
Original article

A RESTful application programming interface

for the PubMLST molecular typing and genome

databases

Keith A. Jolley*, James E. Bray and Martin C. J. Maiden

Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South

Parks Road, Oxford, OX1 3SY, UK

*Corresponding author: Tel: þ44 1865 281537; Fax: þ44 1865 281275; Email: keith.jolley@zoo.ox.ac.uk

Citation details: Jolley,K.A., Bray,J.E. and Maiden,M.C.J. A RESTful application programming interface for the PubMLST

molecular typing and genome databases. Database (2017) Vol. 2017: article ID bax060; doi:10.1093/database/bax060

Received 30 March 2017; Revised 16 June 2017; Accepted 9 July 2017

Abstract

Molecular typing is used to differentiate microorganisms at the subspecies or strain level

for epidemiological investigations, infection control, public health and environmental

sampling. DNA sequence-based typing methods require authoritative databases that link

sequence variants to nomenclature in order to facilitate communication and comparison

of identified types in national or global settings. The PubMLST website (https://pubmlst.

org/) fulfils this role for over a hundred microorganisms for which it hosts curated mo-

lecular sequence typing data, providing sequence and allelic profile definitions for multi-

locus sequence typing (MLST) and single-gene typing approaches. In recent years, these

have expanded to cover the whole genome with schemes such as core genome MLST

(cgMLST) and whole genome MLST (wgMLST) which catalogue the allelic diversity

found in hundreds to thousands of genes. These approaches provide a common nomen-

clature for high-resolution strain characterization and comparison. Molecular typing

information is linked to isolate provenance, phenotype, and increasingly genome assem-

blies, providing a resource for outbreak investigation and research in to population struc-

ture, gene association, global epidemiology and vaccine coverage. A Representational

State Transfer (REST) Application Programming Interface (API) has been developed for

the PubMLST website to make these large quantities of structured molecular typing and

whole genome sequence data available for programmatic access by any third party ap-

plication. The API is an integral component of the Bacterial Isolate Genome Sequence

Database (BIGSdb) platform that is used to host PubMLST resources, and exposes all

public data within the site. In addition to data browsing, searching and download, the API

supports authentication and submission of new data to curator queues.

Database URL: http://rest.pubmlst.org/

VC The Author(s) 2017. Published by Oxford University Press. Page 1 of 7

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2017, 1–7

doi: 10.1093/database/bax060

Original article

https://pubmlst.org/
https://pubmlst.org/
http://rest.pubmlst.org/
https://academic.oup.com/


Introduction

The PubMLST website (https://pubmlst.org) was estab-

lished in 2003 to host multi-locus sequence typing (MLST)

data, initially for the Neisseria (1) and Campylobacter (2)

schemes developed at the University of Oxford, although

its origins date back to the first MLST site established in

1998 (http://mlst.zoo.ox.ac.uk) (1). Conventional MLST

schemes consist of collections of housekeeping gene frag-

ment loci, usually seven each about 500 bp in length, for

which (i) every new allelic variant is assigned an integer

identifier; and (ii) every unique profile consisting of the

combination of these alleles a sequence type (ST) number

(1). This provides a concise summary of the variation

across these loci, data compression, a simple nomencla-

ture, and a rapid means of comparison by counting the

number of loci that differ between any pair of isolates (3).

For example, in Neisseria, ST-11 represents the unique

combination of alleles of abcZ:2, adk:3, aroE:4, fumC:3,

gdh:8, pdhC:4, pgm:6. A single nucleotide variation at any

of these loci defines a different allele, and consequently a

different ST, so all isolates with a particular ST share the

exact same sequence across these loci. Related isolates will

share alleles at some of the loci and STs can be grouped in

to clonal complexes based on the numbers of shared al-

leles. Since its inception, PubMLST has offered hosting for

MLST and single-gene schemes from the community and

there are now schemes for over a hundred, mainly bacter-

ial, microorganisms on the site. As a collection of curated

databases, PubMLST receives thousands of submissions a

year from end users. These comprise: new sequence vari-

ants for allele assignment; new profiles consisting of com-

binations of alleles for ST assignment; and isolate records,

with or without accompanying whole genome assemblies.

The databases for each of the hosted organisms are curated

by teams of domain specialists recruited internationally.

Curators validate new sequence data and allelic profiles

submitted by end users, ensuring that any new variant is

real before being assigned an identifier and that this can be

associated with representative isolate information.

In 2006, a Simple Object Access Protocol (SOAP)

(https://www.w3.org/TR/soap12/) application program-

ming interface (API) was introduced to provide program-

matic access to MLST data to third party clients. This has

been used extensively primarily by commercial software cli-

ents including BioNumerics (http://www.applied-maths.

com/) and SmartGene (http://www.smartgene.com/) to syn-

chronize typing definitions to be used within their applica-

tions. This interface was developed, however, to interact

with the databases powered by an early implementation of

the MLST software, mlstdbNet (4), and is limited to access-

ing and querying MLST data.

With the advent of routinely available whole genome

sequence (WGS) data, the BIGSdb platform (5) was de-

veloped to host, flexibly organize, and extract allelic vari-

ants for any locus of interest: it was designed to be able to

store both the genome sequence data as draft or complete

assemblies, associated with its provenance metadata, along

with any number and size of typing schemes and nomen-

clatures, ranging from the existing conventional MLST

schemes through to collections of loci that make up the

core-[e.g. core genome MLST, cgMLST (6–10)] and pan-

genomes of a species or genus (11). These genome-level

MLST schemes index allelic variation over hundreds or

thousands of loci, representing the complete coding se-

quences of genes, but can be analysed in the same way as

conventional MLST, by counting allelic differences among

isolates (5, 6), which provides rapid high-resolution means

of isolate discrimination. Many of the species-specific data-

bases accept genome submissions and there are now over

55 000, mainly draft, genome assemblies in these data-

bases, curated and linked to provenance, typing nomencla-

tures, and publications.

A Representational State Transfer (REST) (12) API has

now been developed as an integral component of BIGSdb,

facilitating the exposure of all public data held within the

site from any programming environment. The API sup-

ports OAuth authentication so that users can delegate their

access to third party tools to connect to protected resources

or to submit data to the curation queues of databases sup-

porting this feature. This API is accessible from http://rest.

pubmlst.org/.

The source code for BIGSdb, including the RESTful API

application, can be found at https://github.com/kjolley/

BIGSdb. The API is fully documented at http://bigsdb.read

thedocs.io/en/latest/rest.html.

Implementation

The BIGSdb RESTful API is implemented as a Dancer2

(http://perldancer.org/) application, fully integrated in to

the BIGSdb codebase (5), so that it utilizes the same library

methods called by the web application code. It is run using

the Starman high-performance pre-forking PSGI/Plack web

server. The API receives queries via standard web calls uti-

lizing HTTP verbs (GET, POST and DELETE) to signify

the actions that should be taken (Table 1). Results are re-

turned in JavaScript Object Notation (JSON) format, ex-

cept for methods that specifically request bulk sequence

data in FASTA format or profile data in tab-separated text

files. Methods called with POST encode their parameters

in JSON format within the payload of the call.

Most available methods are discoverable from the root

entry point (http://rest.pubmlst.org/), which lists the

Page 2 of 7 Database, Vol. 2017, Article ID bax060

https://pubmlst.org
http://mlst.zoo.ox.ac.uk
https://www.w3.org/TR/soap12/
http://www.applied-maths.com/
http://www.applied-maths.com/
http://www.smartgene.com/
http://rest.pubmlst.org/
http://rest.pubmlst.org/
https://github.com/kjolley/BIGSdb
https://github.com/kjolley/BIGSdb
http://bigsdb.readthedocs.io/en/latest/rest.html
http://bigsdb.readthedocs.io/en/latest/rest.html
http://perldancer.org/
http://rest.pubmlst.org/


database resources available. Following universal resource

identifiers (URIs) returned from any of these database re-

sources lists further URIs leading to hierarchies of data

that can be explored (Figure 1).

Extracting all the information stored about entities is

possible by following the multiple returned URIs. For in-

stance, an isolate record (Figure 2) will contain:

i. URIs to the user records of the sender and curator, pro-

viding user affiliation and curator contact information;

ii. URIs describing the assembled contigs, each of which

will have information concerning how it was gener-

ated, by who and when;

iii. URIs to allele designations for particular typing

schemes and their contig positions;

Table 1. PubMLST API methods*

URI (to go after http://rest.pubmlst.org) HTTP

method

Description

/ GET List site resources

/db/{database} GET List database resources

/db/{database}/loci GET List loci

/db/{database}/loci/{locus} GET Retrieve locus record

/db/{database}/loci/{locus}/alleles GET Retrieve list of alleles defined for a locus

/db/{database}/loci/{locus}/alleles_fasta GET Download alleles in FASTA format

/db/{database}/loci/{locus}/alleles/{allele_id} GET Retrieve full allele information

/db/{database}/loci/{locus}/sequence POST Query sequence to identify allele

/db/{database}/sequence POST Query sequence to identify allele without specifying locus

/db/{database}/schemes GET List schemes

/db/{database}/schemes/{scheme_id} GET Retrieve scheme information

/db/{database}/schemes/{scheme_id}/fields/{field} GET Retrieve scheme field information

/db/{database}/schemes/{scheme_id}/profiles GET List allelic profiles defined for scheme

/db/{database}/schemes/{scheme_id}/profiles_csv GET Download allelic profiles in tab-delimited text format

/db/{database}/schemes/{scheme_id}/profiles/{profile_id} GET Retrieve allelic profile record

/db/{database}/isolates GET Retrieve list of isolate records

/db/{database}/isolates/{isolate_id} GET Retrieve isolate record

/db/{database}/isolates/{isolate_id}/allele_designations GET Retrieve list of allele designations

/db/{database}/isolates/{isolate_id}/allele_designations/{locus} GET Retrieve full allele designation record

/db/{database}/isolates/{isolate_id}/allele_ids GET Retrieve allele identifiers (abbreviated allele designations)

/db/{database}/isolates/{isolate_id}/schemes/{scheme_id}/allele_

designations

GET Retrieve scheme allele designations records

/db/{database}/isolates/{isolate_id}/schemes/{scheme_id}/allele_ids GET Retrieve list of scheme allele identifiers

/db/{database}/isolates/{isolate_id}/contigs GET Retrieve list of sequence contigs

/db/{database}/isolates/{isolate_id}/contigs_fasta GET Download isolate contigs in FASTA format

/db/{database}/contigs/{contig_id} GET Retrieve contig record

/db/{database}/isolates/search POST Search isolate database

/db/{database}/fields GET Retrieve list of isolate provenance field descriptions

/db/{database}/fields/{field} GET Retrieve values set for a provenance field

/db/{database}/users/{user_id} GET Retrieve submitter/curator information

/db/{database}/projects GET Retrieve list of projects

/db/{database}/projects/{project_id} GET Retrieve project information

/db/{database}/projects/{project_id}/isolates GET Retrieve list of isolates belonging to a project

/db/{database}/submissions GET Retrieve list of your submissions

/db/{database}/submissions POST Create new submission

/db/{database}/submissions/{submission_id} GET Retrieve submission record

/db/{database}/submissions/{submission_id} DELETE Delete submission record

/db/{database}/submissions/{submission_id}/messages GET Retrieve submission correspondence

/db/{database}/submissions/{submission_id}/messages POST Add submission correspondence

/db/{database}/submissions/{submission_id}/files GET Retrieve list of supporting files uploaded for submission

/db/{database}/submissions/{submission_id}/files POST Upload submission supporting file

/db/{database}/submissions/{submission_id}/files/{filename} GET Download submission supporting file

/db/{database}/submissions/{submission_id}/files/{filename} DELETE Delete submission supporting file

*Substitute field values where terms are enclosed in {curly brackets}. Submission methods require OAuth authentication to identify the user.

Database, Vol. 2017, Article ID bax060 Page 3 of 7

http://rest.pubmlst.org


iv. A list of PubMed ids of publications including the

isolate;

v. URIs to projects that the isolate record is a member of.

While this detailed information is available, often a user

may only be interested in retrieving known alleles and al-

lelic profiles, or the complete genome assembly for an iso-

late, without the complete associated metadata, and these

can be downloaded in bulk formats such as FASTA or tab-

delimited text with a single method call.

Searching data

Most method calls are for returning specific data records

or all records of a particular type. While this is satisfactory

for synchronizing molecular typing sequence definitions

needed for local use, more advanced searches are also

possible. Search parameters can be combined and JSON-

encoded in a POST call to query the isolate database, re-

turning a list of URIs to isolate records (Figure 3).

Parameters that can currently be included are:

i. Provenance metadata fields, for example country, year,

or serogroup, although these may vary depending on

which database is being queried;

ii. Allelic designations;

iii. Typing scheme fields such as sequence type (ST) or clo-

nal complex.

It is also possible to query an allelic sequence with a

POST call to the sequence definition database to look up

Figure 1. Schematic of API structure. Method calls are written within boxes, with the complete URL constructed by appending the hierarchical values

from the root. Terms written in curly brackets represent specific entity values. Dashed lines show where the output from one method include calls to

further methods. For example, a scheme record will link to member loci, whereas a locus record will include links to schemes of which it is a

member.

Page 4 of 7 Database, Vol. 2017, Article ID bax060



Figure 2. Retrieving an isolate record. A HTTP GET call to http://rest.pubmlst.org/db/{database}/isolates/{isolate_id} can be used to return an isolate re-

cord (highlighted – database configuration name and isolate id number are substituted for the variables). The abbreviated response (not all scheme

data is shown) is piped through the Python json.tool to format it for readability.

Figure 3. Constructing a query to an isolate database. A query of the isolate database can be performed using a HTTP POST call with the search par-

ameters formatted as JSON. Here we query the Neisseria database for all ST-11 isolates, sampled in 2015 from Europe. The curl command line tool

can be used to send this query (highlighted). The abbreviated response (only five isolate records are shown rather than the default 100) is piped

through the Python json.tool to format it for readability.

Database, Vol. 2017, Article ID bax060 Page 5 of 7

http://rest.pubmlst.org/db/{database}/isolates/{isolate_id}


its allele designation. Additionally, there are methods that

return descriptions of available provenance fields and the

loci and fields that make up typing schemes, making it

feasible to replicate selected data structures.

Paging and filtering

Some method calls are likely to return large amounts of

data, so these return paged results along with an indication

of the total set size to ensure that the server, client and net-

work are not overwhelmed, especially as the user or client

software may sometimes only require the total number of

results. The default page size is 100 records. If there are

more records than this in the returned dataset, the JSON

response will include a paging object that contains URIs to

the next, previous, first and/or last pages. It also includes a

URI that will return the complete set of data in a single

page. The current page and page size can be modified by

appending parameters to the URI, e.g. http://rest.pubmlst.

org/db/pubmlst_neisseria_isolates/isolates?page¼2&page_

size¼10.

The API also supports paging using request headers. If

either of the headers X-OFFSET or X-PER-PAGE are

included in the request, this overrides values passed as ar-

guments in the URI and disables inclusion of the paging

object in the JSON response. The response headers include

X-OFFSET, X-PER-PAGE and X-TOTAL-PAGES for all

methods supporting paging.

Some calls can be filtered further to return results that

were added after a particular date, or updated after a par-

ticular date. This is done by appending the ‘added_after’ or

‘updated_after’ parameter with the value set to the

required date in ISO 8601 format (yyyy-mm-dd), e.g.

http://rest.pubmlst.org/db/pubmlst_neisseria_seqdef/loci/

abcZ/alleles_fasta?added_after¼2017-02-28.

Authentication

While most of the data on PubMLST is publicly available

without registration, there are circumstances where a user

may need to authenticate themselves, such as to submit

data for curation. Access to specific data resources can also

be limited to registered users or project members. To facili-

tate this via the API, OAuth authentication (version 1.0 A)

methods are supported. These allow users to delegate ac-

cess to their PubMLST account to third-party tools or local

scripts without the need to share credentials. The work-

flow for OAuth authentication is as follows:

i. The third-party software developer requests a con-

sumer key and consumer secret specific to their

application;

ii. The application gets a request token via an API call

and directs the user to an authorization page on

PubMLST where they log in by entering their

credentials;

iii. If the entered user credentials match and are registered

for a specific resource, a single use verifier code is pro-

vided. This code is valid for 1 h;

iv. The third-party application uses the request token and

verifier code to make a signed request for an access

token and secret. This access token is valid indefinitely

but can be revoked by both the user and the PubMLST

administrators;

v. The third-party application uses the access token to

make a signed request for a session token. This session

token is valid for 12 h;

vi. All calls to protected resources are signed using the ses-

sion token, consumer token and their respective

secrets.

Once the user has delegated access to their account and

an access token issued, all further handshakes required to

obtain session tokens can be automated, facilitating un-

attended server-to-server interaction.

Data submissions

Most submissions for curation are currently received via a

web-based submission system that performs basic checks

for data correctness before accepting a submission and no-

tifying the appropriate curators. Assignment of some re-

cord types require the inclusion of supporting data, such as

trace files for new sequences determined by Sanger

sequencing and messaging to the teams of curators who

handle the submissions. The API integrates with this sys-

tem with method calls for creating new submissions, add-

ing correspondence, and uploading, downloading and

deleting supporting files. Submitting users need to be regis-

tered for the database and submission method calls are

signed and authenticated so that they are identified on the

system. This will allow third-party applications to auto-

matically submit data on behalf of a user, so that new as-

signments can be seamlessly integrated in to an existing

workflow or for data submission to be built in to a data

generation pipeline.

Sample scripts and worked examples

A collection of sample scripts for interacting with the API

can be found at https://github.com/kjolley/BIGSdb/tree/de

velop/scripts/rest_examples. There are versions written in

both Perl and Python to demonstrate interaction of the API

from both languages. These include test clients that handle

Page 6 of 7 Database, Vol. 2017, Article ID bax060

http://rest.pubmlst.org/db/pubmlst_neisseria_isolates/isolates?page=2&hx0026;page_size=10
http://rest.pubmlst.org/db/pubmlst_neisseria_isolates/isolates?page=2&hx0026;page_size=10
http://rest.pubmlst.org/db/pubmlst_neisseria_isolates/isolates?page=2&hx0026;page_size=10
http://rest.pubmlst.org/db/pubmlst_neisseria_isolates/isolates?page=2&hx0026;page_size=10
http://rest.pubmlst.org/db/pubmlst_neisseria_isolates/isolates?page=2&hx0026;page_size=10
http://rest.pubmlst.org/db/pubmlst_neisseria_isolates/isolates?page=2&hx0026;page_size=10
http://rest.pubmlst.org/db/pubmlst_neisseria_seqdef/loci/abcZ/alleles_fasta?added_after=-02-28
http://rest.pubmlst.org/db/pubmlst_neisseria_seqdef/loci/abcZ/alleles_fasta?added_after=-02-28
http://rest.pubmlst.org/db/pubmlst_neisseria_seqdef/loci/abcZ/alleles_fasta?added_after=-02-28
https://github.com/kjolley/BIGSdb/tree/develop/scripts/rest_examples
https://github.com/kjolley/BIGSdb/tree/develop/scripts/rest_examples


the OAuth authentication for accessing restricted resources

and for submitting data to the curation queues. A test data-

base has been setup so that dummy submissions can be

made.

Discussion

The RESTful API makes the large amount of curated, struc-

tured data on PubMLST accessible for programmatic ac-

cess, substantially increasing the value of the resource by

facilitating data integration with localized analysis tools and

pipelines. The concepts and semantic relationships defined

for sequence-based typing methods have been defined in the

TypOn ontology (13) and the parts of the RESTful API that

involve these entities can be mapped on to this ontology.

The common use case for the API would be to synchronize

local molecular typing databases to ensure that these can be

kept up to date with defined nomenclatures. The wide range

of methods available, however, also enables more advanced

exploitation of data such as retrieving genome assemblies

based on specified criteria for automated importation for

local analysis or visualization. The data submission methods

can be leveraged by third party bioinformatics tools to

streamline the process of obtaining new sequence variant

designations by sending data to the curator queue and han-

dling the response, removing the need for their end users to

manually submit data for assignment.

The API can be expanded with further functionality as

needs arise. One potential avenue for future development is

to allow curation directly via the API, facilitating direct data

upload and editing outside of the standard curation web

interface. This would neccessarily be restricted to authenti-

cated curators who would be able to delegate access to vali-

dated curation tools, automating the process as much as

possible. Other possibilities emerge if some of the BIGSdb

analysis methods can be made available from the API, for

example the comparative genomics analysis implemented in

Genome Comparator or tree drawing using the PhyloTree

plugin. Initiation of these kinds of analyses directly may fa-

cilitate alternative interfaces such as dashboards focused to-

wards particular tasks and categories of user.

Acknowledgement
The authors are grateful to Jo~ao André Carriço and Alexandre

Francisco (University of Lisbon, Portugal) for helpful discussions on

RESTful interface design and authentication.

Funding

Development of PubMLST and BIGSdb has been supported by a

Wellcome Trust Biomedical Resource Grant (104992). Design and

implementation of the RESTful API has been further supported by

the European Community grant FP7-278864-2 (PathoNgenTrace,

http://www.patho-ngen-trace.eu/).

Conflict of interest. None declared.

References

1. Maiden,M.C.J., Bygraves,J.A., Feil,E. et al. (1998) Multilocus

sequence typing: a portable approach to the identification of

clones within populations of pathogenic microorganisms. Proc.

Natl. Acad. Sci. USA, 95, 3140–3145.

2. Dingle,K.E., Colles,F.M., Wareing,D.R.A. et al. (2001)

Multilocus sequence typing system for Campylobacter jejuni.

J. Clin. Microbiol., 39, 14–23.

3. Maiden,M.C. (2006) Multilocus sequence typing of bacteria.

Annu. Rev. Microbiol., 60, 561–588.

4. Jolley,K.A., Chan,M.S., and Maiden,M.C. (2004) mlstdbNet -

distributed multi-locus sequence typing (MLST) databases.

BMC Bioinform., 5, 86.

5. Jolley,K.A. and Maiden,M.C. (2010) BIGSdb: scalable analysis

of bacterial genome variation at the population level. BMC

Bioinform., 11, 595.

6. Maiden,M.C., Jansen van Rensburg,M.J., Bray,J.E. et al. (2013)

MLST revisited: the gene-by-gene approach to bacterial gen-

omics. Nat. Rev. Microbiol., 11, 728–736.

7. Bratcher,H.B., Corton,C., Jolley,K.A. et al. (2014) A

gene-by-gene population genomics platform: de novo assembly,

annotation and genealogical analysis of 108 representative

Neisseria meningitidis genomes. BMC Genom., 15, 1138.

8. de Been,M., Pinholt,M., Top,J. et al. (2015) Core genome multi-

locus sequence typing scheme for high-resolution typing of

Enterococcus faecium. J. Clin. Microbiol., 53, 3788–3797.

9. Moran-Gilad,J., Prior,K., Yakunin,E. et al. (2015) Design and

application of a core genome multilocus sequence typing scheme

for investigation of Legionnaires’ disease incidents. Eurosurveil-

lance, 20, pii-21087.

10. Ruppitsch,W., Pietzka,A., Prior,K. et al. (2015) Defining and

evaluating a core genome multilocus sequence typing scheme for

whole-genome sequence-based typing of Listeria monocyto-

genes. J. Clin. Microbiol., 53, 2869–2876.

11. Thepault,A., Meric,G., Rivoal,K. et al. (2017) Genome-wide

identification of host-segregating epidemiological markers for

source attribution in Campylobacter jejuni. Appl. Environ.

Microbiol., 83, e03085–16.

12. Fielding,R.T. (2000) Architectural styles and the design of

network-based software architectures. PhD thesis. University of

California.

13. Vaz,C., Francisco,A.P., Silva,M. et al. (2014) TypOn: the micro-

bial typing ontology. J. Biomed. Semantics, 5, 43.

Database, Vol. 2017, Article ID bax060 Page 7 of 7

http://www.patho-ngen-trace.eu/

	bax060-TF1

