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A B S T R A C T

Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex
microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to
support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a
multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the
early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to
degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover,
endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition,
is associated with cancer progression by promoting angiogenesis, disrupting the endothelial
barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal
roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and
MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This col-
lective understanding offers fresh insights into the potential for combined targeted therapies in
the fight against cancer.

1. Introduction

Transforming growth factor-beta (TGF-β) is an inactive dimeric cytokine produced by various cells. Its latency-associated peptide
enables TGF-β to exhibit biological activity following protein hydrolysis [1,2]. TGF-β belongs to a family of structurally related
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cytokines, including TGF-β1, TGF-β2, TGF-β3, bone morphogenetic protein, activin, and growth differentiation factor. These cytokines
can exert diverse cellular effects on various regulatory processes within the body [3,4]. Numerous studies have demonstrated that
aberrations in the TGF-β signal pathway are linked to the pathogenesis of certain human diseases [1,2,5,6]. TGF-β can induce
fibrogenesis or affect the deposition of matrix proteins by regulating the expression of matrix metalloproteinases (MMPs) and tissue
inhibitors of MMPs (TIMPs) [7–9]. Additionally, TGF-β can induce cell differentiation into myofibroblasts, thus modulating fibroblast
phenotype and function [8,10]. Most notably, TGF-β is closely associated with cancer invasion and fibrosis in the tumor microenvi-
ronment (TME) [11].

Endothelial-to-mesenchymal transition (EndMT) was initially observed during cardiac development [12,13]. The EndMT process
entails the conversion of endothelial cells (ECs) into interstitial fibroblast-like cells induced by certain inflammatory mediators
(including pro-inflammatory factors and growth factors), such as interleukin-1β, tumor necrosis factor-α (TNF-α), and fetal growth
factor [14,15]. Since the discovery of the EndMT process in close association with tumor progression in mouse models of melanoma
and pancreatic tumors in 2007 [16], growing evidence suggests that tumors are intimately linked to the EndMT process (Table 1).

MMPs are the main proteolytic enzymes in the extracellular matrix (ECM), influencing cell migration and invasion [17]. The
transcriptional levels of MMPs are typically tightly regulated during normal development. However, their regulatory mechanisms
undergo alterations in cancer, particularly when MMP activity is associated with cancer progression [18]. Studies have shown that the
dysregulation of MMPs can cause tumors to break through the basement membrane and extracellular matrix, invade surrounding
tissues and metastasize to distant regions, or indirectly promote tumor growth, invasion and metastasis through the release of
strom-related growth factors. Moreover, targeted inhibition of intracellular MMPs can effectively inhibit tumor metastasis and
angiogenesis [19,20]. Currently, MMPs has become an attractive target for oncology research and anti-tumor drug development.
However, TGF-β can upregulate the expression of MMPs in cancer cells (such as TIMP-2, MMP-2, and MMP-9), while the expression of
MMP-2 and -9 can potentially activate TGF-β, establishing a vicious circle that promotes tumor progressio [21–23]. Fibroblast-like cells
derived from EndMT may exhibit higher levels of MMPs than human fibroblasts [24]. This suggests a connection between the
expression of TGF-β and certain MMPs with the process of EndMT [24,25]. This review provides a summary of the molecular
mechanisms and clinical manifestations of the interactions between TGF-β, MMPs, and EndMT in the TME in recent years. It also
analyzes the potential relationships among them in the TME.

2. Role of EndMT in the TME

The TME encompasses the entire in vivo milieu of tumor genesis, growth, andmetastasis. This includes not only tumor cells but also
various components such as fibroblasts, immune cells, blood vessels, and the ECM [48,49]. Both cellular and acellular elements of the
TME collaborate to uphold tissue homeostasis and play a crucial role in impeding the proliferation of malignant cells.

ECs are specialized cells found within blood vessels throughout the body. Vascular ECs constitute a monolayer covering the inner
surface of blood vessels. They serve as a barrier between the bloodstream and tissues and also participate in the body’s immune
functions. There is growing evidence indicating that ECs can serve as a source of myofibroblasts. This process is implicated in the
fibrosis of organs such as the heart, lungs, kidneys, and intestines, as well as the formation of cancer-associated fibroblasts (CAFs;
Fig. 1) [16,32,33,50,51].

Numerous factors induce EndMT. Currently, members of the TGF-β protein family are considered to be the primary inducers of
EndMT, both in normal physiological processes and cancer [52,53]. Additionally, the WNT signaling pathway can influence the Smad
signal transduction pathway [54]. The Notch signaling pathway triggers the proteolytic cleavage of transmembrane receptors,

Table 1
Roles of EndMT in different cancer types.

Type of cancer Inducers Role References

Breast cancer 27-HC Metastasis [26,27]
PDAC Acidic microenvironment Metastasis [28]
 TNF-α Source of CAFs [29]
HCC SIRT3 and TGF-β Angiogenesis [30]
 Tumor-derived TGF-β Angiogenesis [31]
Colon cancer Tubulin-β3 and TGF-β1/2 Source of CAFs [32]
 Osteopontin Source of CAFs [33]
 TGF-β-IL6 Source of CAFs [34]
CCM TGF-β and BMP Angiogenesis [35–37]
Melanoma NOX1 and NOX2 Metastasis and angiogenesis [38]
 Not determined Source of CAFs [16,39]
 TGF-β Metastasis and source of CAFs [40,41]
Glioblastoma TGF-β Angiogenesis [42]
Esophageal cancer TGF-β2-IL1β Source of CAFs [43]
Lung cancer TGF-β Resistance to chemotherapy [44,45]
 Radiation Resistance to radiotherapy [46,47]

27-HC, 27-hydroxy cholesterol; TNF-α, tumor necrosis factor-α; PDAC, pancreatic cancer; HCC, hepatocellular carcinoma; SIRT3, Sirtuin 3; CCM,
cerebral cavernous malformation; TGF-β, transforming growth factor-β; BMP, bone morphogenetic protein; NOX, NAPDH oxidase; CAF, cancer-
associated fibroblast.
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releasing the Notch intracellular domain (NICD) [55]. The NICD then translocates to the nucleus and binds to the DNA-binding protein
CSL, subsequently influencing the EndMT process by recruiting coactivators [56–59]. As a significant marker of TME, the hypoxic
environment not only plays an important role in promoting angiogenesis but also has been demonstrated to effectively induce EndMT
through the hypoxia-inducible factor-dependent pathway [60–63].

The first study on the relationship between EndMT and tumors was conducted in a mouse model of melanoma and pancreatic
tumor, reported in 2007 [16]. Since then, growing evidence has firmly established that EndMT is closely associated with a variety of
tumors. Angiogenesis is a crucial pathway for tumor progression in the TME [64]. In recent years, the expression of major EndMT
transcription factors (Slug and Snail) has been identified in the ECs of tumor vasculature in many cancers. The expression of Slug is
linked to angiogenesis and tumor metastasis [65–67]. As it has been established, CAFs represent a primary component of the TME,
capable of influencing the initiation and progression of tumors through the secretion of various cytokines and chemokines [68,69].
Myofibroblasts or mesenchymal cells (MCs) generated by ECs through EndMT constitute a significant source of CAFs [16,70].
Additionally, EndMT disrupts the endothelial barrier, facilitating the migration of tumor cells [40]. This underscores the crucial role of
EndMT in the advancement of tumors.

3. TGF-β and EndMT in the TME

3.1. General cognition of TGF-β

TGF-β was initially isolated from virally and chemically transformed cells, exploiting its cell-transforming ability, later, it was
discovered to be expressed in various tumors and cell types [71,72]. Mammals typically express three subtypes of TGF-β: TGF-β1,
TGF-β2, and TGF-β3. These correspond to loci 19q13, 1q41, and 14q24 on human gene chromosomes, respectively [73,74].

Bioactive TGF-β exists as a dimer, and its intracellular signal transduction pathway involves binding to serine/threonine kinase
receptors type I and II (TβRI and TβRII) on the cell surface. Notably, activation of the TβRI kinase domain is triggered by the binding of
TGF-β and TβRII [75]. Within cells, phosphorylated ligands prompt the release of smad2 and smad3 signal transduction on the inner
surface of the plasma membrane. Subsequently, the phosphorylated dimer Smad2/3 combines with the common Smad4 to form a
heterotrimeric complex. Following this, the Smad heterotrimeric complex is translocated to the nucleus, where it regulates the
expression of various target genes through interactions with other promoters [76].

The expression of Smad-6 and Smad-7 can inhibit the Smad signal transduction pathway of TGF-β, with Smad-7 also being
regulated by the TGF-β signal. Mechanistically, Smad6 suppresses signal transmission by influencing the Smad1-CoSmad process and
forming an inactive Smad1-Smad6 complex. However, Smad7 negatively regulates signal transduction of TGF-β superfamily members
by impeding the binding and phosphorylation of Smad molecules to receptors [77].

Apart from the Smad2/3 pathway, TGF-β can activate several non-Smad signal transduction pathways. TGF-β can engage mitogen-
activated protein kinase (MAPK) pathways, such as p38 MAPK, c-JUN-N terminal kinase (JNK), and extracellular signal-regulated

Fig. 1. Endothelial-to-mesenchymal transition (EndMT) in the tumor microenvironment (TME). Tumor-mediated inflammatory factors (such
as interleukin-1-β (IL1-β), tumor necrosis factor-α (TNF-α), and fetal growth factor (FGF) can trigger the transformation of vascular endothelial cells
into mesenchymal cells, promoting their conversion into CAFs or myofibroblasts. This process also upregulates the expression of fibroblast-specific
proteins such as FSP-1, fibronectin (FN), calponin, α-smooth muscle actin (α-SMA), N-cadherin, MMP-2/9, and other proteins.
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kinase (ERK) [78,79]. These pathways function independently of Smad but can affect the response of Smad-dependent TGF-β [78–83].
Additionally, the Wnt and Notch signals have been demonstrated to regulate the functions of TGF-β [57,58,78].

TGF-β is involved in various biological processes, encompassing cell growth, differentiation, development, and tumor progression
[73,84]. Studies have shown that all cells (including most immune cells) can secrete TGF-β1, TGF-β2 is mainly secreted by epithelial
cells and nerve cells, and TGF-β3 is mainly expressed in mesenchymal cells.Therefore, TGF-β has a wide range of effects. However, the
mechanism of action of TGF-β often depends on the specific situation of the body [85]. In processes of growth and development, TGF-β
can promote EndMT, induce epithelial-to-mesenchymal transition (EMT), and facilitate fibroblast-to-myofibroblast transition. Addi-
tionally, TGF-β has been associated with tissue development and repair [86]. In advanced cancer TME, TGF-β-induced EMT can
stimulate tumor invasion, metastasis, and drug resistance in tumor cells [87,88]. EndMT, induced by TGF-β, has also been established
to be connected with tumor progression. EndMT is a crucial source of CAFs in tumors [89]. Furthermore, acting as a major pro-fibrosis
cytokine, TGF-β can induce various transformation processes and promote the progression of fibrosis-related diseases [8,90–92].

3.2. Role of TGF-β in EndMT

EndMT is typically instigated by inflammatory mediators, prompting the transformation of ECs into stromal fibroblast-like cells,
thereby influencing disease progression [14,15]. The regulatory mechanism governing EndMT is intricate, with the most well-known
induction being attributed to the TGF family. TGF-β binds both TGF-β type I receptors (TβRI) and TGF-β type II receptors (TβRII),
forming polymeric complexes that subsequently activate downstream Smad-dependent pathways and other non-Smad signaling
pathways (Fig. 2) [93]. In the conventional Smad-dependent signaling pathway, activation of the TGF-β receptor (TβRI) on the EC
membrane leads to the binding and phosphorylation of Smad2 and Smad3. The resulting Smad2/3 phosphorylation complex interacts
with Smad4, ultimately translocating to the nucleus and activating genes (such as Snail, Twist, Zeb, and Slug), which promote tumor
invasion and migration (Fig. 2) [93–95]. Furthermore, certain members of the TGF-β family (TGF-β2, BMP2, and BMP4) exert effects
on both Smad-dependent and non-Smad signal transduction pathways through TβRII (Fig. 2) [93]. The EndMT process often disrupts
homeostasis in the TME. To confirm the occurrence of EndMT, commonly selected mesenchymal markers include α-smooth muscle
actin (α-SMA), N-cadherin, calmodulin (calponin), fibroblast-specific egg protein-1 (FSP-1), fiber-linked egg whey (fibronectin), and
MMPs such as MMP-2 and MMP-9 (Fig. 2) [96,97].

As established, the onset and progression of tumors are often closely associated with prolonged inflammatory stimulation [98,99].
TGF-β can induce the EndMT process in certain cancers (e.g., hepatocellular carcinoma, colon cancer, melanoma), leading to the
conversion of ECs into CAFs, thereby promoting angiogenesis and tumor migration [100] (Table 1). Additionally, inflammatory factors
can stimulate the EndMT process in the TME by activating WNT, Notch, and hypoxia signaling pathways [24,101,102]. Among these,
theWNT pathway can collaborate with the TGF-β pathway to activate downstream Smad-dependent signaling and thus promote tumor
development [101].

Fig. 2. Molecular pathways and downstream signaling in the process of EndMT. The molecular pathways of EndMT in endothelial cells
encompass WNT, TGF-β, Notch, and hypoxia signaling pathways. EndMT induced by transforming growth factor-β involves a typical Smad2/3
pathway. Furthermore, it can activate Smad-independent pathways (Tak1, RAS, and PI3K signaling pathways). These ultimately enhance the
expression of Slug, Twist, ZeB, and Snail proteins.
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3.3. TGF-β in other biological processes in the TME

In the TME, TGF-β serves a multifaceted role. It not only induces EndMT but also plays a role in various biological processes,
including the induction of EMT in cancer. Its function varies in different stages of cancer. During the early stages of epithelial
carcinogenesis, TGF-β counters the effects of epithelial injury or stress stimulation through its antiproliferative and pro-apoptotic
effects [103]. However, in the advanced stages of cancer, tumor cells manipulate TGF-β signal components through various mecha-
nisms to diminish its growth inhibitory effects. Simultaneously, TGF-β induces the EMT process, promoting tumor cell invasion and
migration, thus driving tumor progression [87,103,104].

TGF-β also interacts with immune cells. For instance, it can hinder the antigen presentation ability of dendritic cells by suppressing
the expression of the MHC-II gene. Additionally, it can impede the function of natural killer cells at multiple levels (e.g., TGF-β
downregulates the expression of interferon-γ and TBET genes in natural killer cells, thereby inhibiting the Th1 response) [105–108].
Human macrophage subsets can modulate the activity of TGF-β by influencing the activity of integrin αvβ8 and MMP-14 [109].

In the ECM, TGF-β also plays a role in the regulation of collagen function. For instance, endotrophin, released as a signaling
molecule from collagen type VI, has been demonstrated to regulate adipose tissue fibrosis and metabolic dysfunction through the TGF-
β signaling pathway (Fig. 3) [110].

4. MMPs and EndMT in the TME

4.1. General cognition of MMPs

The human MMPs family comprises 24 zinc- and calcium-dependent endopeptidases, including two duplicated genes encoding
MMP-23 [111]. MMPs share similar structures, enabling them to not only degrade nearly all protein components in the ECM but also
participate in a variety of biological processes under both normal and pathological conditions [112,113]. Generally, MMPs are
classified into seven categories based on their substrate specificity and cutting mechanism: (1) interstitial collagenases, including
MMP-1, -8, and -13; (2) gelatinases, encompassing MMP-2 and MMP-9; (3) matrix proteases, involving MMP-3, -10, and − 11; (4)

Fig. 3. TGF-β plays a crucial role in various biological processes within the TME. TGF-β inhibits the function of dendritic cells (DC) and natural
killer cells while activating M2-type tumor-associated macrophages (TAMs), CD4+ T cells, and CD8+ T cells. Moreover, TGF-β not only directly
promotes the transformation of resident fibroblasts into myofibroblasts/CAFs but also induces the transformation of endothelial cells and epithelial
cells into myofibroblasts/CAFs through the EndMT and EMT processes. This leads to an increase in Smad proteins, MMPs, and collagen production.
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matrix lysins, represented by MMP-7 and -26; (5) metalloelastases, featuring MMP-12; (6) membrane-type MMPs (MT-MMPs), which
include MMP-14, -15, − 16, − 17, − 24, and − 25; and (7) other MMPs (MMP-19, -20, − 23, and − 28) [114] (Table 2).

Apart frommembrane-type MMPs (MT-MMPs), other MMPs are typically secreted into the extracellular microenvironment by cells
in an inactive form, a mechanism that safeguards cells’ essential components from MMP-induced damage. Almost all MMPs possess
four domains: an N-terminal propeptide, a hinge domain, a catalytic domain, and a C-terminal domain [115]. Cleavage of the pro-
peptide, both inside and outside the cell, activates Pro-MMPs, removing the prodomain from the catalytic site and thus rendering
MMPs active and capable of binding to their substrate [116,117].

TIMPs are endogenous protease inhibitors that form a binary noncovalent complex with MMPs in a 1:1 ratio. This complex reg-
ulates the activation or function of MMPs and prevents MMPs from binding to their substrates [118]. Thus far, four TIMPs (TIMP-1,
TIMP-2, TIMP-3, and TIMP-4) have been identified. Although there are some differences in their specificity, each TIMP has been found
to inhibit the activity of most MMPs [119–121].

4.2. TGF-β regulates MMPs through EndMT

Interestingly, based on relevant literature, when compared with the results of the EMT process, only a subset of MMPs has been
reported to be associated with EndMT. The expression of MMPs (specifically, MMP-1, -2, -7, -9, -10, − 11, − 14, and − 15) in fibroblast-
like cells derived from EndMT was significantly higher than that in normal fibroblasts. In the conditioned medium obtained from these
fibroblast-like cells, MMP activity was observed to be 8.2 times higher than that of normal fibroblasts, while MMP activity in cell
lysates was three times lower than that in normal fibroblasts [24].

The regulatory influence of TGF-β on EndMT-related MMPs is primarily through the activation of specific domains within the MMP
promoter. In the MMP promoter, there exist several trans-activating factor domains, including AP-1, NF-κB, PEA3, RARE, Sp-1, and
β-catenin/Tcf-4-lef-1. The cis-acting elements in the promoter of MMP bind with these trans-acting factors to regulate MMP gene
expression [18,148]. Based on the elemental composition of the cis-element site in the promoter, EndMT-related MMPs can be
categorized into three groups: (1) Promoters containing both TATA-binding protein and AP-1 transcriptional activator, including
MMP-1, -7, -9, and -10; (2) promoter group containing only TATA but not AP-1, such as MMP-11 and -15; (3) promoters containing

Table 2
MMPs associated with cancers and their general role in biology.

MMPs Biological Role Associated with Cancer Type References

MMP-1 Degradation of ECM; Angiogenesis BLCA, BRCA, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, STAD, THCA,
UCEC

[122]

MMP-2 Tumor invasion and metastasis; Degradation of ECM;
Activate TGF-β; Angiogenesis

BLCA, HNSC, KIRP, LUSC, PRAD, UCEC [123,124]

MMP-3 Degradation of ECM; Activate proMMP-1, -3, -7, -8, -9, -13;
Angiogenesis

BRCA, COAD, ESCA, HNSC, LUAD, LUSC, STAD, UCEC [125,126]

MMP-7 Tumor invasion and metastasis; angiogenesis; degradation of
ECM

BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, STAD,
THCA

[127]

MMP-8 degradation of ECM COAD, ESCA, HNSC, STAD [128]
MMP-9 Tumor invasion and metastasis; degradation of ECM; activate

TGF-β; angiogenesis
BLCA, BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD,
LUSC, PRAD, STAD, UCEC

[129,130]

MMP-10 Degradation of ECM BRCA, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, PRAD, STAD,
THCA, UCEC

[131]

MMP-11 Tumor invasion and metastasis; degradation of ECM BLCA, BRCA, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,
PRAD, STAD, THCA

[132,133]

MMP-12 Degradation of ECM; peptidoglycan metabolism BRCA, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, STAD, UCEC [134]
MMP-13 degradation of ECM BLCA, BRCA, COAD, ESCA, HNSC, KICH, LUAD, LUSC, STAD, THCA [135]
MMP-14 Tumor invasion and metastasis; degradation of ECM;

angiogenesis
BRCA, COAD, ESCA, HNSC, KIRC, KIRP, LUSC [124,136]

MMP-15 degradation of ECM KICH, UCEC [137,138]
MMP-16 Degradation of ECM; activate MMP2 BLCA, HNSC, KIRC, PRAD, THCA, UCEC [138,139]
MMP-17 Degradation of ECM HNSC, KIRC, LUAD, LUSC, UCEC [140]
MMP-19 Degradation of ECM LUAD, LUSC, UCEC [141]
MMP-20 Degradation of ECM KIRP [142]
MMP-

23A/
B

Degradation of ECM; activate MMP21 LUSC, BLCA, KICH, UCEC [143]

MMP-24 Degradation of ECM; peptidoglycan metabolism KICH, LUSC [138,144]
MMP-25 Degradation of ECM; peptidoglycan metabolism COAD, KIRC, LUSC [140]
MMP-26 Degradation of ECM KICH, PRAD, UCEC [138,145]
MMP-27 Degradation of ECM BLCA, BRCA, COAD, HNSC, [146,147]
MMP-28 Degradation of ECM; peptidoglycan metabolism BRCA, COAD, KICH, LUAD, LUSC, STAD, UCEC [146]

ECM, extracellular matrix; BLCA, bladder cancer; BRCA, breast cancer; COAD, colon adenocarcinoma; ESCA, esophageal cancer; HNSC, head and
neck cancer; KICH, kidney chromophobe; KIRC, renal clear cell cancer; KIRP, renal papillary cancer; LIHC, hepatocellular cancer; LUAD, lung
adenocarcinoma; LUSC, lung squamous cancer; PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid cancer; UCEC,
uterine corpus endometrial carcinoma.
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neither TATA nor AP-1, with the expression of MMPs mainly regulated by specific protein 1 (SP-1) transcription factors, including
MMP-2 and -14 [18,24,148,149].

In the promoter region of the TGF-β gene, two main binding sites relate to the regulation of MMPs: TGF-β inhibitory element (TIE)
and Smad binding element (SBE) [150–152]. Although TIE binding sites exist in the promoters of MMP-1, MMP-7, MMP-9, and
MMP-14, TGF-β seems to regulate only the expression of MMP-1 and MMP-7 through TIE, showing no significant correlation with the
TIE sequence in MMP-9 and MMP-14 promoters [152–157]. As for another binding site pertaining to TGF-β′s regulation of MMPs, SBE
collaborates with other intracellular signal transduction pathways to regulate MMP expression. For instance, MMP-2 expression is
induced by both Smads and the TAK1-p38 MAPK-ATF2 pathways [158,159].

TGF-β can also influence MMPs by participating in signal transduction in alternative ways. For example, the P38 signal transduction
pathway contributes to the expression of MMP-2 induced by TGF-β in breast epithelial cells and pleural malignant mesothelioma
[160], while the NF-κB protein signal pathway serves as the key pathway for TGF-β in inducing MMP-9 expression in cancer cells
[161–164]. Additionally, MMP-14 collaborates with TGF-β to activate JNK signal transduction, thus facilitating keratinocyte migration
to regulate the expression of MMP-9 [165].

4.3. MMPs and EndMT

Although the EndMT process is linked to increased expression of many MMPs, current related studies have specifically demon-
strated a direct relationship between the expression of gelatinases (MMP-2 and -9) and membrane-type 1MMP (MT1-MMP) with
EndMT. The specific connections between these MMPs and EndMT are summarized in Table 3 and further discussed below.

Increased expression of MMP-2 and MMP-9 has been observed in the EndMT process during tumor metastasis, inflammation-
related diseases, human cytomegalovirus (HCMV) infection, and heart valve–related diseases under the influence of TGF-β [27,
166–169]. Particularly in tumor migration, inducing EndMT in human microvascular EC-1 (HMEC-1) and human umbilical vein EC
(HUVECs) using 27-hydroxycholesterol (27HC) significantly elevates the expression and activity of MMP-2 and MMP-9. Conversely,
knocking down the STAT3 gene in HUVECs significantly inhibits EndMT [27]. Moreover, the migration of HMEC-1 through EndMT has
also been correlated with the proteolytic activity of MMP-2 [170]. The ILK-MMP9-MRTF axis, consisting of integrin-linked kinase,
MMP-9, and myocardin-related transcription factor, plays a crucial role in differentiating ECs into CAF-like cells during EndMT [171].
These findings indicate that not only does the EndMT process influence the expression of MMP-2 andMMP-9, but these MMPs also play
a regulatory role in the occurrence of EndMT.

Regarding MT-MMPs, only MT1-MMP has been confirmed to be associated with EndMT. Depending on tissue demands or injuries,
ECs may differentiate into MCs, or behave as tip cells and stem cells. The former process is referred to as EndMT, while the latter is
known as EC activation. Despite their distinct differentiation pathways, they are both linked to the functions of SNAI1, SNAI2, Slug,
and MMPs. The transcription factors SNAI and Slug can directly regulate the expression of MT1-MMP. Furthermore, the activities of
MMP-2 and MMP-9 may also be influenced by the expression of Slug through MT1-MMP [65,172,173]. Additionally, MT1-MMP can
activate latent TGF-β1 in macrophages, inducing paracrine SMAD2-mediated signal transduction and endothelial-stromal trans-
formation in ECs. MT1-MMP-deficient macrophages have shown the ability to inhibit EndMT in co-culture with ECs [25]. This un-
derscores the interaction between MT1-MMP and EndMT.

5. Relationship among EndMT, TGF-β, and MMPs

Currently, there is limited research on the inhibition of EndMT by targeting both TGF-β and MMPs. Most studies focus on sup-
pressing the EndMT process and MMP expression by inhibiting TGF-β. Various clinical drugs and cytokines, such as the combination of
temozolomide and perillyl alcohol (NEO212), the interaction between mitral endothelial cells and interstitial cells, Tongxinluo,
curcumin, losartan, hydroxytyrosol (HT), and HT-3Os (the main plasma metabolite of HT), have been found to inhibit or block the
TGF-β process. Consequently, EndMT is suppressed, leading to a decrease in related MMP expression and activity [27,166,167,
174–177]. Notably, in the regulation of the microRNA (miR)-21 gene in ECs, an endogenous protein known as Kallistatin has been

Table 3
Effect of the EndMT process on MMPs in different endothelial cells.

Inducers Cell line Role References

27-HC HMEC-1 and HUVECs Expression of MMP-2 and MMP-9 increased [37]
IL-1β ECs Expression of MMP-2 and MMP-9 increased [120]
  (HT-3Os protect ECs from IL-1β, downregulate MMP-2 and MMP-9) 
KSHV infection Lymphatic ECs Expression of MT1-MMP increased [125]
TGF-β2 HMEC-1 Expression of MMP-2 increased [123]

HCMV and TGF-β1 HUVEC MMP-2 expression increased and TGF-β1 was activated [122]
TGF-β VEC Expression of MMP-2 increased [119]
TGF-β1, TGFβ-3, and TNF-α HUVEC Expression of MMP-9 increased [121]
TGF-β1 ECs Expression capacity of EndMT correlates with MT1-MMP expression in Mφs [126]

27HC, 27-hydroxy cholesterol; KSHV, Kaposi’s sarcoma herpes virus; HCMV, human cytomegalovirus; TNF-α, tumor necrosis factor-α; HMEC-1,
human microvascular endothelial cell-1; HUVEC, human umbilical vein endothelial cell; VEC, valvular endothelial cell; HT-3Os, HT-3 o sulfate;
Mφs, macrophages.
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shown to hinder TGF-β synthesis. This process inhibits the formation of reactive oxygen species mediated by TGF-β and reduces the
expression and activity of NADPH oxidase. Furthermore, Kallistatin counters TGF-β-induced miR-21 and Snail1 synthesis, Akt phos-
phorylation, NF-κB activation, and MMP-2 synthesis and activation. These findings offer a novel approach to prevent fibrosis and
cancer [176].

Some research has also demonstrated that inhibiting MMPs can affect the EndMT process. For instance, MT1-MMP-deficient
macrophages have demonstrated the ability to impede EndMT in co-cultures with ECs [178]. In the microenvironment of Kaposi’s
sarcoma, Kaposi sarcoma herpesvirus-induced EndMT is initiated by viral proteins (vFLIP and vGPCR) through Notch pathway acti-
vation, MT1-MMP operates downstream of Notch, subsequently influencing the EndMT process [179]. Furthermore, studies have
indicated that endothelial cell HUVECs infected with HCMV can activate latent TGF-β1 by stimulating MMP-2 after treatment with
TGF-β1 [169]. This suggests a reciprocal regulatory relationship between certain MMPs, TGF-β, and EndMT.

6. Conclusion and perspectives

Increasing research results underscore the pivotal roles of TGF-β, MMPs, and EndMT in tumors and related diseases. In this review,
we delineate the individual mechanisms and physiological processes of TGF-β, MMPs, and EndMT in the TME, while also elucidating
their regulatory mechanisms and current research status in TME. The literature suggests that TGF-β, MMPs, and EndMT interact with
each other to varying extents.

EndMT has always been indispensable in the context of tumors and related diseases. Presently, inhibiting the EndMT process
primarily relies on regulating the TGF-β signaling pathway, and the production of MMPs has been established to be associated with
TGF-β [69,180]. However, studies have proved that the expression of someMMPs will increase with the occurrence of EndMT, but only
a few studies assessed the effect of MMPs on the EndMT process [25]. Although the research status indicates a certain relationship
between EndMT and MMPs, the specific mechanism between MMPs and EndMT has yet to be fully elucidated.

Given the interrelated regulatory mechanisms of TGF-β, MMPs, and EndMT in the TME, they all serve as potential combined targets
for chemotherapy [167,179]. Thus, concurrently targeting TGF-β and MMPs presents a highly promising research avenue for inter-
fering with the role of EndMT in TME. In conclusion, modulating the expression of TGF-β and MMPs can impact tumor progression.
However, this perspective necessitates validation through experimental studies. Future investigations will further delve into the
combination of TGF-β and MMPs in tumor treatment, providing a more comprehensive understanding of its clinical benefits in cancer
therapy.

CRediT authorship contribution statement

Fei Du: Writing – review & editing, Writing – original draft, Project administration. Jing Li: Writing – review & editing, Writing –
original draft, Validation, Investigation. Xiaolin Zhong: Writing – review & editing. Zhuo Zhang: Writing – review & editing, Su-
pervision, Investigation, Conceptualization. Yueshui Zhao: Writing – review & editing, Supervision, Investigation, Funding acqui-
sition, Conceptualization.

Data availability statement

No data was used for the research described in the article.

Additional information

No additional information is available for this paper.

Funding

This work was supported by Sichuan Science and Technology Program (Nos. 2023NSFSC0728, 2022NSFSC0816, and
2022YFS0633-B4).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Abbreviations

MMPs matrix metalloproteinases
MT1-MMPs membrane-type 1-matrix metalloproteinase
EndMT endothelial-to-mesenchymal transition
TME tumor microenvironment
TIMPs tissue inhibitors of matrix metalloproteinases

F. Du et al. Heliyon 10 (2024) e40118 

8 
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SIRT3 Sirtuin3
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