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Abstract
The overalternating bias is that people rate sequences with an excess of alternation as more random than prescribed by infor-
mation theory. There are two main explanations: the representativeness heuristic (Kahneman & Tversky Cognitive Psychology,
3, 430–454, 1972) and the implicit encoding hypothesis (Falk & Konold Psychological Review, 104, 301–318, 1997). These
hypotheses are associated with different reaction times predictions. According to the encoding hypothesis, reaction times should
increase as the complexity of the sequence increases, whereas the representativeness heuristic predicts fast reaction times only for
more complex sequences that appear more random.We asked participants to guess the generating source of pairs of sequences of
dichotomous elements in two different conditions: selecting the string generated by a random source or selecting the string
generated by a nonrandom source. Results suggest that both the encoding strategy and the representativeness heuristic have a role
in randomness perception and that the two criteria may have a different weight when determining the randomness versus the
regularity of a string.
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Introduction

Decisions made in the face of sequential data generally require
that we establish whether two or more events are related in
some way (e.g., that they have a common generating source),
or that they are unrelated and any perceived connection be-
tween them is merely a coincidence. Many real-life examples
testify to people’s tendency to see patterns and regularities in
outcomes generated by a random process: from the belief of
British citizens of London that there were clusters of strikes
duringWorld War II bombings, to iPod users’ claim about the
nonrandomness of the (actually random) shuffle function
(Froelich et al., 2009; Levy, 2005). On the one hand, seeing

a pattern where none exists can bring people to ask themselves
for an explanation about the origin of a nonexistent relation-
ship, potentially leading, for example, to superstitious beliefs.
On the other hand, failing to detect an existing regularity
means missing some hidden generating rule, a rule that in
scientific and other contexts can be important.

A lot of effort has been devoted to understand randomness
perception (see reviews by Nickerson, 2002, 2004; Oskarsson
et al., 2009). A recurring result is that stimuli with more alter-
nations are often identified as most random (Falk, 1975, 1981;
Falk & Konold, 1997; Gilovich et al., 1985) violating norma-
tive criteria derived from information theory (see Attneave,
1959; Gronchi et al., 2016). For example, strings such as
XXXOXXOOXOO (maximally random according to informa-
tion theory) are rated less random than OXXOXXOXOOX
(less random according to a normative criterion but with more
alternations). This overalternating bias represents a robust and
consistent finding in human randomness perception (Falk &
Konold, 1997).

Kahneman and Tversky (1972) proposed the use of the
representativeness heuristic (a similarity judgement between
an observed event and the mental prototype of randomness) to
explain the intuitive notion of randomness. A string of
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dichotomous elements is judged random (or regular) if it is
similar to its parent population (the family of random se-
quences or the family of regular sequences) and reflects the
salient features of the process by which it was generated (a
random process or a regular process). For random sequences,
the main traits of their population (i.e., an equal number of
both elements and an irregular order) must be present in a
string to be considered random. This leads to local represen-
tativeness: the idea that these two characteristics
(equiprobability and irregularity) should manifest in each
short segment of a string generated by a random process. It
is natural to conclude that building a sequence using these
criteria will create a sequence with too much alternation com-
pared with the features of a typical random string. With regard
to a regular process, the logic is the same: A sequence drawn
from a regular population should represent some kind of pat-
tern or law.

Falk and Konold (1997) claimed that randomness judg-
ments are based on an (almost) implicit attempt to encode
the string (or, equivalently, an implicit assessment of the se-
quence’s difficulty of encoding). If the sequence is hard to
chunk (i.e., an implicit attempt to encode it or to judge its
complexity), the string will be judged random. On the con-
trary, if the sequence is easily chunked, the sequence is con-
sidered not random. To measure difficulty, Falk and Konold
(1997) propose the difficulty predictor (DP): the number of
runs (i.e., substrings consisting of only tails or heads) plus
twice the number of alternating substrings. Higher scores in-
dicate a harder to chunk sequence. For example,
XXXXXXXX is a single run of Xs, thus DP = 1 whereas
XXXXOOOO and XOXOXOXO both have DP = 2 since
the first string is composed of two runs of a single element
and the second is a single run of alternating elements).

The DP measure is strongly correlated with random-
ness ratings of strings and with various measures of its
encoding difficulty (actual hardness of memorization,
assessed difficulty of memorization, copying difficulty,
task of segmentation). Falk and Konold’s (1997) interpre-
tation is that randomness may be equated with the diffi-
culty of encoding a sequence. Their hypothesis is that
observers attempt to chunk the sequence and use the dif-
ficulty or the outcome of the attempt to decide the ran-
domness of the sequence. Falk and Konold do not com-
pare their hypothesis with the representativeness criterion.
Yet, despite the procedural difference between the
encoding criterion and the representativeness heuristic,
both strategies lead to the same predictions about random-
ness ratings. Indeed, hard to chunk sequences are the
strings highly representative of a random process and
Falk and Konold’s data are also compatible with local
representativeness. Falk and Konold’s (1997) work shares
a key assumption of the randomness perception literature:
Evaluating possible regularities in a sequence gives

information about its perceived randomness and vice
versa. As Kubovy and Gilden (1991) wrote “apparent dis-
order and randomness might be expected to be the con-
verse of apparent regularity, meaningfulness and redun-
dancy. That is, one might think that the less regularity
people find in a sequence, the more likely they are to
consider it random” (p. 116).

The interchangeability between random and regular judge-
ments is supported by research that asked subjects to judge
matrices made up of green and blue dots and manipulated the
instructions (Zhao et al., 2014): In one condition, participants
were asked to identify the half of a display more likely to be
produced by a random process. In the other condition, they
were asked to identify the half of the display more likely to be
produced by a nonrandom process. The authors did not find an
effect of the framing of the question on identification
performance.

However, in tasks asking subjects to assign the generating
source (random or nonrandom) of sequences of heads and
tails, we observed correlational data suggesting a difference
between random and nonrandom responses (Gronchi &
Sloman, 2009): faster reaction times for random responses
and reaction times proportional to the complexity of the se-
quence for regular responses. Here, we explore the possibility
that different kinds of instructions (asking to detect a random
string as opposed to asking to detect a regular string) affect
judgements about the generating source. We hypothesize that
reaction times might distinguish the two questions even when
accuracy is comparable. In particular, if the task is to decide if
a sequence is regular, we expect response times to increase
proportionally with sequences’ complexity (in line with the
prediction of the encoding model). In contrast, if the task is
to decide if the sequence is random, we expect fast and
complexity-independent reaction times (a pattern that is com-
patible with a similarity judgement to a prototypical random
pattern).

Method

Participants

Forty students of the University of Florence (26 females) with
a mean age 21.6 years (SD = 2.5) volunteered. None were
expert on probability or statistics.

Stimuli and procedure

Participants were presented with two eight-character se-
quences (composed of Xs and Os). We employed all possible
sequences composed of eight characters. There are 256 of
them, but each configuration of elements has two equivalent
forms (e.g., XXXXXXXX is equivalent to OOOOOOOO), so
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we only tested half (128 sequences). The whole set of strings
was divided into three groups using the DP measure1: low
subjective randomness (DP between 1 and 2), intermediate
subjective randomness (DP between 3 and 4) and high sub-
jective randomness (DP between 5 and 6).

Each participant was randomly assigned to one of two con-
ditions: nonrandom or random. In the nonrandom condition,
the observer had to choose the most likely two strings to be
produced by a regular process, whereas in the random condi-
tion, the observer had to choose the most likely of the two to
be produced by a random process. There were six possible
types of pairs: low/low complexity, intermediate/
intermediate complexity, high/high complexity, low/
intermediate complexity, low/high complexity and
intermediate/high complexity.

For each trial, the software showed two sequences
(displayed in a random order on the screen). The strings were
selected according to the following rules: (i) all the possible
different pairs of low/low subjective randomness (36 pairs)
sequences; (ii) 36 pairs of high/high subjective randomness
sequences (chosen randomly from the pool of high subjective
randomness sequences); (iii) 81 low/high complexity se-
quences (each one of the possible nine low complexity strings
paired with other nine high complexity sequences randomly
selected from their pool; (iv) 200 pairs selected with the same
probability from the remaining possible pairs (intermediate/
intermediate complexity, low/intermediate complexity, and
intermediate/high complexity) with each sequence randomly
selected from the respective pool of sequences and the con-
straint of not generating already showed pairs. In total, each
participant observed 353 different pairs of sequences.

Participants assigned to the Nonrandom condition read this
text:

You are going to see sequences composed of Xs and Os
that have been generated either by a random process
where both characters have the same probability of oc-
currence (such as tossing a fair coin with an X on one
side and an O on the other side) or by another kind of
nonrandom process (in other words, a process that
chooses the characters on the basis of a defined rule).
You are going to see two sequences at once, one

produced by the random process and the other by the
regular process. Your task is to decide as fast as possible
which one has been produced by the regular process.
Remember that your speed will be measured.
After you click on “Start the task,” place your right hand
on the keyboard with your index finger on theO key and
the middle finger on P key, whereas your thumb will be
positioned on the space bar. To see a new pair of se-
quence you will press the space bar; once you see the
pairs of sequence to judge you will press O or P to
indicate which sequence has been produced by a regular
process.
O = left sequence
P = right sequence

In the random condition, the description of the task was:
“Your task is to decide as fast as possible which one has been
produced by the random process” and, at the end of the text,
the participants were asked to press O or P to indicate which
sequence has been produced by a random process. The exper-
iment was carried out individually in a quiet setting among
other nonrelated computer-administered experiments.

Data analysis

Reaction times ranged from 252 to 14,892 ms. Short reaction
times were long enough to allow the observer to make a de-
cision, and thus no entry was deleted. A log10 transformation
was applied to the reaction time data in order to better approx-
imate a Gaussian distribution. An a priori power analysis was
performed before carrying out the experiment. Data were an-
alyzed by means of a 2 × 6 repeated-measures ANOVA, with
log10 reaction times as a dependent variable, condition (non-
random source vs. random source) as a between variable, and
complexity (low/low complexity, intermediate/intermediate
complexity, high/high complexity, low/intermediate com-
plexity, low/high complexity and intermediate/high complex-
ity) as the within variable.

Results

An a priori power analysis was conducted using G*Power3
(Faul et al., 2007) with a small effect size (f = .3), and an alpha
of .05. It showed that a total sample of 40 with two equal sized
groups of n = 20 was required to achieve a power of .80.

When asked to select the string generated by a random
process between low and intermediate complexity strings, par-
ticipants chose the latter sequence in 85.3% of cases. In the
case of the low/high comparison, high complexity strings
were chosen in 89.5% of trials and in the case of
intermediate/high comparison, the high complexity sequences
were chosen in 68.4 of cases.

1 The DP measure, although very successful in modelling subjective random-
ness judgments, quantifies the randomness of a string only in terms of the
number of repeating and alternating elements. However, other attributes of
sequence of elements (such as symmetry, complementarity, and so on) may
determine the subjective randomness of a string. Griffiths and Tenenbaum
(2003, 2004; Griffiths et al., 2018) developed a Bayesianmodel of randomness
judgments able to grasp even these attributes (and their relative weight in the
final judgement). Given that there is a very high correlation between their
measure and DP (r = .94; Gronchi et al., 2016) when computed on the set of
128 strings employed in the experiment, we employed DP as a measure of
subjective randomness.
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When asked to select the string generated by a reg-
ular process between a low and intermediate complexity
string, participants chose the low complexity sequence
in 83.5% of trials. In the case of the low/high compar-
ison, low complexity sequences were chosen in 88.1%
of cases and in the case of intermediate/high compari-
son, the intermediate complexity strings were chosen in
73.6 of cases.

When both strings had the same complexity, the se-
lection between the left and the right sequence were
nearly at chance. The percentages selecting the leftmost
sequence were 44.4%, 43.9%, 43.5% for random condi-
tion low/low complexity, intermediate/intermediate com-
plexity and high/high complexity, respectively. When
asked to select the sequence generated by a regular pro-
cess, the percentages selecting the leftmost sequence
were 57.6%, 49.4%, 46.5%, for low/low complexity,
intermediate/intermediate complexity, and high/high
complexity, respectively.

Reaction times showed significant main effects of com-
plexity, F(5, 190) = 45.28, p < .001, and condition, F(1, 38)
= 5.90, p = .020, and the Complexity × Condition interaction
was statistically significant, F(5, 190) = 18.10, p < .001 (see
Figs. 1 and 2).2

The analysis of reaction times distributions (Figs. 3
and 4) confirmed these results. With regard to judg-
ments of same-complexity pairs, the distributions in
the random condition were similar across complexity,
whereas in the regular condition the peak tends to de-
crease as the complexity increases. When judging pairs
of sequences with different complexity, the distributions
for Random responses were similar for low/intermediate
and intermediate/high, with a higher and earlier peak for
the low/high pairs of sequences. Reaction times distri-
butions in the Regular condition were similar for low/
intermediate and low/high complexity whereas in the
intermediate/high condition we observed a lower peak
with a long tail.

Discussion

Random and regular judgments are usually seen as two
sides of the same coin in the randomness perception
literature: Evaluating the randomness of the sequence
automatically gives information about its regularity and
vice versa. Indeed, a shared (and often implicit) as-
sumption of the randomness perception literature is that

the less regularity one is able to detect in a stimulus,
the more likely the observer tends to perceive it as
random (Falk & Konold, 1997; Kubovy & Gilden,
1991).3 The consequence of this assumption is the con-
ception that a common (and commonly assumed to be
unique) process determines both the evaluation of ran-
domness and regularities.

Our result challenges this idea: We observed a different
pattern of reaction times when people had to choose the most
random of two sequences compared with the most regular.
The observed response times are compatible with the idea that
people use both a similarity judgement for evaluating the ran-
domness of a sequence and the encoding strategy for evaluat-
ing its regularity. However, this interpretation requires some
caveats. The representativeness heuristic and the encoding
strategy models have been developed assuming an observer
that is judging a single sequence and they have been expressed
in very general terms. In order to make more specific predic-
tions about reaction times, the process that leads to decision
requires a more detailed description.

As far as we know, Diener and Thompson (1985) is the
only study that has tried to analyze reaction times in order to
compare two specific hypotheses about randomness percep-
tion. They contrasted the representativeness strategy with an-
other theoretical model, randomness-by-default. They as-
sumed that greater representativeness (either in terms of sim-
ilarity toward the prototype of a random string or a regular
string) would lead to lower reaction times: Highly representa-
tive sequences will be classified more quickly than those not
representative of either. According to randomness-by-default,
the observer starts to look for any possible regularities: If all
attempts fail, the observer responds “random”. Randomness is
not actively searched for in the sequence; it is a default judg-
ment if the attempt to find regularities fails.

They observed that, when judging 20-element se-
quences, reaction times for “yes” responses to the ques-
tion “is the coin fair” were longer than for “no” responses
and the latter increased linearly with confidence ratings
about the strength of belief that each sequence was pro-
duced randomly. We did not find this, perhaps because of
a difference in task demands (judging a single sequence
compared with choosing the most random between two).
Nevertheless, Diener and Thompson’s (1985) data are
compatible with our hypothesis on the assumption that
an encoding strategy is deployed to respond to the ques-
tion, “Is the coin fair?”—that is, that this question is treat-
ed as one about regularity. The two findings might also
differ because Diener and Thompson employed long

2 Analyzing the subset of strings with peculiar attributes (symmetry,
complementarity, and so on, as described by Griffiths & Tenenbaum, 2003,
2004) we observed that these sequences are associated with faster reaction
times, but the overall results do not change.

3 AsKubovy andGilden (1991) noted, Kahneman and Tversky (1972) already
showed that this hypothesis is partially correct. According to them, the lack of
order is not a sufficient condition to affirm that the string is random; it is
necessary that it is representative of random sequences.
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sequences composed of 20 elements. The randomness of a
sequence may be hard to perceive directly with such a
long sequence. These considerations are in line with the
idea that the processes underlying the classification task
within randomness perception may be sensitive to many
factors: task instructions, the length of the sequence to be
judged, and even, all things being equal, the mindset of
the participant that will determine which one of the two
strategies (or even both) will be employed.

Future research should also provide a complete de-
scription of the time course of information processing
of the mechanisms involved in both single-sequence
tasks (common in the randomness perception literature)
and in comparison tasks that involve two stimuli (as
used here and in Zhao et al., 2014). This requires
identifying both the stopping rule used to make a de-
cision, and the degree of independence of the subpro-
cesses. The two subprocesses can take place one at
time (serial processing) or at the same time (parallel
processing). The system will await the completion of
both subprocesses (exhaustive processing) or it will

stop as soon as the first subprocess is completed (min-
imum time stopping rule). In the case of probabilistic
processing, are the two subprocesses stochastically in-
dependent? In the case of two stimulus strings, is there
a serial, privileged order-of-analysis or is the analysis
of both sequences in parallel? Answering these and
other questions (such as the capacity of the channels)
is necessary to understand how the two subprocesses
are organized in randomness perception.

Reviewing the literature about reaction times and
serial/parallel processing, Algom et al. (2015) indicate
that the double factorial paradigm (DFP; Eidels et al.,
2010; Townsend & Nozawa, 1995) is the current gold
standard for distinguishing different models obtained from
the combination of features listed above. DFP requires
two simultaneous manipulations across the two subpro-
cesses, each producing a factorial design: The manipula-
tion of the workload of the system (e.g., varying the num-
ber of targets) and the manipulation of saliency of stimu-
lus features (e.g., varying the readability of the stimulus’
font). The application of DFP may be straightforward in

Fig. 1 Reaction times as function of the complexity (low/low,
intermediate/intermediate, and high/high) of pairs of sequences and
condition (selecting the sequence generated by the random source vs.
selecting the sequence generated by the nonrandom source). When
asked to select which of the two sequences was generated by the

random source, reaction times were fast and independent of complexity.
When asked to select which of the two sequences was generated by the
nonrandom source, reaction times were proportionally to the complexity.
Error bars represent 95% confidence intervals
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the domain of visual search and similar domains.
However, its application to randomness perception is dif-
ficult because it requires manipulating the difficulty of
encoding strings and their representativeness independent-
ly. This is nontrivial because the two properties are
strongly correlated. Possible manipulation that could help

may be employing sequences of different lengths, using
fonts with different readability (XO vs. YV), manipulat-
ing the space between the characters of the sequence, or
using different kind of instruction explicitly worded (look
for any regularities vs. find the sequence that is more
similar to reference stimulus).

Fig. 2 Reaction times as function of the complexity (low/intermediate,
low/high, and intermediate/high) of pairs of sequences and condition
(selecting the sequence generated by the random source vs. selecting
the sequence generated by the nonrandom source). When asked to
select which of the two sequences was generated by the random source,

reaction times were fast and independent of the kind of comparison.
When asked to select which of the two sequences was generated by the
nonrandom source, reaction times were significantly higher in the
intermediate/high condition. Error bars represent 95% confidence
intervals

Fig. 3 Density distribution of reaction times as a function of the
complexity (low/low, intermediate/intermediate, and high/high) of pairs
of sequences and condition (selecting the sequence generated by the
random source vs. selecting the sequence generated by the nonrandom

source). RT distributions in the random condition were similar across
complexity, whereas the RT distributions for regular responses have a
progressively lower peak as the complexity increases

1712 Psychon Bull Rev (2021) 28:1707–1714



In this study we manipulated the instructions across two
independent groups of subjects: Future studies should verify if
the effect is present in a within-subjects design in order to
obtain a clearer picture.

The ambiguity of the term “randomness” and related concepts
(Falk, 1991; Gnedenko, 1962; Nickerson, 1996) makes the study
of randomness perception tricky. Tasks are often ill-defined and
participants’ understanding of them is not straightforward
(Nickerson, 2002). The hypothesis of a mixed strategy compris-
ing both encoding and representativeness fits with the idea that
“instructions can bias participants to look for specific character-
istics of sequences as evidence of randomness, or they can be
sufficiently vague to permit more than one interpretation. . . . It is
important to consider how participants understood the task, and it
is not safe to assume that they invariably did so as the experiment
intended” (Nickerson, 2002, p. 351).

Given the common tacit assumption that the two possible
answers to a single question are determined by the same cog-
nitive processes, our observations are generally compatible
with the previous literature (Falk & Konold, 1997;
Oskarsson et al., 2009; Reimers et al., 2018), where results
can be explained both in terms of similarity-based judgment
with a prototype or an active search for possible regularities.

More recent studies (Hahn & Warren, 2009; Reimers et al.,
2018; Sun&Wang, 2010) of the perception of randomness have
focused on the comparison between the heuristics and biases
account with an explanation based on rational judgment charac-
terized by limited experience (i.e., an adaptive response to real-
world phenomena showing an excess of alternation). Comparing
these two explanations, Reimers et al. (2018) found evidences for
the biased judgement account and that people use heuristics
based on several distinct forms of representativeness. The authors
include in the representativeness heuristic an evaluation of the
complexity of the sequence (what we have called the encoding
strategy) because sequences highly representative of a random
process are hard to chunk. They observed that strategies include

the evaluation of the alternation rate, the relative proportions of
the outcomes and the difficulty encoding of the sequence
(Reimers et al., 2018).

Miller and Sanjurjo (2018) and Sun et al. (2015) have
questioned the idea that the randomness perception of people
is actually biased: indeed, the overalternating bias may be
consistent with the statistical properties of sequential data in
natural environments. Our findings are not incompatible with
this perspective in that we focused on the particular strategy
(similarity criterion or regularity finding) that people adopt in
a randomness judgment, regardless of whether such decisions
satisfy a rational criterion or not.

Understanding whether an event is random or not is a cen-
tral topic in many everyday situations and research activities.
This work suggests that understanding randomness may rely
on a similarity criterion, an attempt to look for regularities, or
both. When judging an event, an individual may try to see if it
resembles the mental prototype of a random event, or try to
look for regularities, or employ a mixed strategy that does
both. This insight should help us understand phenomena like
superstitious thinking, when and why people find structure in
sequences, even when it is not there.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-021-01934-9.
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