
sensors

Article

Thermal-Feature System Identification for a Machine
Tool Spindle

Yuh-Chung Hu 1,* , Ping-Jung Chen 2 and Pei-Zen Chang 2

1 Department of Mechanical and Electro-Mechanical Engineering, National ILan University,
Yilan 26047, Taiwan

2 Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan;
r05543089@ntu.edu.tw (P.-J.C.); changpz@ntu.edu.tw (P.-Z.C.)

* Correspondence: ychu@niu.edu.tw; Tel.: +886-3-931-7469

Received: 10 January 2019; Accepted: 6 March 2019; Published: 9 March 2019
����������
�������

Abstract: The internal temperature is an important index for the prevention and maintenance of a
spindle. However, the temperature inside the spindle is undetectable directly because there is no
space to embed a temperature sensor, and drilling holes will reduce its mechanical stiffness. Therefore,
it is worthwhile understanding the thermal-feature of a spindle. This article presents a methodology
to identify the thermal-feature model of an externally driven spindle. The methodology contains
self-made hardware of the temperature sensing and wireless transmission module (TSWTM) and
software for the system identification (SID); the TSWTM acquires the temperature training data,
while the SID identifies the parameters of the thermal-feature model of the spindle. Then the resulting
thermal-feature model is written into the firmware of the TSWTM to give it the capability of accurately
calculating the internal temperature of the spindle from its surface temperature during the operation,
or predicting its temperature at various speeds. The thermal-feature of the externally driven spindle
is modeled by a linearly time-invariant state-space model whose parameters are identified by the
SID, which integrates the command “n4sid” provided by the System ID Toolbox of MATLAB and the
k-fold cross-validation that is common in machine learning. The present SID can effectively strike
a balance between the bias and variance of the model, such that both under-fitting and over-fitting
can be avoided. The resulting thermal-feature model can not only predict the temperature of the
spindle rotating at various speeds but can also calculate the internal temperature of the spindle
from its surface temperature. Its validation accuracy is higher than 98.5%. This article illustrates the
feasibility of accurately calculating the internal temperature (undetectable directly) of the spindle
from its surface temperature (detectable directly).

Keywords: machine learning; machine tool spindle; system identification; temperature sensor;
thermal feature model

1. Introduction

High-speed machining is a promising technology to dramatically increase productivity and reduce
costs. Most machining errors in machine tools come from thermal problems [1,2]. During high-speed
machining of a spindle, a lack of complete information of its temperature variation may lead to an
abrupt malfunction due to overheating. Therefore, it is very important to monitor and predict the
temperature variation of the spindle during the machining process. In order to accurately monitor
the temperature inside the spindle, the authors propose a methodology, which combines hardware
and software into an edge-computing module, to identify the thermal-feature of the spindle. One can
accurately monitor the temperature inside the spindle from its surface temperature through the
proposed module. Research on the thermal analysis of spindles has been going on for quite a long
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time. Bossmanns and Tu [3,4] developed the thermal and power flow models of a motorized spindle
based on a finite difference method (FDM). Many studies [5–7] have adopted a finite element method
to simulate the thermal behavior, such as temperature variation and thermal deformation, of machine
tool spindles. Brecher et al. [8] developed a thermal-resistance network model of an externally driven
spindle based on its structural and heat transfer properties and pointed out that the main source of heat
generation is bearing. The author, Hu, [9] developed a speed-dependent thermal network model of a
spindle based on the principle of heat transfer and empirical formulae. Most complex systems can be
modeled based on experimental data and system identification methods even without physical insight,
therefore system identification methods have been widely used in various fields for prediction and
control. Cho [10] modeled an active magnetic bearing system with a discrete-time state-space model
and estimated the parameters of the model with a system identification method based on input and
output data. Eguia et al. [11] exerted a subspace system identification method to model the thermal
behavior of multicore microprocessors for temperature estimation. Skibinski and Sethares [12] used a
recursive identification method to analyze the thermal impedance of a semiconductor package. On the
other hand, wireless real-time temperature monitoring facilitates the inspection and protection of
machines [13–15]. Experiments [16,17] have shown that the resistance temperature detector (RTD) is
ideal for temperature sensing because of its linearity, accuracy, long-term stability, and wide-range of
temperature measurement.

Among the published literature, research on the thermal-mechanical behavior of machine tool
spindles mainly used the finite difference method, finite element method, thermal and power flow
model, thermal resistance network model, etc. This paper uses the state-space model to simulate the
thermal-mechanical behavior of machine tool spindles. The novelty of this paper is the use of the n4sid
command provided by the system identification toolbox of MATLAB and the k-fold cross validation in
machine learning to estimate the state-space model of machine tool spindles from measured input and
output data. The present method can effectively strike a balance between the bias and variance of the
model, such that both under-fitting and over-fitting can be avoid. This article presents a methodology
to identify the thermo-feature of the spindle. The methodology contains hardware, the temperature
sensing and wireless transmission module (TSWTM), and software, the thermal-feature system
identification (SID) for the spindle. The TSWTM acquires the temperature training data, while the
SID identifies the parameters of the thermo-feature model of spindle. The TSWTM is equipped with
seven RTDs to acquire the temperature training data from seven characteristic positions of the spindle,
where five are interior to it and two are located on its surface. The input data of the thermo-feature
model of a spindle is the time series of rotational speed or the temperatures on the surface of the
spindle, and the observation/output data are the temperatures at the characteristic positions of the
spindle. Both are entered into the SID to identify the parameters of the thermo-feature model of the
spindle. The resulting thermo-feature model accurately predicts the temperature variation inside or on
the surface of the spindle.

2. Methodology

2.1. Temperature Sensor and Wireless Transmission Module (TSWTM)

The TSWTM is composed of 5 RTDs, a multiplexer (ADG1607), an Analog-to-Digital Converter
(AD7794), and an Arduino Bluno Beetle board with Bluetooth 4.0 (Figure 1). The RTDs (Pt-1000) are
used to detect the temperature variations of the spindle’s five feature-points based on the 4-wires
measurement. The ADG 1607 [18] (Figure 2) switches on one of the 5 RTDs each time according to
the command decided by the micro controller unit (ATMEGA328) through the three-bit address lines
(A0, A1, A2) (Figure 1). The AD7794 [19] (Figure 2) is configured for 6 differential input channels
corresponding to the 5 RTDs and a reference resistance to implement the 4-wires measurement of the
RTDs’ cross voltages. As shown in Figure 1, after the low-pass filtering (LPF), the cross voltage of the
RTD will be transmitted into AD7794 through the differential analog input channel and transformed
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to a digital signal and then received by ATMEGA328 through the ICSP port. The digitalized voltage
signal of the RTD is transferred into a temperature signal by the signal transform firmware. Afterward,
the temperature signal is received by the CC2540 through the transceiver (TX) and receiver (RX) pins.
Finally, the temperature signal is transmitted to the terminal through Bluetooth or USB.
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Figure 1. Functional block diagram of the temperature sensor and wireless transmission
module (TSWTM).
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Figure 2. Schematic diagram of the current flow path for an analog input channel in parallel.

The firmware used to transform the digitalized voltage signals of RTDs into temperature signals
is programmed with Arduino. Figure 3a details the flowchart of the signal transform firmware. First,
the pins of A0, A2, and A3 on the Bluno Beetle are defined as the general-purpose output (GPO)
pins, they output a high or low potential according to the truth table (Table 1) set up in the register.
The analog-to-digital converter (ADC) is initially set up with the external reference, gain of two,
excitation current of 210 µA, calibration, 4.17 Hz update rate, and continuous read mode. The channel
in connection would be identified according to the examination of the resistance value before the signal
process stage. After the initialization stage, the micro control unit (MCU) receives and converts the
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register number of the analog input voltage into binary code to calculate the resistance of the RTD
based on Equation (1) provided by the AD7794 datasheet.

Code = 2N × [(AIN × GAIN/Vre f ) + 1]. (1)

The temperature can be determined by the relationship of temperature and resistance given by
Equation (2) from the DIN EN 60751 standard which defines Pt100 resistance accuracy classes and
corresponding tolerance,

R(T) = R0(1 + AT + BT2) (2)

where
A = 3.9083× 10−3 ◦C−1; B = −5.775× 10−7 ◦C−2.

The actual temperature could be transmitted to the Bluetooth-MCU (BLE-MCU) (CC2540) through the
transceiver (TX) and receiver (RX) pins.

Table 1. Part of the ADG1607 truth table [18].

A2 A1 A0 EN Switch

0 0 0 1 1
0 0 1 1 2
0 1 0 1 3
0 1 1 1 4
1 0 0 1 5
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2.2. Experiment Setup

2.2.1. Spindle Run-In System

The run-in system of the spindle, shown in Figure 3b, consists of a spindle externally driven
by a 7.5 kW motor through a belt, a controller accompanied by a personal computer (PC), used to
control the motor through a programmable control interface, and two sets of self-made TSWTMs with
temperature RTD (PT1000) sensor probes. As shown in Figure 3c, RTDs are located at the outer rings
of front and rear bearings, the center point of the spindle’s inner housing, the rear and front ends
of the spindle’s outer housing surface, and the ambient temperature to acquire the training data for
the thermal feature identification algorithm. Figure 4 shows the photos of the experimental setup.
Each run of experiments lasts for almost a day; therefore, the variation in ambient temperature during
the day (Figure 5) must be considered. Based on the literature survey in Introduction, one knows
that bearings are the main heat source of spindles, therefore the bearings are important temperature
characteristic points and choosing the outer rings of front and rear bearings to set the RTD is important
because they are static rings. As conduction dominates the heat transfer of the metallic inner housing
and is very fast, one must choose the center point of the inner housing because it is the same distance
away from either end. In fact, spindles do not allow holes drilled in them to set the RTD when in use,
therefore one must choose the rear and front ends of the outer housing surface to set the RTD because
they are the only positions being capable of detecting temperature directly when in use.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 24 

control the motor through a programmable control interface, and two sets of self-made TSWTMs 
with temperature RTD (PT1000) sensor probes. As shown in Figure 3c, RTDs are located at the outer 
rings of front and rear bearings, the center point of the spindle’s inner housing, the rear and front 
ends of the spindle’s outer housing surface, and the ambient temperature to acquire the training data 
for the thermal feature identification algorithm. Figure 4 shows the photos of the experimental 
setup. Each run of experiments lasts for almost a day; therefore, the variation in ambient 
temperature during the day (Figure 5) must be considered. Based on the literature survey in 
Introduction, one knows that bearings are the main heat source of spindles, therefore the bearings 
are important temperature characteristic points and choosing the outer rings of front and rear 
bearings to set the RTD is important because they are static rings. As conduction dominates the heat 
transfer of the metallic inner housing and is very fast, one must choose the center point of the inner 
housing because it is the same distance away from either end. In fact, spindles do not allow holes 
drilled in them to set the RTD when in use, therefore one must choose the rear and front ends of the 
outer housing surface to set the RTD because they are the only positions being capable of detecting 
temperature directly when in use. 

 
Figure 4. The photos of the experiment setup. 

 
Figure 5. The variation of ambient temperature during a day. 

2.2.2. Performance of the Temperature Sensing and Wireless Transmission Module (TSWTM) 

The performance of the self-made TSWTM was tested in a precisely temperature-controlled 
environment provided by the Electronics Testing Center (ETC) in Taiwan. The 

Figure 4. The photos of the experiment setup.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 24 

control the motor through a programmable control interface, and two sets of self-made TSWTMs 
with temperature RTD (PT1000) sensor probes. As shown in Figure 3c, RTDs are located at the outer 
rings of front and rear bearings, the center point of the spindle’s inner housing, the rear and front 
ends of the spindle’s outer housing surface, and the ambient temperature to acquire the training data 
for the thermal feature identification algorithm. Figure 4 shows the photos of the experimental 
setup. Each run of experiments lasts for almost a day; therefore, the variation in ambient 
temperature during the day (Figure 5) must be considered. Based on the literature survey in 
Introduction, one knows that bearings are the main heat source of spindles, therefore the bearings 
are important temperature characteristic points and choosing the outer rings of front and rear 
bearings to set the RTD is important because they are static rings. As conduction dominates the heat 
transfer of the metallic inner housing and is very fast, one must choose the center point of the inner 
housing because it is the same distance away from either end. In fact, spindles do not allow holes 
drilled in them to set the RTD when in use, therefore one must choose the rear and front ends of the 
outer housing surface to set the RTD because they are the only positions being capable of detecting 
temperature directly when in use. 

 
Figure 4. The photos of the experiment setup. 

 
Figure 5. The variation of ambient temperature during a day. 

2.2.2. Performance of the Temperature Sensing and Wireless Transmission Module (TSWTM) 

The performance of the self-made TSWTM was tested in a precisely temperature-controlled 
environment provided by the Electronics Testing Center (ETC) in Taiwan. The 

Figure 5. The variation of ambient temperature during a day.



Sensors 2019, 19, 1209 6 of 24

2.2.2. Performance of the Temperature Sensing and Wireless Transmission Module (TSWTM)

The performance of the self-made TSWTM was tested in a precisely temperature-controlled
environment provided by the Electronics Testing Center (ETC) in Taiwan. The constant-temperature
environment is controlled by liquid calibration baths (LCB) and the standard temperature is measured
by a high-accuracy (@–100 to 100 ◦C ± 0.009 ◦C) platinum RTD thermometer [20]. Given the results of
channels 1 and 2 of the TSWTM as examples, Figure 6a,b show their sensing error over the temperature
range of 25 to 55 ◦C. The sensing error at different temperatures can be fitted with a first-order linear
equation. The slope of error to temperature of channels 1 to 5 are −0.0056, −0.0058, −0.0061, −0.0051,
and−0.0054 respectively, which demonstrate that the five channels of TSWTM are consistent with each
other. Therefore, the differences in sensing error between the five channels are negligible. The ordinates
of Figure 7a,b are the temperature measured by the TSWTM at the standard temperature of 25 and
55 ◦C, respectively, while their abscissas are the elapsed times, which demonstrate the high stability
and good anti-interference ability of the TSWTM. Tables 2 and 3 list the specifications of the TSWTM
and temperature probe, respectively. The bare size of the TSWTM is 43× 48× 10 mm3 and the package
size is Ø 80 × 53 mm3. The TSWTM measures the temperature with a temperature probe (PT1000,
Ø3 probe). Its measurement range is −50 to 300 ◦C, the accuracy is @ 25 ± 0.05 ◦C, and the power
consumption is 175 mW. Figure 8 shows the components in use and assembly process of the TSWTM.
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Table 2. Specification of TSWTM.

Accuracy [◦C] @25 ± 0.05
Measurement Range [◦C] −50 to 300

Supportable Channels 5
Sampling Rate [Hz] 4.17

Power Consumption [mW] 175
Size [mm3] Ø 80 × 53

Communication BLE/Micro USB
Power Supply Wire (USB)/Wireless (CR2032)

Table 3. Specifications of the temperature sensing probe.

Sensor Type PT1000 (A class)
Accuracy [◦C] ±(0.15 ± 0.002|t|)

Measurement Range [◦C] −50 to 300
Excited Current Limit [mA] ≤5

Thermal Response [s] ≤0.3 @ air
Size [mm3] Ø 3 × 60

Package Material Stainless steel 304
Protection Level IP 65
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2.3. System Identification for the Thermal-Feature Model of the Spindle

During the operation of the spindle, the temperature variations within it involves complex heat
transfer phenomena and unpredictable environmental disturbances. As a result, it is difficult to
analyze its heat transfer phenomena by means of theoretical approaches [21]. On the other hand,
SID is a method for building the mathematical model of a system from the data measured during its
operation [22]. The authors model the thermal-feature of an externally driven spindle in terms of a
state-space representation based on the input rotational speed and the output temperature datasets
measured during its operation. The process of SID for the thermal-feature model of the spindle can
be roughly divided into three stages: data preparation, model structure determination, and model
parameter identification, as shown in Figure 9. The three stages are explained in the following:

1. Data preparation: This stage prepares the dataset for SID. More specifically, this stage has to
remove the outliers, perform resampling, remove missing data, and justify the starting time for
all the time-series sequences.
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2. Model structure determination: This stage is for deciding several important model properties,
such as linear or nonlinear, and time-invariant or time-varying, and then determine the model
structure, namely the types and corresponding structure configurations accordingly.

3. Model parameter identification: This stage is for identifying the best parameters of the
thermal-feature model based on the measured input/output data of the spindle in operation.
After the identification, the resulting thermal-feature model is validated by the test data to verify
whether the model’s prediction is accurate enough. If the accuracy is not good enough, one has
to change the method of parameter identification. Furthermore, once the change of the parameter
identification method cannot generate satisfactory accuracy, one has to go back to the previous
stage to re-determine the model structure. In fact, the stages of model structure determination
and parameter identification are often repetitively interleaved until the model with the best
structure and parameters is found. It should be mentioned that the test data used to validate the
model is always different from the training data used to identify the model.
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2.3.1. Data Preparation Stage

Recall that the input and output data of the thermal-feature model of the spindle are its rotational
speeds and temperatures, respectively. The rotational speed of the spindle is controlled by a
programmable control interface, while the temperatures are measured by the self-made TSWTM.
The spindle was set to rotate at a certain constant speed, meanwhile its temperature variation was
recorded continuously. The spindle was turned down to stationary if the temperature variation was
less than 1 ◦C for 3 consecutive hours. The temperature was recorded continuously until the spindle
naturally cooled to ambient temperature. The whole process lasted a full day for each specific speed
of the spindle, the records are detailed in Table 4. Figure 10 shows the raw data of 4000 rpm as
an example.

As the temperatures at the different locations in and on the spindle are acquired by different
channels of the TSWTM, the temperature sampling timings of different locations are not synchronous.
The center symbols shown in the zoom-in window of Figure 10 demonstrate that the temperature raw
data acquired by different channels are in different sampling times. For system identification, the raw
data has to be cleaned and synchronized through the following procedure:

1. Plot the raw data for visual inspection. If there some extremely erroneous data exists, which may
be due to device failure or some unknown reasons, then consider such data to be an outlier and
remove it all directly.
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2. As the sampling timings of all channels are nonsynchronous, it is necessary to resample the
all-time series of output temperatures and input speeds to reach the same sample rate of 1 Hz.

3. The data of not a number (NaN) has to be removed from the time series because it represents
missing-data. Furthermore, the all-time series should start simultaneously with the first time
sample that has all non-NaN temperatures.

Given the spindle speed of 4000 rpm as an example, Figure 10 shows the measured raw data,
wherein each temperature curve has a different and possibly uneven sampling rate. Figure 11
demonstrates that the data resampled from the raw data have the same sample rate of 1 Hz. For system
identification, one still needs to remove the NaN data and subtract the ambient temperature from the
measured temperature data, and adjust the starting time. The final data ready for system identification
is shown in Figure 12, wherein the rotational speed and the temperature serve as the input and output
data, respectively, for system identification.

Table 4. The data descriptions for thermal-feature model identification, all data were recorded in the
year 2018. The superscript of the data name indicates the fold number and the subscript indicates
the input spindle speed. The format of the recorded date is month/day. Note that each data contain
1 time-series of input spindle speed and 7 time-series of temperature variation corresponding to 7
characteristic temperature points of the spindle.

Input Speed [rpm] 4000 5000 6000 7000 8000

Fold 1
Data D1

4000 D1
5000 D1

6000 D1
7000 D1

8000
Record Date 10/09 10/17 10/18 10/24 10/28

Fold 2
Data D2

4000 D2
5000 D2

6000 D2
7000 D2

8000
Record Date 10/10 10/29 10/30 10/25 10/27
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2.3.2. Structure Determination Stage

When a system is too complicated to be modeled based on a theoretical approach, one can model
it mathematically based on the correlation between input and output data. For the thermal-feature
model of the spindle, the input is its rotational speed while the output is its temperature variation
measured by the TSWTM. Conceptually, a model can be classified into linear or nonlinear and
time-invariant or time-varying. Figure 13 shows the temperature variations of seven spindle’s
characteristic points at the same rotational speeds to that of Figure 10b, which were measured on
different dates. These figures reveal that the temperature progressions do not change much on different
dates and thereby demonstrate the time-invariance of the thermal-feature model of the spindle.
According to modern control theory, a dynamic system can be represented by a state-space model [23],
which is usually sufficient to describe a dynamic system accurately [24]. Therefore, the authors chose
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a linearly time-invariant state-space model provided by the System ID Toolbox of MATLAB [24] to
model the thermal-feature of the spindle in the following parameter identification stage.
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Figure 13. The temperature variations of seven spindle’s characteristic points at the same rotational
speeds to that of Figure 8b but measured on different dates: (a) rear bearing A; (b) rear bearing B;
(c) front bearing C; (d) front bearing D; (e) inner housing mid; (f) rear outer housing; (g) front
outer housing.

2.3.3. Parameter Identification Stage

According to modern control theory [23], the linear time-invariant model for modeling a physical
system can be expressed in terms of the state-space equation{

x(t+∆t)−x(t)
∆t = Ax(t) + Bu(t) + Ke(t), x(0) = x0,

y(t) = Cx(t) + e(t).
(3)

where u(t) is a vector of input data whose components are the time-series of all input data, y(t) is a
vector of output data whose components are the time-series of all output data, e(t) is the vector of
noise signals that cannot be reduced during the system identification process, x(t) is the vector of state
variables whose dimension is dependent on the number of order (n) of the model, and the entries of
matrices, A, B, C, D, and K, are the parameters of the model to be identified to fit the given training
data during the identification process and whose dimensions are dependent on the number of order
of the model as well as the number of input/output data. For the case of the spindle in this article,
the input data is only its time-series of rotational speed (single input), while the output data are the
time-series of temperature variations of its seven characteristic points (7 outputs) shown in Figure 3c.
Therefore, u(t) is a 1-dimensional vector whose component is the time-series of rotational speed, y(t) is
a 7-dimensional vector whose components are the time-series of the temperature variations of the 7
characteristic points, and e(t) is a 7-dimensional vector.

There are several commands, such as n4sid, ssest, and ssregest, in the System ID Toolbox of
MATLAB for system identification [24]. As the first one, n4sid, is the fastest compared with the others,
the authors use it throughout this article. The training data, i.e., the fold 1 of Table 4, was put into the
command n4sid to conduct the system identification process. The command n4sid allows one to set
a range of the model order (n) and determine the best model order within this range by the Hankel
singular value. The Hankel singular values measure the contribution of each state to the input/output
behavior, namely the states with small Hankel singular values can be discarded to simplify the model.
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As a result, n4sid determines the best model order to be 8, as shown in Figure 14. Therefore, with the
8-order state space model, the state space equation of the spindle is expressed as


x1(t + 1)
x2(t + 1)

...
x8(t + 1)

 =


a1,1 a1,2 · · · a1,8

a2,1 a2,2 · · · a2,8
...

...
. . .

...
a8,1 a8,2 · · · a8,8




x1(t)
x2(t)

...
x8(t)

+


b1

b2
...

b8

u(t) +


k1,1 k1,2 · · · k1,7

k2,1 k2,2 · · · k2,7
...

...
. . .

...
k8,1 k8,2 · · · k8,7




e1(t)
e2(t)

...
e7(t)

,


y1(t)
y2(t)

...
y7(t)

 =


c1,1 c1,2 · · · c1,8

c2,1 c2,2 · · · c2,8
...

...
. . .

...
c7,1 c7,2 · · · c7,8




x1(t)
x2(t)

...
x8(t)

+


d1

d2
...

d8

u(t) +


e1(t)
e2(t)

...
e7(t)

.

(4)

After determination of the best model order and the parameters identification of the corresponding
model, the predictive temperature and goodness of fit of the model can be evaluated by invoking the
command “compare,” which will be discussed in the following section, Results and Discussion.
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Instead of using the variation in Hankel singular value (as used in “n4sid” of MATLAB),
the authors propose another way to determine the best model order by means of k-fold cross-validation,
which is commonly used in machine learning [25]. For simplicity, the authors adopt 2-fold
cross-validation with varying model order to determine what order is the best one that leads to
the highest validation accuracy (goodness of fit). The criterion of goodness of fit of each output is
defined by the normalized root mean square error (NRMSE),

NRMSEi = 1− ‖Xobs(:, i)− X(:, i)‖
‖Xobs(:, i)−mean(Xobs(:, i))‖ , (5)

where Xobs(:,i) and X(:,i) are respectively the observed and predicted time-series of i-th output and
mean( ) is the mean value of a time-series of data. Then the performance of SID is evaluated by the
mean value of NRMSEi, that is

MNRMSE =
1
N

N

∑
i=1

NRMSEi. (6)

where N is the number of outputs and N = 7 for this article because there are 7 characteristic temperature
points in/on the spindle. Let M f old

rpm,n be the n-order model identified from the training data D f old
rpm

listed in Table 4, then its overall accuracy can be evaluated by the MNRMSE, namely the X(:,i) is the
time-series predicted by M f old

rpm,n and Xobs(:,i) is a given data D f old
rpm . For convenience of explanation,

in the following, express the overall accuracy of the model evaluated by the aforesaid MNRMSE by

Accuracy = test(M f old
rpm,n, D f old

rpm ). (7)
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If the given data D f old
rpm is the same as the training data of M f old

rpm,n, then the accuracy is called the
training accuracy (TA) otherwise its called the validation accuracy (VA). For a given order n, one can
evaluate the overall training accuracy (TA) by

TA =
1
2

[
test(M1

rpm,n, D1
rpm) + test(M2

rpm,n, D2
rpm)

]
. (8)

Similarly, the overall validation accuracy (VA) is evaluated by

VA =
1
2

[
test(M1

rpm,n, D2
rpm) + test(M2

rpm,n, D1
rpm)

]
. (9)

Based on the concept of cross-validation, which is commonly used in machine learning for
classification and regression [26], it is necessary to vary the model complexity, namely the model order
n, and search for a n* that maximizes the validation accuracy,

n∗ = argmax
n

VA(rpm, n). (10)

Using cross-validation to determine the optimal complexity of a model can effectively strike a
balance between bias and variance, such that both under-fitting and over-fitting can be avoided. Table 5
lists all the results of 2-fold cross-validation for the model at given rotational speeds as mentioned
above, which shows that the model order of 25 results in the best MNRMSE in validation accuracy.
As an example, Figure 15 shows the goodness of fit (MNRMSE) of the model, which is trained by the
data D1

5000 and tested with the data D2
5000.

Table 5. Results of 2-fold cross validation at a given rotational speeds.

Rotational Speed [rpm] 4000 5000 6000 7000 8000

Best Model Order (n*) 25 25 26 25 21
Training Accuracy (TA) [%] 99.34 99.55 99.71 99.73 99.17

Validation Accuracy (VA) [%] 99.23 99.54 99.69 99.7 99.16
Elapsed Time [sec] 11231.9 10871.3 10692.5 10816.1 9784.31
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3. Results and Discussions

3.1. Speed-Dependence of the Thermal-Feature Model of the Spindle

As the thermal-feature model of the spindle is identified by the correlation between the input data,
i.e., the time-series of spindle speed, and the output data, i.e., the time-series of spindle temperature
at the input spindle speed, then, for different input spindle speeds, the identified parameters of
thermal-feature models are slightly different. Hence it is worthwhile investigating the influence of the
spindle speed on the variance of the parameters of the thermal-feature model. Here the authors use the
data in the fold 1 of Table 4 as the training data to identify the model and those in the fold 2 as the test
data to test the validation accuracies of each model. The results are displayed in both a matrix form
and a bar chart as shown in Figures 16 and 17, wherein the former is identified by an 8-order model
and the latter by a 25-order model. In the matrix forms, Figures 16a and 17a, the entry (i, j) represents
the percentage VA of the model using the training data D1

rpmi
and test data D2

rpmj
. Each row entry of

the matrix forms are also displayed in bar charts, Figures 16b and 17b, corresponding to a specific
spindle speed. If the model is highly dependent on the spindle speed, then the VAs of the diagonal
entries in the matrix forms should be much higher than the other entries. However, as shown in the
bar charts, this is not true. The VAs of all models are very close, for 8- and 25-order models, they are
about 98.5% and 99%, respectively. Therefore, the influence of the spindle speed on the variance of the
model is approximately negligible. This means that one may use the thermal-feature model identified
at a certain spindle speed to predict the spindle temperature at other speeds. It is rational to assume
the thermal-feature model of the spindle is linear and time-invariant.
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Figure 16. The percentage VA of the 8-order model: (a) The matrix chart; (b) The bar chart, wherein each
group of bars corresponds to a row of the matrix chart.
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Figure 17. The percentage VA of the 25-order model: (a) The matrix chart; (b) The bar chart,
wherein each group of bars corresponds to a row of the matrix chart.

3.2. Using the Thermal-Feature Model to Predict the Temperature Variation of the Spindle at Various Speeds

The previous section concluded that the influence of spindle speed on the variance of the
thermal-feature model is approximately negligible, namely the parameters of the thermal-feature
model are constant. This section tries to use the thermal-feature model M1

6000,8, namely the 8-order
model identified from the training data D1

6000 listed in Table 4 to predict the temperature variation
of the spindle rotating at various speeds. The spindle was set to rotate at a certain constant speed,
meanwhile its temperature variation was recorded continuously. The spindle was turned down to
stationary if its temperature variation was less than 1 ◦C for 3 consecutive hours. The temperature was
recorded continuously until the spindle naturally cooled to ambient temperature. Figure 18 shows
the test results of the rotational speeds of 4500, 5300 and 7800 rpm, respectively, where the zoom-in
window clearly illustrates that the prediction is very close to the measured data, the goodness of fit
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(MNRMSE) is over 98.94% for all locations. These results confirm that the thermal-feature model of the
spindle can be represented by a linearly time-invariant state-space model with constant parameters.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  17 of 24 

shows the test results of the rotational speeds of 4500, 5300 and 7800 rpm, respectively, where the 
zoom-in window clearly illustrates that the prediction is very close to the measured data, the 
goodness of fit (MNRMSE) is over 98.94% for all locations. These results confirm that the 
thermal-feature model of the spindle can be represented by a linearly time-invariant state-space 
model with constant parameters. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 18. Cont.



Sensors 2019, 19, 1209 18 of 24Appl. Sci. 2018, 8, x FOR PEER REVIEW  18 of 24 

 

(g) 

 

Figure 18. Using the thermal-feature model of the spindle to predict the temperature variation at: (a) 
rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid; (f) 
rear outer housing, (g) front outer housing. 

3.3. Predicting Internal Temperature of the Spindle from Its Surface Temperature 

In fact, the temperature inside the spindle is undetectable because there is no space inside the 
spindle to embed the temperature sensor. In addition, the spindle manufacturer or user never 
allows drilling on the spindle to place the temperature sensor inside because these holes may 
reduce the mechanical stiffness of the spindle. However, the internal temperature may provide an 
important index for prevention and maintenance of the spindle. Sections 3.1 and 3.2 conclude that 
the speed-dependence of the thermal-feature model of the spindle is approximately negligible and 
it can be represented by a linearly time-invariant state-space model with constant parameters. 
Therefore, this section tries to use the temperature on the surface of the outer housing of the spindle, 
which is detectable directly, as the input data to identify the thermal-feature model of the spindle, 
and then, by the resulting thermal-feature model, to figure out the undetectable temperature inside 
the spindle from its surface temperature. We set the spindle to rotate at a constant speed of 6000 
rpm, meanwhile we recorded its temperature variation continuously. The spindle was turned down 
to stationary if its temperature variation was less than 1 ℃ for 3 consecutive hours. The 
temperature was recorded continuously until the spindle naturally cooled to ambient temperature. 
The time-series of temperature of seven points inside/outside the spindle, as shown in Figure 3c, are 
recorded and serve as input or output data for the identification of the thermal-feature model, 
described in Table 6. According to the number of input (I) and output (O) data, four thermal-feature 
models of the spindle, namely 1I7O, 3I5O, 2I5O, and 1I5O, are respectively identified by the linearly 
time-invariant 8-order state-space model. Then the resulting thermal-feature models were used to 
predict the temperature of the spindle at various speeds, say 4500, 5300, and 7800 rpm. Figure 16 
shows the results predicted by the 1I7O model, while Figures 19–21 show the results predicted by 
the models of 3I5O, 2I5O, and 1I5O, respectively. The prediction results agree very well with the 
measured data; as shown in Figure 22, whose accuracies are over 99%. This illustrates the feasibility 
of predicting the internal temperature of the spindle from its surface temperature. 

Table 6. The thermal-feature models and their input/output data. 

I/O No. Input Data Output Data 

1I7O 1. Spindle speed 

1. Temperature of rear bearing A 
2. Temperature of rear bearing B 

3. Temperature of front bearing C 
4. Temperature of front bearing D 
5. Temperature of inner housing 

6. Temperature of front outer housing 

Figure 18. Using the thermal-feature model of the spindle to predict the temperature variation at:
(a) rear bearing A; (b) rear bearing B; (c) front bearing C; (d) front bearing D; (e) inner housing mid;
(f) rear outer housing, (g) front outer housing.

3.3. Predicting Internal Temperature of the Spindle from Its Surface Temperature

In fact, the temperature inside the spindle is undetectable because there is no space inside the
spindle to embed the temperature sensor. In addition, the spindle manufacturer or user never allows
drilling on the spindle to place the temperature sensor inside because these holes may reduce the
mechanical stiffness of the spindle. However, the internal temperature may provide an important index
for prevention and maintenance of the spindle. Sections 3.1 and 3.2 conclude that the speed-dependence
of the thermal-feature model of the spindle is approximately negligible and it can be represented by
a linearly time-invariant state-space model with constant parameters. Therefore, this section tries to
use the temperature on the surface of the outer housing of the spindle, which is detectable directly,
as the input data to identify the thermal-feature model of the spindle, and then, by the resulting
thermal-feature model, to figure out the undetectable temperature inside the spindle from its surface
temperature. We set the spindle to rotate at a constant speed of 6000 rpm, meanwhile we recorded
its temperature variation continuously. The spindle was turned down to stationary if its temperature
variation was less than 1 ◦C for 3 consecutive hours. The temperature was recorded continuously
until the spindle naturally cooled to ambient temperature. The time-series of temperature of seven
points inside/outside the spindle, as shown in Figure 3c, are recorded and serve as input or output
data for the identification of the thermal-feature model, described in Table 6. According to the number
of input (I) and output (O) data, four thermal-feature models of the spindle, namely 1I7O, 3I5O,
2I5O, and 1I5O, are respectively identified by the linearly time-invariant 8-order state-space model.
Then the resulting thermal-feature models were used to predict the temperature of the spindle at
various speeds, say 4500, 5300, and 7800 rpm. Figure 16 shows the results predicted by the 1I7O model,
while Figures 19–21 show the results predicted by the models of 3I5O, 2I5O, and 1I5O, respectively.
The prediction results agree very well with the measured data; as shown in Figure 22, whose accuracies
are over 99%. This illustrates the feasibility of predicting the internal temperature of the spindle from
its surface temperature.

Table 6. The thermal-feature models and their input/output data.

I/O No. Input Data Output Data

1I7O 1. Spindle speed

1. Temperature of rear bearing A
2. Temperature of rear bearing B
3. Temperature of front bearing C
4. Temperature of front bearing D
5. Temperature of inner housing
6. Temperature of front outer housing
7. Temperature of rear outer housing
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Table 6. Cont.

3I5O
1. Spindle speed
2. Temperature of front outer-housing
3. Temperature of rear outer-housing

1. Temperature of rear bearing A
2. Temperature of rear bearing B
3. Temperature of front bearing C
4. Temperature of front bearing D
5. Temperature of inner housing

2I5O 1. Temperature of front outer-housing
2. Temperature of rear outer-housing

1I5O 1. Temperature of front outer-housing
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4. Conclusions

This article proposes a methodology for the thermal-feature system identification of a machine
tool spindle. A self-made temperature sensing and wireless transmission module was developed to
acquire the training data required for system identification, with an accuracy of ±0.05 ◦C at 25 ◦C,
measurement range −50 to 300 ◦C, 5 support channels, sampling rate 4.17 Hz, power consumption
175 mW, and protection level IP65. The thermal-feature of the spindle was modeled by a linearly
time-invariant state-space model. The parameters of the state-space model are identified by the
command “n4sid” provided by the System ID Toolbox of MATLAB. The best model-order was doubly
checked by the Hankel singular value (used in “n4sid” of MATLAB) and k-fold cross validation
(common in machine learning), wherein the accuracy of an 8-order model is about 98.5%, while that of
a 25-order model is about 99%. The 25-order model is the optimal model for the present case. However,
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for the calculation efficiency, the 8-order model is a good model for the present case. The proposed
method to determine the optimal complexity of a model, namely model order, can effectively strike
a balance between bias and variance, such that both under-fitting and over-fitting can be avoided.
Section 3.1 illustrates that the influence of spindle speed on the variance of the thermal-feature model
of the spindle is approximately negligible. It is rational to assume the thermal-feature model of the
spindle is linearly time-invariant. Section 3.2 illustrates that the thermal-feature model of the spindle
can be represented by a linearly time-invariant state-space model with constant parameters. This means
that one may use the thermal-feature model identified at a certain spindle speed to predict the spindle
temperature at other speeds. Based on the assumption that the spindle speed has a negligible effect
on the variance of the thermal-feature model, Section 3.3 uses the temperature on the surface of the
outer housing of the spindle as input data and its internal temperature as output data to identify its
thermal-feature model. Section 3.3 illustrates the feasibility of predicting the internal temperature
(undetectable directly) of the spindle from its surface temperature (detectable directly). The internal
temperature may provide an important index for prevention and maintenance of the spindle. It should
be mentioned here that the research objective of this article is an externally driven spindle. However,
for a motorized spindle, its thermal-feature model might be highly dependent on the spindle speed,
which is worthy of studying in the near future. The applicability of the present methodology is
not limited to externally-driven spindles, although it is validated by the run-in test of our available
externally-driven spindle. Based on the results of the run-in test, it is indeed accurate to simulate
the externally-driven spindle by a state-space model with constant coefficients. However, based on
the literature, the state-space model of motorized spindles ought to use non-constant coefficients.
For example, Lin and Tu [27] had mentioned that high-speed rotation can cause substantial changes in
the dynamic and thermal behaviors of motorized spindles, and Liu and Zhang [28] concluded that the
electromagnetic power loss of the built-in motor with motor slip at high-speed rotation will change the
thermal-mechanical properties of motorized spindles.
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