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Abstract: Polygenic models have emerged as promising prediction tools for the prediction of complex
traits. Currently, the majority of polygenic models are developed in the context of predicting disease
risk, but polygenic models may also prove useful in predicting drug outcomes. This study sought to
understand how polygenic models incorporating pharmacogenetic variants are being used in the
prediction of drug outcomes. A systematic review was conducted with the aim of gaining insights
into the methods used to construct polygenic models, as well as their performance in drug outcome
prediction. The search uncovered 89 papers that incorporated pharmacogenetic variants in the
development of polygenic models. It was found that the most common polygenic models were
constructed for drug dosing predictions in anticoagulant therapies (n = 27). While nearly all studies
found a significant association with their polygenic model and the investigated drug outcome (93.3%),
less than half (47.2%) compared the performance of the polygenic model against clinical predictors,
and even fewer (40.4%) sought to validate model predictions in an independent cohort. Additionally,
the heterogeneity of reported performance measures makes the comparison of models across studies
challenging. These findings highlight key considerations for future work in developing polygenic
models in pharmacogenomic research.

Keywords: pharmacogenomics; polygenic models; drug outcomes

1. Introduction

The concept of polygenic inheritance was first introduced in 1918 by R.A. Fisher who
showed that continuous traits are passed down through Mendelian inheritance of many
genetic variants of small effect [1]. Since then, this polygenic approach to inheritance has
been used to study complex human phenotypes [2–6]. Given the small individual effects
that each genetic variant contributes to the heritability of complex traits, polygenic scores
have emerged as tools to estimate individual probability for these complex phenotypes.
Polygenic scores combine the individual effects of several genetic variants into a single
score which can be used to assign a probability to any individual representing their genetic
predisposition for a phenotype [7–9]. As genotyping technologies become increasingly
affordable, the excitement surrounding the possibility of generating genome-wide risk
scores for various diseases is continually growing [7,10].

Thus far, polygenic scores have primarily been applied in the prediction of disease
risk. A highly cited study by Khera et al., published in 2018, developed a polygenic risk
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score comprised of over 6 million common single nucleotide polymorphisms (SNPs) to
predict individual risk of developing coronary artery disease (CAD) [9]. The higher the
burden of risk-alleles, the higher an individual’s genetic risk of CAD, and one of the striking
discoveries in this study was that patients within the top 8% of the polygenic risk score had
a 3-fold increased risk of CAD which is comparable to the risk imparted by rare, monogenic
causes of heart disease [9]. The advantage of the polygenic approach is that because it is
constructed using common SNPs, it can be applied to many more patients, whereas only
a small proportion of the population will carry rare genetic variants. Many other similar
polygenic scores have been developed to predict disease risk, and thus, polygenic scores
offer the potential to improve genetic screening for disease and are more generalizable to
the broader population [11,12].

The polygenic nature of complex traits and disease have become widely accepted, but
this has not been translated to the same extent within the field of pharmacogenomics [13].
Innumerable genetic studies have been conducted to explain the interindividual variability
in drug-related outcomes such as nonresponse, dosing requirements, and the development
of adverse drug reactions (ADRs) [13]. However, many of these early pharmacogenetic
studies focused on the monogenic architecture of drug-outcomes where genetic variants of
larger effect size were thought of as separate predictors [13]. Relatively few studies have
aimed to combine pharmacogenetic variants to improve predictions of these drug outcomes.
Perhaps one of the most well-studied multigenic-drug interactions is in warfarin dosing.
Warfarin is a widely used oral anticoagulant with a narrow therapeutic window and a high
interindividual variability in dosing requirements [14,15]. Early genome-wide association
studies of warfarin maintenance dose identified pharmacogenetic variants in VKORC1 and
CYP2C9 which were strongly associated with warfarin dosing requirements, and genotyp-
ing for these variants have been added to the FDA warfarin dosing guidelines [16–18]. This
highlights the potential utility of pharmacogenetic prediction models comprising multiple
genetic loci to guide treatment decisions in clinical practice.

Polygenic scores in pharmacogenomics research were recently reviewed, examining
the use of polygenic scores developed from pre-existing genetic studies in disease pheno-
types as a predictor of drug outcomes (e.g., schizophrenia-derived polygenic risk score
used to predict lurasidone response) [19,20]. However, there has been no review to-date
evaluating the use of polygenic models derived specifically from pharmacogenetic variants
associated with gene-drug relationships. To this end, a systematic review was conducted to
summarize the methods and performance of polygenic models encompassing pharmaco-
genetic variants in predicting drug outcome phenotypes. In the context of this review, a
polygenic model was broadly defined as any model or score encompassing pharmacoge-
netic variants at more than one genetic locus. In doing so, this review aims to understand
the current methods used to develop polygenic models for predicting drug outcomes, as
well as the performance of these models in their ability to reliably predict drug outcomes
in patients.

2. Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines for a systematic review were followed to ensure completeness of the review. A
study protocol was written prior to the initiation of the review but was not registered.

2.1. Rationale and Scope of Review

This review aimed to summarize the methods and performance of polygenic models
encompassing pharmacogenetic variants for predicting drug outcomes. While polygenic
models encompassing non-pharmacogenetic variants have been applied to the prediction
of drug outcomes, these models were not considered to be true pharmacogenetic models
and were not included in the current review. An example of one such article is a 2018
study by Li et al., examining the association between a polygenic risk score derived from
schizophrenia risk-alleles and response to lurasidone treatment [20]. While interesting,
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studies like these were excluded from this review as they draw from polygenic disease
risk to predict drug outcomes, rather than from pharmacogenetic associations with the drug
outcome. Articles repurposing phenotype-derived polygenic risk models for drug outcome
prediction were similarly excluded. For example, Helmstaedter et al. sought to predict
levetiracetam-induced behavioural side-effects using SNPs that predisposed individuals
to impulsive, reactive, or aggressive behaviours [21]. As this polygenic model does not
incorporate pharmacogenetic variants involved in levetiracetam-induced outcomes, it was
not considered a pharmacogenetic model. This is not to say these types of polygenic models
are not useful in the prediction of drug outcomes, but simply that they fall outside the
scope of the current review. Additionally, these studies were recently reviewed by Johnson
et al., so this work sought instead to take a more focused approach in evaluating polygenic
models encompassing pharmacogenetic variants only [19].

2.2. Search Details

Liberal search criteria were applied in order to capture all relevant articles. For the
purposes of this review, a polygenic model was broadly defined as any model or score
encompassing pharmacogenetic variants at more than one genetic locus used to stratify
patients by genetic risk. Both weighted and unweighted models derived from candidate
gene or genome-wide associations were included. Any specific drug-related outcomes were
included, such as drug-dosing, therapeutic drug response, or drug-induced adverse effects.
Studies that did not investigate pharmacological treatments (e.g., surgical procedures,
supplementation, radiation therapy) were excluded. Additionally, studies that did not ex-
amine a specific drug (e.g., investigating a chemotherapeutic regimen rather than a specific
chemotherapeutic agent) were excluded as it is not possible to associate pharmacogenetic
findings to a specific drug-related phenotype. Studies repurposing disease-derived or
phenotype-derived polygenic scores to predict drug-related outcomes (e.g., schizophrenia-
derived polygenic risk score used to predict lurasidone response) were also excluded, as
this was not considered a polygenic model developed using pharmacogenetic variants.

A librarian specializing in medical genetics research was consulted to help construct
the search strategy. This was done beginning with MeSH terms, followed by key-words
and variations. This strategy was further refined upon review of initial search results
in order to ensure all relevant papers were being captured by the search. For example,
search terms pertaining to ‘personalized medicine’ were included in the search strategy as
some pharmacogenetic studies were filed under this concept within the databases and not
necessarily within the ‘pharmacogenetics’ search term. The final search strategy consisted of
terms pertaining to “pharmacogenomics”, “pharmacogenetics”, “personalized medicine”,
and “polygenic model”. The full search strategy is shown in Figure S1. The search was
conducted in MEDLINE and EMBASE using the OVID interface from 1946 to 27 July 2021
for articles that described the development or validation of a polygenic model in human
subjects to predict any drug outcomes.

2.3. Study Selection

Study screening was performed by two independent reviewers (A.S. and S.A.) in
order to minimize bias and retrieve all relevant records pertaining to the research question.
Articles were screened for relevancy by their title and abstract, followed by full-text review.
To begin the title and abstract screening process, reviewers screened 20 articles for inclusion
in full-text review. Conflicts were resolved through discussion between reviewers until
a minimum inter-rater reliability of α = 0.8 was reached. Articles selected for full review
included English language original studies containing a polygenic model used to predict
drug outcomes. Conference abstracts, case reports, editorials, notes, meta-analyses, and
review articles were not included for full-text review.
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2.4. Data Extraction

Data extraction was performed by a single reviewer (AS). A standard data extraction
sheet was created and piloted on 10 articles, and necessary changes were made to the form
before applying it to the full list of included papers. Additional articles were excluded dur-
ing this process as they were not found to meet all inclusion criteria upon detailed review.
Names of the lead authors were extracted, as well as the year of publication. Drugs were
classified using the LexiComp database according to their pharmacological category [22].
Details of the drug outcome under investigation were extracted and categorized according
to safety, efficacy, or dosing predictions. The method of selecting pharmacogenetic variants
for consideration into model development was collected and categorized according to
candidate-gene or genome-wide association methods. Details of the model training and val-
idation cohorts were extracted, including population details, as well as number of patients
in all study cohorts. Development cohorts were defined as populations used to develop the
original score or model, and validation cohorts were defined as any independent popula-
tion used to test the model’s predictive capabilities. Details of model performance measures
were also extracted where available. In cases where the pharmacogenetic prediction model
was compared to clinical prediction models, performance measures of the comparison
were extracted. If the model was independently validated in an external cohort, predictive
performance of the model in this independent population was also extracted. There is
currently no risk of bias assessment tool for polygenic model reviews, thus this could not
be formally assessed.

2.5. Synthesis of Results

Figures, plots, and measures of central tendency used to summarize the included
articles were conducted in RStudio Version 1.3.959 for MacOS.

3. Results
3.1. Overview of Included Articles

The initial literature search conducted in MEDLINE and EMBASE identified
5132 articles. After removal of 514 duplicates, 4618 articles remained for title and abstract
screening. From these, 4259 irrelevant studies were excluded by two independent investi-
gators, leaving 359 reports to be extracted for full-text review. Following full-text screening,
100 articles were initially included. During detailed data extraction, an additional 11 reports
were excluded as they were found not to include a pharmacogenetic model with multiple
genes, leaving 89 papers for inclusion in the systematic review (Figure 1). Full details on
included studies can be found in Table S1.
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Figure 1. CONSORT flow diagram of articles screened and included in the final review. Flow chart
adapted from an example in Page et al. (2021) [23].

Included papers were published on or before the search date (27 July 2021). The
vast majority of drugs for which polygenic predictive models are developed fall under
anticoagulants (n = 32, 36.0%) or antineoplastic agents (n = 22, 24.7%). Of the anticoagu-
lants studied, all were vitamin K antagonists. Drug outcomes under investigation were
categorized under three main categories: drug safety (i.e., adverse drug reactions), drug
dosing requirements (including drug exposure prediction), and drug effectiveness. Of
these, drug dosing requirements was the most common outcome under investigation when
developing polygenic prediction models (n = 33, 37.1%) [18,24–55], followed by drug safety
(n = 32, 36.0%) [56–87] and drug effectiveness (n = 24, 27.0%) [88–111]. The vast majority
of studies investigating dosing requirements were conducted in regard to anticoagulant
therapy, whereas the majority of drug safety studies were conducted in antineoplastics. A
summary of investigated drug outcomes stratified by drug class can be seen in Figure 2.

3.2. Method of Gene-Selection for Developing a Polygenic Model Predicting Drug Outcomes

74 of the 89 included studies (83.1%) used a candidate-gene approach when choos-
ing SNPs for inclusion in a multi-pharmacogenetic prediction model. Only 11 studies
(12.4%) performed a genome-wide or exome-wide association study to identify pharmacoge-
netic variants for model development [49,65,69,70,76,86,95,100,102,107,108]. An additional
4 studies (4.5%) aimed to validate a previously published polygenic model [87,109–111].
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The preference for the candidate-gene approach in these articles may be explained by
several factors. Candidate gene analyses are simpler to run and more cost-effective to
perform [112,113]. Additionally, sample size constraints remain a challenge in pharma-
cogenomics research [113]. The median sample size for model development cohorts was
269 patients which would generally be underpowered to accurately estimate allele effect-
sizes in a genome-wide study design [7].
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Figure 2. Number of articles included in the review grouped by drug class and investigated drug
outcome. The “Other” category is comprised of Sufonylurea antidiabetic (n = 1), Angiogenesis
inhibitor (n = 1), 5-Aminosalicylic acid derivative (n = 1), Beta2 agonist (n = 1), Antifungal agent
(n = 1), Antitubercular agent (n = 1), Immunosuppressant agent (n = 1), and Immune globulin (n = 1).

Among the candidate-gene approaches, a variety of rationales were used for selection
of candidate genes for model development. The most popular method was through
literature search to identify variants previously associated with the drug outcome of interest
or variants with functional relevance to the drug’s pharmacokinetic or pharmacodynamic
pathways. Only two studies explicitly incorporated evidence-threshold criteria in the
selection of candidate SNPs. The study by Palles et al. developing a prediction model
for capecitabine-induced toxicities used a statistical evidence threshold to select variants
associated with the drug outcome in studies of ≥500 patients with an OR/HR of ≥1.5 [75].
Another study by Leusink et al. examining statin-induced cholesterol lowering chose
candidate SNPs for model development based on SNPs previously reaching genome-wide
significance and replicated in at least one other study for the same drug outcome [104]. For
pharmacogenetic models developed using candidate-SNPs, a range of 2 to 60 SNPs were
incorporated into the predictive model.

Among the GWA studies, all studies set a p-value threshold for choosing SNPs to in-
clude in model development. Most studies set this threshold a priori, whereas two studies
by Suzuki et al. examining mesalamine allergy and Lanfear et al. examining overall-
survival in patients on β-blocker therapy used varying p-value thresholds to maximize
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model performance [70,114]. Some studies, like that by Sordillo et al. investigating al-
buterol response in children with asthma, set a modest p-value threshold (p < 0.001) but
also incorporated functional criteria in SNP-selection by restricting SNPs to those whose
predicted functional consequence exceeded 10 on the Combined Annotation Dependent
Depletion (CADD) scale [102]. Pharmacogenetic models developed using GWAS included
between 5 and 610 SNPs into the predictive pharmacogenetic model.

3.3. Overview of Methods Used to Develop Polygenic Predictions Models in Pharmacogenomics

Once pharmacogenetic SNPs were selected for inclusion into a polygenic prediction
model, a variety of statistical methods were employed for the development of the models.
These include regression-based methods, such as linear, logistic, or Cox proportional haz-
ards regression analyses, and machine learning methods. Machine learning methods varied
widely from more common techniques like random forest analyses to newly developed
machine learning algorithms. The details of each of the different machine learning methods
are beyond the scope of this review, and papers were broadly classified as using regression-
based modelling (n = 68, 76.4%) or machine learning modelling (n = 11, 12.4%). A subset of
papers used neither of these, relying instead on pharmacokinetic modelling techniques to
create a polygenic prediction model (2 papers, 2.2%) [28,88], Baeysian probability modelling
(1 paper, 1.1%) [50], or simply binned patients according to their genotype-category without
applying any statistical modelling (7 papers, 7.9%) [42,45,52,59,75,93,105]. No difference
was observed between the model development method and the model’s performance
(p = 0.09). The methods for SNP-selection and modelling technique are summarized in
Table 1.

Table 1. Summary of sample and methods used for developing polygenic prediction models in
pharmacogenomics research.

n = 89

Development cohort size (n)
Median (range) 269 (37.0, 8726)

Validation cohort size (n)
Median (range) 187 (16.0, 14,348)

Method of SNP-selection for inclusion in polygenic model
Candidate-gene 74 (83.1%)

Genome-wide association 11 (12.4%)
Validation of existing polygenic model 4 (4.5%)

Method for model development
Machine Learning 11 (12.4%)

Regression-based method 68 (76.4%)
Other 10 (11.2%)

3.4. Performance of Polygenic Models in Pharmacogenomics Research

Given the variability in methodologies used to develop polygenic prediction models,
it is unsurprising that the same heterogeneity exists for measuring model performance.
Methods for assessing model performance included plotting receiver operating charac-
teristic (ROC) curves and calculating area under the curve (AUC) as a measure of model
discrimination, R2 measures of predictive accuracy, model calibration as measured by the
Hosmer-Lemeshow goodness-of-fit test, sensitivity and specificity, positive- and negative-
predictive values, mean absolute error, and Pearson correlations (for continuous outcomes
only). Some studies did not formally evaluate model performance; rather, patients were
binned into risk groups based on polygenic model score and association with the drug
outcome was compared between groups. Given the variance in reporting of model perfor-
mance, direct comparisons could not be drawn between models across different studies.

Instead, performance results were interpreted within the context of each individual
study by examining (1) whether the polygenic model was successfully associated with the
drug outcome of interest, and (2) whether it was able to improve predictions beyond clinical
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models. Nearly all included studies that developed a model (n = 83, 93.3%) identified
a significant association between the drug outcome of interest and the pharmacogenetic
variants incorporated into the model. However, less than half of these studies (n = 42,
47.2%) compared the polygenic model against clinical predictors. Comparisons against
clinical predictors are used to demonstrate the added utility of pharmacogenetics beyond
clinical factors alone in predicting drug outcomes [115]. Of the studies that did make
this comparison, 73.8% showed a significant improvement of the polygenic model over
a clinical model. A summary of models reporting significant polygenic associations and
improvement over clinical models is shown in Figure 3.
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3.5. Validating the Performance of Polygenic Models

Over half the included papers (n = 56, 63.0%) included some form of model validation
in their analysis or were validated in a future study. However, only 36 (40.4%) models
were tested in an independent cohort for external validity. As mentioned previously,
secondary cohorts of patients treated with the same drug may not be readily available due
to sample size constraints. In these cases, some studies (n = 16, 18.0%) performed internal
validation using cross-validation or internal bootstrap samples to validate their model.
Expectedly, internal validation of polygenic prediction models was far more successful than
external validation. Where all internally validated models reported successful validation
with only a slight reduction in performance, over one third (n = 14, 38.9%) of externally
validated models did not validate successfully in an independent patient population. Model
validation is also summarized in Figure 3.

A very small subset of papers (n = 4, 4.5%) was dedicated solely to the independent
validation of a previously developed polygenic model. This is in line with the trend in
scientific research which has historically favored discovery over replication for publication
and explains why most studies aimed to created their own polygenic model rather than
validate an existing one [116].

4. Discussion
4.1. Drug Outcomes Investigated

A wide range of therapeutic classes have been investigated among the included
studies in the development of polygenic prediction models (Figure 2). However, the studies
reviewed were heavily dominated by anticoagulant (n = 32, 36.0%) and antineoplastic
(n = 22, 24.7%) outcome prediction. Historically, coumarin anticoagulants were extensively
studied in the context of pharmacogenomics research due to the widespread prescription
of warfarin for the prophylaxis and treatment of venous thromboembolism and other
cardiac conditions [117–119]. Due to the narrow therapeutic index and high interindividual
variability in dosing requirements, ability to predict a patient’s optimal warfarin dose is
crucial for avoiding serious adverse drug reactions [120,121]. Prior to any genome-wide
studies, researchers and clinicians already suspected that up to 50% of this variability could
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be explained by patient-specific factors such as age, body mass index, and genetics [14]. Up
to one-third of this variability has been associated with variations in the main metabolizer
enzyme for coumarin anticoagulants, CYP2C9, and the primary drug target, vitamin
K epoxide reductase complex I (VKORC1) [122]. This prompted the FDA to include
pharmacogenetic information on the warfarin drug label, and the International Warfarin
Pharmacogenetics Consortium to produce a standard drug-dosing algorithm for warfarin
prescription based on genetic information [18,123]. The extensive research on warfarin
pharmacogenetics makes it a compelling case study for the polygenic nature of individual
drug response, as well as how the use of pharmacogenetic testing can optimize drug
outcome predictions.

The pharmacogenetics of anti-cancer therapies have also been extensively investigated.
The potent pharmacological agents used to prolong life in cancer can result in severe
adverse drug reactions which disproportionately affect cancer patients, with up to 74.3%
of hospitalized oncology patients experiencing one or more adverse drug reaction during
their stay [124]. As advancements in cancer therapy have improved patient survival,
increasing attention has been given to the life-altering and life-threatening adverse effects
of chemotherapy [125–127]. It is, therefore, unsurprising that the majority of polygenic
risk models in cancer therapeutics were developed to predict individual susceptibility to
chemotherapy-related adverse drug reactions (Figure 2).

4.2. Methods for Polygenic Model Development

In the context of this review, the term ‘polygenic’ was not restricted to the classical
definition of “a sum of genome-wide genotypes” [8]. Instead, the term ‘polygenic’ was
broadly defined as any pharmacogenetic prediction score or model that encompassed more
than one genetic locus in order to also capture pharmacogenetic models not developed
from genome-wide studies. Nearly all studies included in this review took a candidate-
gene approach when choosing pharmacogenetic SNPs to incorporate into a polygenic
prediction model which are widely regarded as inferior to GWA studies due to their
hypothesis-driven nature. Linskey and colleagues identified that 94% of genes discovered
in pharmacogenomic GWA studies are novel and not previously included in candidate
gene studies [128]. This demonstrates the gap in our current understanding of drug
pathways and emphasizes the need to shift pharmacogenomic research towards agnostic
genome-wide study designs.

The current preference for candidate-gene studies may be explained by the small
average sample sizes available in the included articles (median n = 269) which would
generally be considered underpowered for genome-wide analyses [7]. However, pharmaco-
genetic variants tend to have larger effects sizes compared to variants associated with other
complex traits [129]. While smaller samples may suffice for detection of these larger effect
sizes, pharmacogenetic associations of modest effect involved in complex drug pathways
may still be missed [113]. This highlights a common challenge within pharmacogenomics
research of recruiting sufficiently large samples of uniformly treated patients to perform
GWA studies [7,19,113]. This has led many researchers to leverage GWASs derived from
large cohorts of related disease phenotypes in the development of polygenic models to
predict drug outcome [19]. As mentioned, these studies fell outside the scope of this review
as they failed to include pharmacogenetic variants. GWA studies also present additional
challenges that may have contributed to the preference for candidate-gene approaches
among the included articles. Due to their large scale, GWA studies are often more com-
plex, more time-consuming, and more expensive to run as they require statistical experts
familiar with genomic analyses, higher computing power, and specialized genetic analysis
software [112].

Nearly all included studies employed regression-based statistical modelling tech-
niques to develop the polygenic prediction models, with only 11 (12.4%) papers using
machine learning techniques. Currently, there is not one methodology that produces the
best model across all contexts or drug outcomes; rather, it appears that each drug outcome
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is assessed independently based on the phenotype and study population to determine the
most suitable modelling method [115,130]. This is in line with findings from the current
review, where no difference was observed between the method used to create the model
and the model’s performance (p = 0.09).

This suggests that it is perhaps the data used to create the model which has more
impact on model performance than the method of model creation [131,132]. For instance,
Perini et al., found that a warfarin dosing algorithm developed in a Brazilian popula-
tion outperformed previous models developed in European populations when applied
to Brazilian patients [46]. This is unsurprising given the genetic differences between an-
cestries. Variant frequency and linkage disequilibrium patterns can vary widely between
populations, which often translates to poor performance of polygenic models applied to
patients who are different from the input data [133–135]. Another study in warfarin dose
prediction compared the performance of various models for predicting dosing require-
ments in children [47]. This study found that the model generated in a pediatric population
outperformed those that adapted warfarin dosing models constructed in adults for use
in children [47]. This demonstrates that a model performs best within the population for
which it was developed, particularly when populations have differing pharmacokinetic
profiles [136].

Phenotypic characterization also presents a unique challenge within pharmacoge-
nomic research as many drug outcomes are difficult to measure quantitatively [14]. For
example, cisplatin-induced hearing loss is a common adverse drug reaction resulting from
cisplatin chemotherapy [137–139]. Many pharmacogenomic studies have been conducted
to explain the interindividual variability of this adverse outcome, but results are inconsis-
tently replicated [140]. This may be partially explained by the different scales used to grade
hearing loss which results in the same patient being assigned into different phenotypic cate-
gories depending on the grading criteria used [137,141–145]. Such discrepant phenotyping
may result in different polygenic models being constructed depending on the definition of
the drug outcome.

There is a wide variety of methods for generating polygenic models in pharmacoge-
nomics research and this diversity continues to increase as different mechanisms arise
to overcome challenges in modelling complex drug-related data [115]. This presents a
challenge as each drug outcome may have multiple polygenic models with little guidance
in choosing the ‘correct’ model to implement clinically. Additionally, polygenic models
constructed using more complicated or abstract techniques may face additional barriers
toward clinical implementation [131,132,146]. For example, due to the data-driven nature
of machine learning methods, learning algorithms are often perceived as a “black box”,
manipulating data in unknown ways to generate predictions. Due to the limited inter-
pretability of algorithm results, clinicians and practitioners may have difficulty trusting a
model that is not easily explained by current medical evidence [146]. This illustrates a need
for data scientists and clinicians to work together in early stages of model development in
order to create polygenic prediction models that are clinically useful and interpretable by
its intended end-users.

4.3. Model Performance

All except for two studies in the current review found significant polygenic associa-
tions between the studied polygenic model with the drug outcome of interest. This is in
contrast to findings from a review published by Johnson et al. in 2021 where more than
half the included studies did not find a significant association between the polygenic risk
score and the drug outcome of interest [19]. This difference may be attributed to the fact
that variants incorporated into many of the prediction models reviewed by Johnson et al.
were disease-related rather than drug-related, and hence did not capture the true phar-
macogenetic landscape of the drug outcome under investigation [19]. Articles included
in the present review comprised of pharmacogenetic variants previously found to be in
direct association with drug outcomes, or with established functional relevance in the
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drug’s biotransformation pathway. This may explain why the overwhelming majority
of studies in this review found a statistically significant association between polygenic
models and the drug outcomes. These findings suggest that disease-associated variants
cannot always substitute for true pharmacogenetic associations. Pharmacological agents
form complex interactions with biological systems through various pharmacokinetic and
pharmacodynamic pathways that extend beyond disease mechanisms [147]. Thus, the
most robust polygenic models for predicting drug response are those constructed using
pharmacogenetic variants. However, these results should be interpreted with caution
as studies failing to show a statistically significant association between pharmacogenetic
models and investigated drug outcomes may be more likely to remain unpublished [148].

While nearly all studies were able to show a significant genetic association between
their polygenic models and drug outcomes, far fewer demonstrated that the inclusion of
pharmacogenetic information significantly improved predictions beyond clinical factors
alone. Less than half (n = 42, 47.2%) the included studies formally compared polygenic
versus clinical models for predicting drug outcomes. Of the models that did draw this
comparison 73.8% (n = 31 out of 42) showed significant improvement over clinical models
with the addition of pharmacogenetic factors, suggesting that pharmacogenetics have the
potential to improve prediction of drug outcomes over clinical models alone. However,
this should also be interpreted with caution due to the low proportion of studies that
reported the predictive performance of clinical versus pharmacogenetic models. It is
possible that negative results failing to demonstrate improvement of polygenic models
over clinical models are less likely to be reported [148]. This may also be due to the
lack of established clinical prediction tools against which to compare pharmacogenetic
models. Unlike for predicting disease risk, validated clinical prediction tools often do not
exist for predicting drug outcomes. Nevertheless, clinical factors have been associated
with many drug outcomes of interest. For example, younger-aged children tend to be
more at-risk for chemotherapy-induced adverse reactions and body mass index is a well-
established predictor for warfarin dosing requirements [149–152]. Comparisons between
these clinical factors and polygenic models are crucial to show clinicians and stakeholders
how pharmacogenetics can be used in conjunction with clinical information to result in
more effective, individualized therapy [153–156]. Reporting the extent to which a polygenic
model is able to improve (or not) upon clinical predictions where available is likely to play
an important role in the implementation of pharmacogenetic testing.

The diversity that exists within model development methods also exists within the
reporting of predictive performance. This variability makes comparison and evaluation
of polygenic models challenging when trying to decide on the ‘best’ model for use in
patients [11]. For instance, the area under the curve (AUC) is the most frequently used
metric of a model’s discriminative ability, but it has also been criticized as lacking in other
predictive aspects [157]. This has led some authors to instead report metrics of calibration,
mean-average-error, or percent variability explained (among many others). Recommenda-
tions for reporting practices and guidelines for polygenic model development have been
published in the context of disease prediction but are not routinely followed [8,158–160].
This inconsistency is apparent in the vast array of performance measures reported among
the included studies in this article, and the same trend was observed in a recent review
of polygenic risk scores [19]. Improving adherence to standardized reporting guidelines
would facilitate comparisons between polygenic prediction models and allow more straight-
forward evaluation of model performance. Additionally, there are currently no reporting
guidelines that are specific to pharmacogenetic polygenic models. Thus, it remains to be
seen whether guidelines for disease polygenic models are applicable to pharmacogenetic
models, and if so, consensus must be reached on the one(s) to follow in order to facilitate
cross-study comparisons.
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4.4. Model Validation

In order for any prediction model to be implemented, validation of the model must
occur in order to demonstrate its predictive performance. In the current review, over
one-third of studies (n = 33, 37.1%) did not include any obvious form of validation. That
is, a polygenic model was fit to the data without testing the validity of genotype-based
groupings or predictions. n = 16, (18.0%) performed internal validation only using bootstrap
or other re-sampling techniques. However, it is widely accepted that it is not sufficient
to demonstrate good model performance in the development sample only [161]. In order
to demonstrate generalizability, it is essential to confirm that a model maintains good
prediction in a different set of individuals than were used for model creation [162]. In this
review, a low proportion of articles (n = 36, 40.4%) validated the polygenic model in an
independent test sample. Only n = 4 (4.5%) of the articles were focused solely on conducting
an external validation of an existing polygenic prediction model. This low number may be
explained by the tendency to preferentially produce novel research rather than attempt to
replicate previously published results [116,163–167]. Often, especially until more recent
years, publication preference has been given to novel findings [116,163–167]. However,
replication of polygenic models for predicting drug outcomes is key to demonstrating their
generalizability across patient populations. Generalizability of model predictions has been
particularly challenging in the development of polygenic prediction models, with a drop in
model performance often observed when applied to a new patient population [135,168–170].
This trend is observed in the present study where over one-third of externally validated
models failed to predict the drug outcome in an independent cohort (Figure 3.). Part of
this challenge reflects a larger bias in genetic research which has primarily been conducted
in European populations (Table S1) [113]. As a result, many of these genetic findings
are not applicable to populations of different ancestries. Recently, suggestions have been
made for reweighting or adjusting models when applied to different populations, but
ultimately, there is a need to increase patient-diversity in genetic studies [171]. It has been
previously demonstrated that polygenic models developed in more diverse samples have
improved generalizability and improved performance when applied to external cohorts
of different populations [134]. Thus, improving diversity in pharmacogenetic research
is an essential step in creating polygenic models that are widely applicable. Fostering
international research collaborations and the formation of large consortia comprised of
genetically diverse patients would allow for improved generalizability of pharmacogenetic
predictions and more widespread applications of polygenic models.

4.5. Study Limitations and Future Directions

This work has several limitations. As discussed previously, the scope of the current
study was limited to polygenic models constructed from pharmacogenetic variants only
and excluded those derived from disease or phenotype GWAS data. As such, direct com-
parisons could not be drawn between these different models. Future studies may consider
performing a larger-scale review which directly compares these different models, partic-
ularly where both are available for the same drug outcomes. This study also excluded
polygenic models constructed for multi-drug regimens and thus the results cannot be gener-
alized to drug outcomes resulting from the combined effect of multiple pharmacotherapies.
An additional limitation is the exclusion of any non-English language articles as this may
have introduced bias into the current study and caused some evidence to be missed. Finally,
due to the heterogeneity in reporting of model results, no assessment of publication bias
was conducted. As mentioned, negative results are less likely to be reported and thus, the
effects of publication bias on the results of the current review cannot be ruled out [148]. This
highlights the need to establish clear reporting guidelines for polygenic models predicting
drug outcomes, as well as the need to report negative findings to reduce publication bias.
Another important consideration in future work is the integration of multiple gene effects
(polygenic models) into clinical practice guidelines for pharmacogenetic testing. Currently,
clinical practice recommendations for pharmacogenetic testing are predominantly made on
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a per-gene basis [172,173]. Clear guidelines on clinical interpretation of pharmacogenetic
results that combine multiple variants are needed.

In conclusion, the development of polygenic models for predicting drug outcomes is
an emerging field with the potential to improve predictions for individual patient response
to pharmacological therapy. However, to facilitate advancements in this area of research,
consensus is needed surrounding the reporting of model development methods and model
performance measures. Additionally, increasing diversity in study populations for poly-
genic model development can lead to improved generalizability of model predictions and
demonstrate clinical utility in a broader group of patients.
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