; OPMAE, the overall prediction mean absolute error; OPAPE,
the overall prediction absolute percentage error; OPRMSE, the overall prediction root-mean-squared error; POCC,
the predicted overall costs of crashes; AOCC, the actual overall costs of crashes.

The interpretation of the indicators shown in Table 4 depended on the way in which to
utilize them in practice. For example, as a road designer, the relationship between different
conditions (i.e., road characteristics and environmental characteristics) with the potential
injuries is crucial. Therefore, the prediction models were selected based on the overall
prediction accuracy. As for insurance companies, the crash costs deserve more attention.
Hence, the crash-costs-related indicators such as OPMAE, OPAPE, and OPRMSE should be
selected first. It was easy to conclude that the statistical methods had a better performance
than the machine learning-based models considering crash costs.

Additionally, a higher overall prediction accuracy did not imply a better prediction
performance on a specific type of injury-severity, due to the different account of various
injury severities. In order to choose one model that can predict a specific level of injury-
severity as accurate as possible, the Rii indicator in the confusion matrix should be selected.
As shown in Table 5, the machine learning-based model achieved the best prediction
performance (its Rii was 85.14%) when the property damage only was the only concern. As
for injury, the prediction accuracy of the statistical model reached 34.03%.

Table 5. Error matrix for injury-severity prediction model.

Injury-Severity Level Method Property Damage
Only (PDO) Injury (I) Fatal (F)

Property Damage
Only (PDO)

RPL
1881 918 3

67.13% 32.76% 0.11%

RF
2408 419 1

85.14% 14.81% 0.03%

Injury (I)
RPL

850 440 3
65.74% 34.03% 0.23%

RF
909 306 1

74.75% 25.16% 0.08%

Fatal (F)
RPL

4 2 0
66.67% 33.33% 0%

RF
0 0 0

0% 0% 0%
Note: RPL, random parameters logit model with heterogeneity in means and variances; RF, random forest model.
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3.4. Effect of Significant Factors

After analyzing the prediction performance among the selected models, a detailed
investigation of the effects of significant crash-related factors was critical to further under-
stand these models. Depending on the mathematical definition of these models (statisti-
cal/machine learning-based models), statistical models were able to clearly explain the
effects of various parameters by utilizing coefficients and significance. Furthermore, the
RPL model was estimated by the simulated maximum likelihood, which was an efficient
method to random draws. To estimate more accurate parameters, 500 Halton draws were
used in this study. The density function f (β|ϕ) followed a normal distribution, similar to
previous studies [22,23,35]. The whole estimated results are shown in Appendix B.

Regarding the driver characteristics, among the characteristics of drivers, “old-aged
driver” was found to significantly decrease the likelihood of property damage only.
“Middle-aged driver” increased the likelihood of property damage only. “Male driver” was
found to increase the likelihood of property damage only, which was in line with previous
studies [23]. In addition, taking “sudden slowing maneuvers” can significantly decrease
the possibility of Fatal injury compared with “skipping involved.”

The roadway characteristics found to be significant were: “Wet/snow/slush/ice
road surface” and “Rural freeways.” “Wet/snow/slush/ice road surface” increased the
likelihood of property damage only. The indicator “Rural freeways” was found to be
statistically significant in increasing the likelihood of the Fatal injury.

Appendix B also shows that the “crash not occurring at intersection or driveway”
increased the possibility of the property damage only. The indicator “weekend” decreased
the likelihood of Injury.

With regard to the characteristics of the occupant, “Male occupant” was found to
decrease the likelihood of the property damage only. The indicator “Old-aged occupant”
was found to decrease the likelihood of the property damage only in our study, which was
in line with some previous studies [23]. The indicator “Ejected” was found to significantly
decrease the likelihood of the property damage only. In addition, the indicator “second
row” was found to decrease the likelihood of the Injury.

As indicated in Appendix B, two variables were identified as random parameters in
this study: “Occupant restraints” and “Male driver.” The indicator of “Occupant restraints”
followed a normal distribution with a mean of −1.5017 and a standard deviation of 4.5840,
which means that this variable was negative for observations of 62.84% (decreasing the
likelihood of the injury) and positive for observations of 37.16% (increasing the likelihood
of the injury). That is, the crashes were not prone to occur when the occupants’ safety
equipment was used. As for the analysis of “Male driver”, it can also be interpreted through
the same way.

With respect to the random parameters with heterogeneity in the means, the indicator
of occupant restraints [I] and Male driver [I] were found to produce random parameters
with heterogeneity in the means. The negative values of −0.5543 indicated that the mean
of occupant restraints indicator decreased if the driver took “sudden slowing maneuvers,”
also meaning that the possibility of injury was decreased. As for the heterogeneity in
the variance of random parameters, the “Middle-aged driver” was found to decrease
the variance of the indicator “Occupant restraints.” Based on the above analysis, the
corresponding measurements decreasing the likelihood of crashes is shown in Figure 4.
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4. Conclusions

This research employed two methods (statistical methods: RPL; machine learning-
based method: RF) to analyze significant crash-related factors and to predict the possibility
of injury-severity outcomes based on the dataset of 13,667 crashes extracted from the
HSIS database.

As for the crash prediction, the overall accuracies of the RF and RPL model were
56.59% and 67.14%, respectively. The OPMAE and OPAPE of these two models were 2143
and 3.61%, and 14,076 and 27.12%, respectively. Regarding crash costs, the OPRMSE of the
RPL and RF model were USD 137 and USD 895 (millions).

For significant crash-related factors, the variables “old-aged driver,” “Male occu-
pant,” “Old-aged occupant,” “Ejected,” and “Second row” may decrease the likelihood of
crash injury severity; while variables “Male driver,” “Wet/snow/slush/ice road surface,”
“Straight,” “Not at intersection or driveway,” and “Weekend” could increase the possibil-
ity of crash injury severity. In addition, the indicator “Occupant restraints” and “Male
driver” were identified as random parameters. The above findings could be applied by
various walks of life (e.g., the government, transportation-related enterprise, and insurance
company) to improve transportation safety and reduce the crash costs.

It should be noted that there are still some limitations in this study. Many prevailing
machine learning-based methods, such as ANN and KNN, were not used for comparison
in this study. The imbalance datasets may result in biases in crash prediction and critical
risk factors analysis. Besides that, the out-of-date crash datasets may result in some bias in
the analysis of crash critical factors, and some factors (road alignment, occupant/driver
physical condition, etc.) were not considered in this research. Future studies will focus on
these above-mentioned issues.
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Appendix A

Explanatory Variable PDO Injury Fatal Total

Total crashes 9287 68.90% 4180 31.01% 11 0.08% 13,478
Driver characteristics
Driver gender

Male driver 5512 40.90% 2280 16.92% 5 0.04% 7797 57.85%
Female driver 3775 28.01% 1900 14.10% 6 0.04% 5681 42.15%

Driver age
Young driver 1458 10.82% 628 4.66% 3 0.02% 2089 15.50%
Middle-aged driver 6718 49.84% 2951 21.89% 5 0.04% 9674 71.78%
Elder driver 1111 8.24% 601 4.46% 3 0.02% 1715 12.72%

Driver restraint
No restraints used 33 0.24% 19 0.14% 3 0.02% 55 0.41%
Lap belt/shoulder or other restraints used 9254 68.66% 4161 30.87% 8 0.06% 13,423 99.59%

Driver mistake action
Skidding involved 175 1.30% 60 0.45% 2 0.01% 237 1.76%
Avoiding maneuvers 156 1.16% 47 0.35% 0 0.00% 203 1.51%
Sudden slowing maneuvers 4089 30.34% 1505 11.17% 1 0.01% 5595 41.51%
Stopped vehicle 4145 30.75% 2061 15.29% 2 0.01% 6208 46.06%

Vehicle characteristics
Carry hazardous material

Yes 0 0.01% 2 0.04% 4 0.00% 6 0.04%
No 5417 40.21% 8055 59.79% 0 0.00% 13,472 99.96%

Road characteristics
Roadway classification

Urban freeways 5463 40.53% 2337 17.34% 3 0.02% 7803 57.89%
Urban multilane roads 2607 19.34% 1272 9.44% 0 0.00% 3879 28.78%
Rural freeways 562 4.17% 232 1.72% 3 0.02% 797 5.91%
Rural multilane roads 655 4.86% 339 2.52% 5 0.04% 999 7.41%

Road characteristics
Straight 8589 63.73% 3845 28.53% 10 0.07% 12,444 92.33%
Curve 698 5.18% 335 2.49% 1 0.01% 1034 7.67%

Federal function class
Rural collector 1221 9.06% 573 4.25% 8 0.06% 1802 13.37%
Urban collector 8066 59.85% 3607 26.76% 3 0.02% 11,676 86.63%

Road surface type
Portland concrete cement 2440 18.10% 1006 7.46% 0 0.00% 3446 25.57%
Asphalt concrete 6847 50.80% 3171 23.53% 11 0.08% 10,029 74.41%
Brick/gravel/dirt 0 0.00% 3 0.02% 0 0.00% 3 0.02%

Crash characteristics
Day of week

Non-weekend 6038 44.80% 2796 20.74% 8 0.06% 8842 65.60%
Weekend 3249 24.11% 1384 10.27% 3 0.02% 4636 34.40%

Location of the crash
Intersection-related 2316 17.18% 1135 8.42% 3 0.02% 3454 25.63%
Driveway-related 279 2.07% 177 1.31% 1 0.01% 457 3.39%
Not at intersection or driveway 6692 49.65% 2868 21.28% 7 0.05% 9567 70.98%

Weather
Clear 7354 54.56% 3410 25.30% 5 0.04% 10,769 79.90%
Cloudy 1689 12.53% 657 4.87% 4 0.03% 2350 17.44%
Raining/snowing 154 1.14% 69 0.51% 0 0.00% 223 1.65%
Fog/wind/other 90 0.67% 44 0.33% 2 0.01% 136 1.00%

Light condition
Daylight 7233 53.67% 3261 24.19% 7 0.05% 10,501 77.91%
Dusk-dawn 319 2.37% 137 1.02% 0 0.00% 456 3.38%
Dark, light on 1274 9.45% 594 4.41% 2 0.01% 1870 13.87%
Dark, light off 461 3.42% 188 1.39% 2 0.01% 651 4.83%

Roadway surface
Dry 6722 49.87% 3104 23.03% 4 0.03% 9830 72.93%
Wet/snow/slush/ice 2538 18.83% 1060 7.86% 7 0.05% 3605 26.75%
Other 27 0.20% 16 0.12% 0 0.00% 43 0.32%

Occupant characteristics
Age

Young passenger 5019 37.24% 1951 14.48% 4 0.03% 6974 51.74%
Middle-aged passenger 3352 24.87% 1654 12.27% 5 0.04% 5011 37.18%
Elder passenger 916 6.80% 575 4.27% 2 0.01% 1493 11.08%

Gender
Male 4115 30.53% 1572 11.66% 5 0.04% 5692 42.23%
Female 5172 38.37% 2608 19.35% 6 0.04% 7786 57.77%

Seat position
First row 4934 36.61% 2499 18.54% 6 0.04% 7439 55.19%
Second row 1237 9.18% 446 3.31% 0 0.00% 1683 12.49%
Third row 3116 23.12% 1235 9.16% 5 0.04% 4356 32.32%

Eject
Not ejected 9281 68.86% 4175 30.98% 7 0.05% 13,463 99.89%
Ejected 6 0.04% 5 0.04% 4 0.03% 15 0.11%

Occupant Restraint
No restraints used 34 0.25% 33 0.24% 3 0.02% 70 0.52%
Lap belt/shoulder or other used 9253 68.65% 4147 30.77% 8 0.06% 13,408 99.48%
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Appendix B

Variable
Random Parameters Logit Model (with
Heterogeneity in Means and Variances)

Parameters Estimate z-Stat

Constant (PDO) 7.0652 15.68
Constant (I) 5.4921 11.68
Driver characteristics

Old-aged driver (1 if driver is older than 60 years old; 0 otherwise) (PDO) −1.3907 −3.66
Middle-aged driver (1 if driver is between 25 and 60 years old; 0 otherwise) (PDO) 1.4329 3.34
Male driver (1 if the gender of driver is male; 0 otherwise) (PDO) 0.7133 −3.44
Sudden slowing maneuvers (1 if the Driver mistake action is Sudden slowing maneuvers; 0 otherwise) (FI) −2.0871 −1.68

Road characteristics
Wet/snow/slush/ice road surface (1 if the road surface is wet/snow/slush/ice; 0 otherwise) (PDO) 0.2841 2.09
Rural freeways (1 if the road classification is rural freeways; 0 otherwise) (F) 1.8023 2.21

Crash characteristics
Not at intersection or driveway (1 if the crash occurred not at intersection or driveway; 0 otherwise) (PDO) 0.2232 1.73
Weekend (1 if weekend; 0 otherwise) (I) −0.1791 −1.56

Occupant characteristics
Male occupant (1 if the gender of occupant is male; 0 otherwise) (PDO) −0.5782 −2.39
Old-aged occupant (1 if occupant is older than 60 years old; 0 otherwise) (PDO) −0.8212 −2.30
Ejected (1 if occupant is ejected; 0 otherwise) (PDO) −4.2151 −4.30
Second row (1 if the occupant seated in second row; 0 otherwise) (I) −0.4940 −2.29

Random parameters
Occupant restraints (1 if occupant’s safety equipment is used; 0 otherwise) (I) −1.5017 −2.56
Standard deviation of “Occupant restraints” (I) 4.5840 3.45
Male driver (1 if the gender of driver male; 0 otherwise) (I) 0.6905 2.38
Standard deviation of “Male driver” (I) 3.1585 2.66

Heterogeneity in the mean of the random parameters
Occupant restraints (I): Sudden slowing maneuvers −0.5543 −2.83
Male driver (I): Sudden slowing maneuvers −0.8786 −2.54

Heterogeneity in the variances of the random parameters
Occupant restraints (I): Middle-aged driver −0.4272 −2.19

Model statistics - -
Number of observations 13,478 -
AIC 16,593 -
BIC 16,743 -
McFadden ρ2 0.44 -

PDO, Property Damage Only; I, Injury; FI, Fatal Injury.
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