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Abstract: Clinical evidence of the effectiveness of cochlear implantation for hearing loss with mi-
tochondrial DNA mutation is limited. Most reports have only described short-term postoperative
speech perception, which may not reflect the limitations of cochlear implantation caused by progres-
sive retrocochlear dysfunction. The present study aimed to investigate long-term speech perception
after cochlear implantation in patients with severe to profound hearing loss associated with mitochon-
drial DNA mutation. A retrospective chart review was performed on patients with mitochondrial
DNA mutation who had undergone cochlear implantation at the Department of Otolaryngology
and Head and Neck Surgery at the University of Tokyo Hospital. We extracted data on causative
mutations, clinical types, clinical course, perioperative complications, and short-term and long-term
postoperative speech perception. Nine patients with mitochondrial DNA mutation underwent
cochlear implantation. The mean observation period was 5.5 ± 4.2 years (range, 1–13 years), and
seven patients were followed for more than 3 years. Two of the seven patients who initially showed
good speech perception exhibited deterioration during long-term follow-up. The absence of an
acute progression of cognitive decline in patients, showing a gradual decrease in speech perception,
suggests that the deterioration of speech perception was caused by progressive retrocochlear de-
generation. Although most patients with mitochondrial DNA mutation maintained good speech
perception for more than 3 years after cochlear implantation, retrocochlear degeneration could cause
the deterioration of speech perception during long-term follow-up.

Keywords: cochlear implantation; retrocochlear dysfunction; mitochondrial gene mutations

1. Introduction

Mitochondria play an important role in intracellular adenosine triphosphate produc-
tion by oxidative phosphorylation, an essential energy source in nucleated cells. Muta-
tions in mitochondrial DNA (mtDNA) cause dysfunction, especially in tissues with high
metabolic demands. In patients with mtDNA mutations, organs that rely on aerobic energy
production, such as the visual pathway, heart, central nervous system, and skeletal muscle,
are primarily affected. The auditory pathway, including the cochlea, also has large energy
demand; therefore, the auditory pathway is an organ that can be profoundly affected by
mitochondrial disorders [1–3].
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More than half of the patients with mtDNA mutations are affected by a hearing im-
pairment at some time during the disease course [4–6]. Pathological mutations of the
mtDNA have been commonly found at the transfer RNAs (tRNAs). To date, more than
90 point mutations in 21 of the 22 mitochondrial tRNA genes have been reported [7,8].
Most of these mutations result in a decreased rate of mitochondrial protein synthesis,
causing a deficiency in the energy metabolism of the cell [9]. Approximately 50 muta-
tions of the tRNA genes have been associated with deafness [10]. Associated features of
hearing loss include encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS
syndrome), diabetes (maternally inherited diabetes and deafness, or MIDD, syndrome),
ophthalmoplegia (chronic progressive external ophthalmoplegia, or CPEO, syndrome),
cardiac conduction abnormalities with retinopathy and ophthalmoplegia (Kearns–Sayre
syndrome), myoclonus epilepsy (myoclonus epilepsy associated with ragged-red fiber,
or MERRF, syndrome), ptosis, ophthalmoplegia, gastrointestinal dysmotility, cachexia,
peripheral neuropathy, and leukoencephalopathy (mitochondrial neurogastrointestinal
encephalopathy, or MNGIE, syndrome). Hearing loss is usually gradual at onset, initially
occurs at high frequencies, is predominantly bilaterally symmetrical, and progresses to pro-
found. Hearing loss in patients with mitochondrial diseases is mainly attributed to cochlear
dysfunction [11–15], but mitochondrial disorders can also affect the central nervous system,
including the central auditory pathway, and can cause psychomotor regression [4,16–19].
Roesch et al. [20] conducted a systematic review of knowledge on hearing loss in genet-
ically proven mitochondrial disease in children. A total of 75 patients from 23 studies
were included in the analysis. Retrocochlear hearing loss was found more often (33 out of
75 patients) than expected. Affected genes included OPA1 in 14 patients, FDXR in seven
patients, and MT-TL1 in six patients. The clinical courses of these patients, including the
age of onset and disease severity, showed diverse characteristics. Takahashi et al. [21]
reported histopathological examinations of human temporal bones in MELAS patients and
found severe degeneration of the stria vascularis and the spiral ganglion cells. There was
severe atrophy of the stria vascularis in all turns of the cochlea, and the remaining stria
cells showed vacuole formation and the presence of small, dark-staining, round, and ovoid
cells. Both the outer and inner hair cells were generally present, with scattered losses in the
lower basal turns. In addition to these findings, the total number of spiral ganglion cells
was reduced when compared with the mean values of normal newborn and age-matched
control samples, representing a mild neuronal loss. Many spiral ganglion cells showed
varying degrees of degenerative change, as evidenced by faint staining of the cytoplasm,
loss of cell membrane outline, and loss of nuclear definition. Other histopathological exami-
nations of the human temporal bone also demonstrated that mtDNA A3243G mutation can
involve not only the stria vascularis and hair cells but also the spiral ganglion cells [22,23].

A defect in the inner hair cells, the auditory nerve, the connection between them, or
the connection between the nerve and brain can lead to auditory neuropathy spectrum
disorder (ANSD). ANSD has been reported to be associated with head injury; infections
due to various viruses such as measles, mumps, and cytomegalovirus; and high fever and
is also caused by specific gene mutations, such as OTOF. ANSD is characteristic of relatively
mild hearing impairment with abnormal ABR response and poor speech recognition score,
while distortion product otoacoustic emission (DPOAE) is normal [24,25]. In a report
from Leruez et al. [26], 8 out of 19 patients with OPA1 gene mutation were reported to
have suspected ANSD. Sakai et al. [27] reported a patient with normal DPOAE who had
fluctuation of hearing threshold measured by ABR; because the peak latency of wave I
and wave V and the intervals of waves I–V were markedly delayed, the existence of a
retrocochlear problem was speculated to be a cause of hearing loss.

Cochlear implantation (CI) for patients with severe to profound hearing loss associated
with mtDNA mutations has been reported [19,21–23,28–35]. Howes et al. [36] reported a
case of MIDD with a speech score of 67% at one-month follow-up. Yasumura et al. [37]
reported a case of MELAS with a speech score of 72% at 3-month follow-up. Li et al. [34]
reported a case of MNGIE with a speech score of 56% at 3-month follow-up. All of these
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reports emphasized that CI is generally effective for patients with mtDNA mutations, but
most of them only described speech perception in the short-term postoperative period.
Therefore, it is unclear whether the effectiveness of CI is limited by the progression of
retrocochlear dysfunction and/or cognitive decline associated with mitochondrial disorder.
In fact, a patient has been reported to show poor postoperative speech perception associated
with cognitive problems in relatively long-term follow-up [38].

In the present study, we investigated not only short-term but also long-term speech per-
ception after CI in patients with profound hearing loss associated with mtDNA mutation.

2. Materials and Methods

A retrospective chart review was performed on patients who had undergone CI at the
Department of Otolaryngology and Head and Neck Surgery at the University of Tokyo Hos-
pital from 1991 to 2019. Nine patients were diagnosed with mtDNA mutations via genetic
testing, and the additional information extracted included the causative mutations, clinical
types, clinical course, perioperative complications, and postoperative speech perception.
The Fukuda version of the monosyllabic speech perception test was used to evaluate speech
perception before and after CI. Speech performance in noise was evaluated in four patients,
including two patients examined twice, using a CI-2004 Japanese open-set sentence test.
Tests were performed in quiet, SN20 and SN10. A DPOAE test and a promontory stim-
ulation test were performed to differentiate between retrocochlear and cochlear hearing
loss. Cases with obvious decline in attention, executive function, learning/memory, lan-
guage, perceptual/motor functions, and social cognitive functions during the examination
or as reported by family members were considered to have cognitive deterioration. The
present study was approved by the Regional Ethical Standards Committee of the Faculty
of Medicine at the University of Tokyo (application number 2487) and was conducted in
accordance with the tenets of the Declaration of Helsinki. Written informed consent was
obtained from the patients for publication of this study.

3. Results
3.1. Patient Characteristics

The characteristics of the nine patients with mtDNA mutations who underwent CI
are shown in Table 1. The mean age at CI was 45.0 ± 11.5 years (range, 22–64 years), and
the mean observation period was 5.5 ± 4.2 years (range, 1–13 years). A3243G mutation
was identified in seven patients and RRM2B mutation and A8296G mutation were each
identified in one patient. Of the seven patients with A3243G mutation, six patients were
diagnosed with MIDD, and one was diagnosed with MELAS. A patient with the RRM2B
mutation was diagnosed with CPEO, and a patient with the A8296G mutation only had
hearing loss. Among the subjects, there were no suspicious findings of cognitive decline
preoperatively. No patients showed any response in DPOAE tests, indicating that hearing
loss involved the cochlea. All patients except one (patient 7) showed good response in
promontory stimulation tests, which indicates that the retrocochlear auditory pathway was
markedly involved in patient 7 but not in others.
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Table 1. Summary of patients.

Patient Disease Causative
Mutations

Age of Onset
of Hearing
Loss (years)

Age of
Becoming

Deaf (years)

Age at CI
(years)

Observation
Period
(years)

Associated
Symptoms

1 MIDD A3243G 30 53 53 3.4 diabetes
2 MIDD A3243G 32 46 46 13 diabetes
3 MIDD A3243G 38 44 44 12.2 diabetes
4 MIDD A3243G 27 64 64 1.2 diabetes
5 MIDD A3243G 10 50 51 6.2 diabetes
6 MIDD A3243G 14 36 37 3.1 diabetes

7 MELAS A3243G 10 44 46 4.0
myopathy, lactic

acidosis, stroke-like
episode

8 − A8296G 7 21 22 4.5 -

9 CPEO RRM2Bs 5 43 43 2.2 mild external
ophthalmoplegia

Abbreviations: MIDD, maternally inherited diabetes with deafness; MELAS, mitochondrial myopathy, en-
cephalopathy, lactic acidosis, and stroke-like episodes; CPEO, chronic progressive external ophthalmoplegia;
CI, cochlear implantation.

3.2. Surgical Findings

No complications were observed during the surgery in any patient. A CI24M (Cochlear®,
Lane Cove, Australia) electrode was used in patients 1, 2, and 3; a CI24RE (Cochlear®)
electrode in patients 4, 5, 6, 7, and 9; and a CI422 (Cochlear®) electrode in patient 8. As
there were no malformed cochlear cases in this series, we chose the latest electrode at
surgery. All patients received CI only in the unilateral ear. Full insertion of CI electrodes
was achieved in all patients. Electrically evoked compound action potentials were detected
in all electrodes in all patients.

3.3. Postoperative Speech Perception

Postoperative speech perception results within 14 months after CI are shown in
Figure 1. Seven patients achieved scores of ≥50% in the Fukuda version of the mono-
syllabic speech perception test after CI, whereas two patients achieved scores of <50%
(patients 1 and 3).
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Figure 1. Short-term results of postoperative speech perception. Seven patients (B,D–I) achieved
scores ≥ 50% after CI, and two patients (A,C) achieved poorer outcomes. CI, cochlear implantation.

The results of long-term postoperative speech perception are shown in Figure 2. Of the
seven patients who were followed for more than 3 years, three patients (patients 2, 3, and 5)
were followed for more than 5 years. Three patients (patients 2, 3, and 7) showed a decrease
in postoperative speech perception of 20% or more. Patient 2 had no identifiable reasons
for an acute deterioration in the first year and a gradual deterioration during the long-term
follow-up. There was no sign of device failure, such as increasing impedances, an increase
in clinical threshold level, or a reduced number of available electrodes in the course of
deterioration of speech perception. In patient 3, a temporal shift in speech perception
improved after mapping modification, and thereafter, no changes were observed during
the long-term follow-up period. In patient 7, an acute deterioration in the first year was
attributed to high-order brain dysfunction caused by cerebral infarction, but this episode
did not cause the limited usage of the implant or make it difficult to conduct a speech
perception test. After this episode, she showed a progressive decline in speech perception,
despite the absence of an additional central episode or cognitive decline. There was no
sign of device failure, such as increasing impedances, increases in threshold level by NRT,
increases in clinical threshold level, or a reduced number of available electrodes in the
course of deterioration of speech perception.

The results of sentence recognition tests in noise in four patients are shown in Table 2.
Noise significantly influenced speech perception in one patient (patient 4), showing a poor
score even in quiet conditions; this patient showed a progressive decline in the monosyllabic
speech perception test. The other three patients maintained good scores under noise
exposure, and two of them, who were examined twice using a sentence recognition test in
noise, showed stable performance for more than three years; these patients also showed
stable performance in long-term monosyllabic speech perception tests.
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Figure 2. Long-term results of postoperative speech perception. Postoperative speech perception for
seven patients. * Three patients with speech perception reduced by 20% or more.

Table 2. Results of speech in noise test.

Patient Tested Year (Years after CI) In Quiet (%) S/N20 (%) S/N10 (%)

4 5.2 45 20 -

5
1.3 95 95 58
3.9 100 95 78

6 1.5 98 97 73

8
1.5 98 100 57
3 100 92 -

A CI 2004 speech test was conducted in four patients at some point after CI. CI, cochlear implantation.

4. Discussion

In the present study, we investigated the short-term and long-term postoperative
speech perception in nine patients who underwent CI for profound hearing loss with
mtDNA mutation. Seven patients exhibited a good score of ≥50% in the Fukuda version of
the monosyllabic speech perception test during the first postoperative year, but two of the
seven patients showed deterioration during the long-term follow-up period. The short-term
results in the current study agree with those in previous reports. Sinnathuray et al. [6] com-
pared the results of postoperative speech perception in 12 patients with mtDNA mutations
from 1997 to 2002 and reported good results irrespective of disease type, severity, and
duration of hearing loss. Nawal et al. [39] conducted a systematic review of cochlear im-
plantation outcomes in patients with mitochondrial hearing loss. In that study, 13 patients
from 11 studies performed speech perception tests, and 10 out of 11 patients scored more
than 50% in either speech, word, or phoneme recognition tests.

Deafness associated with mtDNA abnormalities is mainly attributed to dysfunction
of the inner ear [11–15], but the retrocochlear auditory pathway may also be
involved [4,16,17,21–23]. Short-term improvements in speech perception after CI may
wane during long-term follow-up due to the degeneration of the spiral ganglion cells
or cognitive decline due to progressive mitochondrial disorder. In a recently reported
retrospective case series of five patients with mitochondrial diseases, including MELAS and
MIDD, speech perception was preserved during the long-term follow-up period in four
patients, but one patient could only use implants for several hours per day and could not
conduct the speech perception test within 2 years of surgery [38]. In that report, the authors
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speculated that cognitive decline from the disease made the patient unable to recognize the
importance of using the implant for the establishment of speech perception.

In the current study, two patients who initially achieved good speech perception ex-
hibited a decrease in speech perception during the long-term follow-up period. In patient 2,
neither cognitive decline nor deterioration of the device itself, such as a decrease in the
number of available electrodes or an increase in the impedance of electrodes, were observed;
therefore, progressive retrocochlear dysfunction was considered as the cause of the dete-
rioration in speech perception. In another patient (patient 7), the initial decline in speech
perception was associated with cerebral infarction, but the absence of additional central
episodes, cognitive decline, or deterioration of the device itself thereafter suggests that the
decline in speech perception during the long-term follow-up after cerebral infarction may
be associated with progressive retrocochlear impairment associated with mtDNA mutation.

Previous studies [22–37,40,41] and short-term observations in the present study indi-
cate that patients with mtDNA mutations are good candidates for CI. Notably, however,
the long-term observations in the present study also suggest that retrocochlear dysfunction
may be responsible for the long-term deterioration of speech perception after CI in pa-
tients with mtDNA mutations. Several reports [42–44] have investigated long-term speech
performance in patients receiving CI and have observed no decline in speech perception
performance. For example, Hilly et al. [42] examined 87 cochlear implant recipients, includ-
ing 22 patients over 70 years of age, with a mean follow-up of 6.8 years, and found that
most patients had a stable outcome during the follow-up period. Even in patients who are
older, 13.6 percent improved and none had a reduction in score of more than 20 percent.
Dillon et al. [43] followed 14 cochlear implant recipients aged 65 years and older for at least
10 years and found that consonant–nucleus–consonant word scores were stable between
6 months and 1 year of listening experience, improved significantly between 1 year and
5 years, and were stable between 5 years and 10 years. Hearing in Noise Test sentence
scores in quiet and in noise showed a similar pattern, with stability in performance between
the 6-month to 1-year and 5-year to 10-year follow-up intervals, and significantly improved
performance between the 1-year and 5-year follow-up intervals. Therefore, diagnosis of
mitochondrial diseases will have an impact on long-term performance of CI as well as
future progression of hearing loss. Although CI has the potential to improve the quality
of life in these patients, surgeons need to provide information about the possibility of
gradual deterioration of speech perception in the long term after CI, so that patients and
their families can prepare their future living environments and support. At our institution,
we evaluate for mitochondrial genetic abnormalities at the time of initial consultation in
patients with symptoms and signs suggestive of maternal inheritance.

Because no objective assessment data were available to confirm the progression of
retrocochlear dysfunction, there were no clear predictors of the deterioration of speech
perception during the long-term follow-up period. Preoperative diagnosis of retrocochlear
involvement may have some impact on long-term performance of CI. All patients in our
case series showed an absence of DPOAE response, indicating cochlear involvement. Ab-
sent or poor response in promontory stimulation tests indicates retrocochlear dysfunction.
In the present study, two patients showed deterioration of speech performance during
follow-up; one of them (patient 7) showed poor response in the promontory stimulation
test, but the other (patient 2) showed good response. Therefore, it is unclear if preoperative
retrocochlear involvement can predict the decline in speech perception in the long-term
period. Breneman et al. [45] reported a long-term outcome of cochlear implantation in
patients with auditory neuropathy spectrum disorder (ANSD). In that study, 35 patients
with a follow-up period of more than six years on average showed as good a response as
children with non-ANSD SNHL, which suggests that diagnosis of retrocochlear disease is
not sufficient to predict the long-term benefit of CI. Superficial hemosiderosis is also known
to present retrocochlear deafness. In a systematic review by Chaudhry et al. [46], 31 out
of 44 patients showed improved hearing outcomes following CI, and 22 implants had
sustained benefit at the last follow-up. They concluded that longevity of benefit was diffi-
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cult to predict because of the progressive nature of the disease and a lack of preoperative
prognosticators. Pijl et al. [41] used electrically evoked auditory brainstem response (EABR)
and middle latency response (MLR) data derived from two patients with Kearns–Sayre
syndrome and found that EABR and MLR were useful for distinguishing between cochlear
and retrocochlear hearing loss and for predicting outcomes after CI. Rosenthal et al. [40]
reported EABR and MLR data derived from a patient with MELAS syndrome who had sig-
nificant central nervous system deficits, and proposed prioritizing MLR testing rather than
EABR to evaluate the integrity of the auditory pathway. Introduction of these examinations
may be useful for the prediction of future performance.

There have been several reports that older adult cochlear implant users have poorer
performance of speech in noise compared to younger adults. This may be due to the fact
that listening in noise is more susceptible to retrocochlear auditory pathway damage [47,48].
Although the present study could not provide sufficient data, it may be possible to predict
the deterioration of speech performance with progression of retrocochlear dysfunction by
repeated evaluation under noise conditions.

Generally, central nervous system symptoms, such as stroke-like episodes in MELAS
patients, progress slowly [49,50]. Therefore, retrocochlear dysfunction after CI is also likely
to progress slowly. Long-term observation may reveal deterioration of speech perception
in our patients followed for less than 5 years.

It should be noted that heterogeneity of the presented samples may affect the inter-
pretation of the results because of the relatively small number of cases. Although the time
from deafness to surgery was around one year in most cases, there was diversity in the
onset of hearing loss and the age of surgery. Heteroplasmy is also known to affect disease
severity and the expression pattern of the impairment across organs and tissues [51,52], but
was not analyzed in this study.

5. Conclusions

We retrospectively reviewed short-term and long-term speech perception after CI
in nine patients with deafness associated with mtDNA mutations. Two of the seven
patients who initially achieved good speech perception scores exhibited a deterioration in
speech perception during the long-term follow-up. The absence of acute progression of
cognitive decline in conjunction with the gradual decline in speech perception suggests
that retrocochlear dysfunction associated with mitochondrial disorder could be responsible
for the deterioration of speech perception.
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