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Although evidence shows that anthocyanins present promising health benefits, their

poor stability still limits their applications in the food industry. Increasing the stability of

anthocyanins is necessary to promote their absorption and metabolism and improve

their health benefits. Numerous encapsulation approaches have been developed for

the targeted release of anthocyanins to retain their bioactivities and ameliorate their

unsatisfactory stability. Generally, choosing suitable edible encapsulation materials based

on biopolymers is important in achieving the expected goals. This paper presented an

ambitious task of summarizing the current understanding and challenges of biopolymer-

based anthocyanin encapsulation in detail. The food-grade edible microencapsulation

materials, especially for proteins and polysaccharides, should be employed to improve

the stability of anthocyanins for effective application in the food industry. The influence

factors involved in anthocyanin stability were systematically reviewed and highlighted.

Food-grade proteins, especially whey protein, caseinate, gelatin, and soy protein, are

attractive in the food industry for encapsulation owing to the improvement of stability

and their health benefits. Polysaccharides, such as starch, pectin, chitosan, cellulose,

mucilages, and their derivatives, are used as encapsulation materials because of

their satisfactory biocompatibility and biodegradability. Moreover, the challenges and

perspectives for the application of anthocyanins in food products were presented based

on current knowledge. The proposed perspective can provide new insights into the

amelioration of anthocyanin bioavailability by edible biopolymer encapsulation.
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HIGHLIGHTS

- The interactions between food matrix and anthocyanins were discussed in detail.
- The influence factors involved in the stability of anthocyanins were introduced.
- Performance of proteins or/and polysaccharides-based encapsulation was concluded.
- Advantages of protein-polysaccharide systems for encapsulation were summarized.
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INTRODUCTION

Recently, numerous studies have updated the current
understanding of the health-promoting effects of dietary
polyphenols and related food products (1–3). As an important
and well-considered type of polyphenol, non-toxic water-soluble
anthocyanins contribute to food color and present a wide
range of biological activities, including antibacterial, anti-
inflammatory, anti-diabetic, anti-obesity, and anticancer effects
(4–6). However, the low stability and non-targeted release of
anthocyanins have become the main obstacles in realizing their
biological benefits in food systems (7, 8).

Themain challenges for the application of anthocyanins in the
food industry are how to decrease anthocyanin loss and control
anthocyanin reaction to obtain more products with high stability
(9, 10). Encapsulation systems can introduce physical protection
for anthocyanins to achieve the stimulus-responsive controlled
release and site-specific delivery of anthocyanins (11, 12). Many
encapsulation methods have been performed for the controlled
release of anthocyanins to overcome the poor stability, oral
bioavailability, and intestinal absorption of anthocyanins.

In addition to delivery techniques or carriers, various cross-
linked biopolymers have also been studied for anthocyanin
encapsulation (13, 14). Suitable encapsulation materials
are important for achieving the expected performance of
anthocyanins. Undoubtedly, only edible materials can be
developed for the delivery of anthocyanins in food applications
(10, 15). Edible biopolymer-based systems, including proteins
and carbohydrates, are preferred for anthocyanin encapsulation
(16, 17).

Encapsulated systems based on protein or/and polysaccharide
particles can protect anthocyanins in food products during
storage and retain the bioavailability of anthocyanins within the
gastrointestinal tract (18, 19). In this perspective, the current
understanding of biopolymer-based anthocyanin encapsulation
is presented in this paper in detail. The influence factors
involved in anthocyanin stability are introduced, and the
properties and performances of anthocyanins encapsulated by
proteins or/and polysaccharide-based systems are summarized in
detail. Moreover, the challenges and future perspectives of the
application of anthocyanins in food products are highlighted.
Retaining the bioavailability of anthocyanins by means of edible
biopolymers encapsulation can provide much information for
the promising application of anthocyanins in food products.

STABILITY OF ANTHOCYANINS

Factors Affecting the Stability of
Anthocyanins
Anthocyanins have a carbon skeletonmade up of C6–C3–C6 unit
(xanthine cation) and are composed of anthocyanidin (aglycone
units) linked to sugar, which is usually located at the 3-position
on the C-ring and methoxyl and hydroxyl groups (20), as shown
in Figure 1. However, the stability of anthocyanins is strongly
related to the substitution pattern in the B-ring; the stability can
be improved with the increase in methoxyl group or deteriorate

with the increase in hydroxyl group. Glycosylation and acylation
can improve the stability of anthocyanins (21, 22).

In general, the application of anthocyanins as food additives
is seriously limited by their instability. The absorption
of anthocyanins is small in comparison with the dietary
consumption of anthocyanins, indicating the low bioavailability
of anthocyanins (28, 29). Anthocyanins may easily be degraded
in vivo before reaching the target locations because of the harsh
environment. As shown in Figure 1, anthocyanin stability can be
easily impacted by pH, structure, enzymes, light, temperature,
oxygen, solvents, concentrations, and other compounds that can
interact with anthocyanins (12, 24). All of these factors restrict
the wide applications of anthocyanins, because anthocyanins
are extremely unstable and can easily degrade. Hence, the
industrialized applications of anthocyanins in food products
are challenging.

Edible Encapsulation Materials
To date, although evidence shows that anthocyanins present
promising health benefits, their poor stability still limits their
applications in food industry. Foods containing anthocyanins
can only enter the bloodstream for further absorption and
metabolism after reaching the gut lumen (30). Therefore,
increasing the stability of anthocyanins is necessary to
promote their absorption and metabolism and improve
their health benefits. Encapsulated delivery systems have been
reported to protect anthocyanins from adverse environmental
conditions (31–34).

Although several wall materials can be employed for
encapsulation, some properties, such as affinity, film-forming
ability, degradability, intestinal resistance, and viscosity, should
be optimized before the selection of wall materials (23, 35). Edible
wall materials can be made from gum, protein, polysaccharides
(natural or modified), and synthetic polymers (36, 37). The food-
grade proteins and polysaccharides that are generally recognized
as suitable materials for food products are shown in Table 1.
Therefore, edible microencapsulation materials, especially for
proteins and polysaccharides, should be clarified to improve the
stability of anthocyanins for effective application in the food
industry (Figure 2).

PROTEIN- ANDPOLYSACCHARIDE-BASED
ENCAPSULATION

Protein-Based Encapsulation
Food-grade proteins, especially whey protein, caseinate,
gelatin, and soy protein, are attractive in the food industry
owing to their health benefits. Their functional properties,
including gelation, emulsification, and binding capacity,
support their use as alternatives in the development of
anthocyanin delivery systems (46, 47). In addition, proteins’
hydrophobic region can interact with the benzene ring of
anthocyanins. The carbonyl and amine groups of proteins
form hydrogen bonds with the hydrophilic region of
anthocyanins (48).
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FIGURE 1 | Structures, main colors involved, and bioactivity of six important food anthocyanidins, as well as factors affecting the stability of anthocyanins. R1, R2 = H

or OH; R3 = H or glucose. The parameters were adapted from (12, 21, 23–27) with permission.

TABLE 1 | Properties of encapsulation materials for anthocyanins.

Source of anthocyanins Encapsulation materials Properties References

Extract from jaboticaba pomace Maltodextrin, pectin, and soy protein isolate Decreases the degradation caused by UV radiation (38)

Black soybean seed coat extracts Soy protein isolate Decreases the degradation rate and improves stability (39)

Powdered BRS violeta grape juice Soy protein and whey protein Increases stability for long shelf life (40)

Elderberry (Sambucus nigra L.) Whey protein and pectin Increases encapsulation efficiency (41)

Camelina sativa L. Crantz Neutral polysaccharides and proteins Increases stability (42)

Black currant extract Whey protein isolate, inulin, and chitosan Increases stability (43)

Sweet cherry skins Whey proteins Increases stability (44)

Blueberry Whey protein isolate Improves bioactivity (45)

Whey proteins could be developed as wall materials to deliver
anthocyanins with enhanced bioavailability (21, 35). Whey
protein microgels as an anthocyanin encapsulation material
can dissolve rapidly in the gastrointestinal tract and form
liquid particles that impede anthocyanin release and degradation
(49). The interactions between whey proteins and anthocyanins
affect the color and heat/light stability of anthocyanins. The
encapsulation of anthocyanins from blackcurrant using whey

protein via spray drying or freeze drying has been suggested
to develop nutritional food products (50). The encapsulation of
anthocyanins from sour cherry skins using whey proteins with
suitable encapsulation efficiency (over 70%) decreases gastric
digestion and thus presents a potential as a functional matrix for
food products (51).

Whey protein, casein, and soy protein isolates are efficient
for improving anthocyanin bioavailability (Table 1). Casein
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FIGURE 2 | Schematics of anthocyanin degradation and biopolymer-based

microencapsulation systems (a-protein particles, b-polysaccharide particles,

and c-protein plus polysaccharide particles). Reprinted or adapted from

references (12, 32–34) with permission.

and whey protein have been used as wall materials to
encapsulate blueberry anthocyanins using spray drying
technique. Anthocyanin encapsulation is helpful in decreasing
the rapid release and degradation of anthocyanin, especially
during digestion in simulated gastric fluid. However, casein
and whey protein showed different protection mechanisms
as shown in Figure 3. The formation of casein–anthocyanin
microparticles with poor solubility effectively inhibited the
release and degradation of anthocyanins. The highly soluble
whey protein–anthocyanin microparticles had decreased
anthocyanin release. Casein and whey protein isolate could be
employed to hinder the release of encapsulated anthocyanins,
indicating that the proteins’ physicochemical properties
and structural changes caused by digestion contributed to
anthocyanin delivery. Obviously, the individual digestion
behaviors of different proteins or composites as wall materials
for anthocyanin encapsulation should be investigated in future
research. The conformational change of the amphiphilic peptides
of 18 amino acids (C6M1) from an α-helical structure to a
β-sheet structure was caused by co-assembly when used for
anthocyanin encapsulation (Figure 4). The C6M1 peptide
improved the resistance of anthocyanin to pH, high temperature,
and metallic ions and improved the bioactivity for scavenging
free radicals (52).

Although anthocyanin–protein interactions have been
extensively studied, many parameters still need to be evaluated
(53). The chemical structures of anthocyanins contribute
to binding affinity. Moreover, different anthocyanins may
produce different binding forces with proteins; hence,
binding affinity to specific anthocyanins should be explored
(54). The protein concentrations used in combination with
anthocyanins still need to be optimized because they influence
the rheological and sensory properties of anthocyanin–protein
complexes, which are crucial parameters for food and beverage
products (21).

Polysaccharide-Based Encapsulation
Polysaccharides, such as starch, pectin, chitosan, cellulose,
mucilages, and their derivatives, are used as encapsulation
materials because of their satisfactory biocompatibility and
biodegradability (55). The performances of starch and its
derivatives have been evaluated for anthocyanin encapsulation.
Non-toxic and biodegradable chitosan has been widely
utilized for anthocyanin encapsulation. Anthocyanin–chitosan
nanoparticles are formed via non-covalent bonds (e.g., weak
ionic binding and hydrogen binding) (56). As reported, dual
coating with chitosan and polyanionic polysaccharide to stabilize
anthocyanins had high encapsulation efficacy and achieved
resistance against auto-oxidation, heat, ascorbic acid, and neutral
environment (57).

In addition, as the most widely reported cyclic oligosaccharide
material, cyclodextrin can form complexes with anthocyanins
through hydrogen bonding and hydrophobic interactions (58).
Maltodextrin is also commonly introduced in the food industry
as a wall material. The dextrose equivalent of maltodextrin is
of paramount importance for retaining the stability and other
properties of anthocyanins (59). Short-chain maltodextrin with
high dextrose equivalent resulted in browning, hygroscopicity,
and solubility. However, maltodextrin with s a higher dextrose
equivalent showed better performance in retarding anthocyanin
degradation (60, 61).

The combination of xanthan gum and carboxymethyl starch
produced a high encapsulation efficiency (over 96%) and
contributed to the stability of blueberry anthocyanins (62).
The co-encapsulation of blackberry juice and Lactobacillus
acidophilus by gum arabic–maltodextrin could be effective to
protect anthocyanins and probiotic bacteria (63). In addition,
alginate–pectin hydrogel particles have been reported to
encapsulate blueberry anthocyanins with high encapsulation
efficiency (116%) (64).

Combination of Proteins and
Polysaccharides for Encapsulation
Covalent interaction is the main pathway that contributes to
the interactions between proteins and polysaccharides. Several
factors affect covalent interactions, such as intrinsic factors,
including free amino groups, carbonyl groups, molecular
structure, hydrophilicity, and hydrophobicity. Similarly, extrinsic
factors, such as pressure, temperature, processing methods (i.e.,
microwave, ultrasonic, and pulsed electric field), crosslinkers,
and the molar ratio between biopolymers, affect the interactions
between proteins and polysaccharides.

The covalent bonds formed by proteins and polysaccharides
are involved in the enhancement of the stability and impediment
of anthocyanin release in harsh environments (65). During
this process, polysaccharides and proteins or peptides form
electrostatic complexes by opposite charges under particular pH
conditions. The covalent bonds can be achieved via chemical
cross-linking or Maillard reactions. Anthocyanins interact with
proteins via hydrophobic interactions and hydrogen bonds
because of the high affinity between anthocyanins and proteins
(13, 66). Afterward, the loaded proteins can be cross-linked by
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FIGURE 3 | Release mechanisms of CA-ACN and WA-ACN microparticles during in vitro digestion. Reproduced from reference (36) with permission. CA, casein; WA,

Whey protein isolate; ACN, anthocyanin; SGF, simulated gastric fluid; SIF, simulated intestinal fluid.

electrostatic interaction with oppositely charged polysaccharides
to form double polymers (67, 68).

Electrostatic interactions between differently charged
acrosome molecules lead to the formation of protein–
polysaccharide complexes. This technique consists of two
parts: the phase separation of biopolymer mixtures and the
subsequent deposition of a cohesive phase near the active
ingredients (69, 70). Three main steps, namely, the solubilization
of biopolymers, mixing the biopolymers with appropriate
proportions, and the acidification of the medium, are required
to form complexes. Moreover, the acidification phase is
critical because it strongly affects the complex dimensions of
formation (32).

The biopolymers formed by proteins or peptides and
polysaccharides are promising for anthocyanin encapsulation
because they could achieve high loading capacity and
encapsulation efficiency and controlled release (71). Whey
protein, gum arabic, and maltodextrin have been employed
for anthocyanin extract encapsulation using freeze drying
with encapsulation efficiency over 82%; they could reduce
anthocyanin degradation during heat processing (72). Moreover,
the biopolymer particles fabricated with beet pectin and whey
protein have been used to encapsulate anthocyanins to improve
their heat stability (31). Anthocyanins from elderberry were
encapsulated through whey proteins and pectin with high
encapsulating efficiency (98%), and the remarkable anti-
oxidation of the system highlighted the potential utilization of
the microcapsules in food products (41).

As shown, the biopolymers of proteins and polysaccharides
for anthocyanin encapsulation can be formed by covalent

interactions and non-covalent complexations, and the possible
factors that might be involved in the formation are summarized
in previous studies (73). In comparison with the anthocyanin
encapsulation based on proteins or polysaccharides, the protein-
polysaccharide systems for anthocyanin encapsulation are
comparable or more excellent for the improvement of stability in
harsh environments and may overcome the limitation of single
utilization (9, 74).

The strategy of anthocyanin encapsulation has presented
functionalities in improving stability, increasing gastric
residence time, and targeting release to enhance anthocyanin
uptake and absorption by the formation of nanogels, microgels,
microparticles, or emulsion systems (17, 75). The protein-
and polysaccharide-based biopolymers for anthocyanin
encapsulation (Figure 5) provide new insights for further
research on how to protect anthocyanins against the external
harsh environment by the utilization of environmentally
friendly biopolymers.

Interactions Between Proteins and/or
Polysaccharides and Anthocyanins
The absorption and excretion of anthocyanins are associated
with many factors; among which, the food matrix’s effects are
important to maintain the bioactivities of dietary anthocyanins
(79, 80). As important parameters, the non-covalent interactions
of anthocyanins with proteins, and/or carbohydrates have
attracted intensive research attention (81). These interactions
with macronutrients, which are driven by van der Waals
interactions, hydrogen bond, and hydrophobic interaction, could
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FIGURE 4 | (A) Schematic of the co-assembly of the peptide (C6M1) and anthocyanin (C3G) into a nanocomposite. (B) Encapsulated and non-encapsulated

anthocyanins. (C) Atomic force microscopy image and (D) fluorescence spectra of C6M1–C3G nanocomposites. (E) Thermal stability (80 ◦C), (F) retention ratio

during storage (25 ◦C), and (G) activity tests of C3G and C6M1–C3G. Reproduced from reference (52) with permission.

affect anthocyanins’ properties, including bioavailability and
radical scavenging (82).

Anthocyanin–protein complexes can be formed by
crosslinking or aggregation via non-covalent binding. The
hydroxyl and terminal galloyl groups of anthocyanins may
contribute to the modulation of crosslinking owing to their
molecular flexibility (82, 83). Moreover, anthocyanin–protein
(non-enzyme) interactions may also be involved in subtle
conformational changes (84). Non-covalent interactions may
also occur between anthocyanins and carbohydrates (Figure 2).
Generally, the consumption of plant anthocyanins involves the
ingestion of starch and fibers, which may help improve their
stability by counteracting the pH variations in different in vivo
digestion phases (85). The physical entrapping induced by these
molecules restricts the mixing process between digestive fluids
and anthocyanins to avoid their degradation to some extent
and facilitate the biomolecules to reach the gut wall, which can

improve their bioavailability and health-promotion benefits
(12, 34).

Proteins, polysaccharides, and other components in the food
matrix are commonly worked together to affect anthocyanin
or macronutrient digestion. All ingredients work together to
produce a final result, which highlights that the effects of the
food matrix should be evaluated by taking into account all the
ingredients or at least the main contributors. The observed effects
and interactions of the matrix with anthocyanins remain elusive
and require further investigation (77, 78, 86).

CURRENT UNDERSTANDING AND
FUTURE PERSPECTIVES

The non-targeted release and low stability are the major
obstacles of anthocyanins to present health benefits in food
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FIGURE 5 | Biopolymers formed by proteins and polysaccharides for anthocyanin encapsulation, the possible factors that affect biopolymer formation, and the

functionality of encapsulation. PP, Protein–polysaccharides. Adapted from reference (57, 73, 76–78) with permission.

systems (87–89). Recently, encapsulation approaches have been
developed to address the low stability, low oral bioavailability,
and poor intestinal absorption of anthocyanins. Several emerging
micro/nanoencapsulation approaches are effective to some
extent for improving anthocyanins’ stability against the harsh
environment of the gastrointestinal tract with bio-efficacy
enhancement (90, 91). In encapsulation, particle aggregation and
particle size control, the sensitivity to pH and ionic strength of
the prepared particles, as well as other related factors, should be
optimized for the practice applications with satisfactory stability
and bioavailability (92, 93). As above, the application of emerging
micro/nanoencapsulation techniques in the food industry is
still challenging.

Only food-grade biomaterials can be employed and accepted
for delivering anthocyanins in the food industry. Regardless
of nano/microcapsulation technique, food-grade materials, such
as proteins, and polysaccharides, are utilized as wall materials
for anthocyanin encapsulation with the promising performance
of high encapsulated efficacy, enhanced stability, and excellent
biocompatibility. The interactions between anthocyanins (e.g.,
proteins/peptides and polysaccharides) and biomaterials are
important in designing delivery systems (Figure 6). The
biomaterials properties, satisfactory stability, and the interactions
between the biopolymers and anthocyanins should be considered
when the edible biopolymers were selected for anthocyanin
encapsulation. Although each method has advantages for specific
applications, evaluating the requirements according to the

advantages and disadvantages of encapsulation approaches is
neccessary before selection.

Bioderived colloidal particles, including protein–
polysaccharide conjugates, micro/nanogels, and microfibers,
provide new insights into the development of biopolymer
interfaces to replace emulsifier layers (94). The potential
of stabilized interface for particles has attracted great
attention for food colloidal structure research (95).
Complex coacervation, which has received a growing
interest, presents excellent loading capacity, mild operating
conditions, and controlled release (96). These controlled
parameters for polysaccharide–protein complexes can enhance
functional properties without enzymatic and chemical
modifications and support the excellent encapsulation
of anthocyanins.

Future recommendations include the utilization of
microencapsulated anthocyanins with satisfactory bioavailability
and stability as food fortification components (97). Developing
more biopolymers with health benefits as wall materials is
also crucial. New edible biomaterials or the new combinations
of known biomaterials for the effective microencapsulation
or nanoencapsulation of anthocyanins are important for
the satisfactory design of micro/nanomaterials with novel
characteristics (98). In particular, research interest on the
microcapsules of anthocyanins and other polyphenols
for biologically triggering their release in living cells
is increasing (99, 100). Additionally, further research
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FIGURE 6 | Framework of the future trends or advantages of the micro-/nanoencapsulation of anthocyanins using edible biopolymers, including proteins or/and

polysaccharides. PP, protein-polysaccharide.

is still suggested to combine the feasibility of different
anthocyanin encapsulation techniques. However, seeking
and strengthening the optimal techniques combined with
environmental protection, high yield, and low cost are
still needed.

The booming food industry will no longer be regarded
as a low-profit commodity and will be a source of well-
being and a revenue potential. The utilization of functional
biopolymers via edible materials for food structure design
provides new insights into the development of future foods
with excellent sensory properties and health benefits, avoiding
synthetic additives and negative nutrients. Importantly,
investigating new edible biomaterials or creating new
colloidal structures with underutilized edible biopolymers
for future food design is an exciting and promising
research direction.
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