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Johne’s disease caused by Mycobacterium avium subsp. paratuberculosis

(MAP) is a major concern in dairy industry. Since, the pathogenesis of the

disease is not clearly known, it is necessary to develop an approach to discover

molecular mechanisms behind this disease with high confidence. Biological

studies often su�er from issues with reproducibility. Lack of a method to find

stable modules in co-expression networks from di�erent datasets related to

Johne’s disease motivated us to present a computational pipeline to identify

non-preserved consensus modules. Two RNA-Seq datasets related to MAP

infection were analyzed, and consensus modules were detected and were

subjected to the preservation analysis. The non-preserved consensus modules

in both datasets were determined as they are modules whose connectivity and

density are a�ected by the disease. Long non-coding RNAs (lncRNAs) and TF

genes in the non-preserved consensus modules were identified to construct

integrated networks of lncRNA-mRNA-TF. These networks were confirmed

by protein-protein interactions (PPIs) networks. Also, the overlapped hub

genes between two datasets were considered hub genes of the consensus

modules. Out of 66 consensus modules, 21 modules were non-preserved

consensus modules, which were common in both datasets and 619 hub genes

were members of these modules. Moreover, 34 lncRNA and 152 TF genes

were identified in 12 and 19 non-preserved consensus modules, respectively.

The predicted PPIs in 17 non-preserved consensus modules were significant,

and 283 hub genes were commonly identified in both co-expression and

PPIs networks. Functional enrichment analysis revealed that eight out of 21

modules were significantly enriched for biological processes associated with

Johne’s disease including “inflammatory response,” “interleukin-1-mediated

signaling pathway”, “type I interferon signaling pathway,” “cytokine-mediated

signaling pathway,” “regulation of interferon-beta production,” and “response

to interferon-gamma.” Moreover, some genes (hub mRNA, TF, and lncRNA)

were introduced as potential candidates for Johne’s disease pathogenesis such

as TLR2, NFKB1, IRF1, ATF3, TREM1, CDH26, HMGB1, STAT1, ISG15, CASP3.

This study expanded our knowledge of molecular mechanisms involved in

Johne’s disease, and the presented pipeline enabled us to achieve more

valid results.
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Introduction

Johne’s disease (JD) is one of the most serious chronic

infectious diseases of ruminants worldwide. Mycobacterium

avium subsp. paratuberculosis (MAP) is the causative agent

of the disease. JD causes significant economic losses due

to the symptoms and problems including diarrhea, weight

loss, decreased milk production, premature culling, decreased

productive life and increased mortality (1–3). Animals usually

get infected in the first months of their life through the fecal-

oral route or ingestion of infected colostrum or milk; however,

infection in utero is also reported (4–6). After entering the

animal’s cell, MAP is phagocytized by intestinal macrophages,

which play a substantial role in beginning the appropriate

innate and adaptive immune response (7). Infectedmacrophages

secrete inflammatory cytokines such as TNF-α, IL-10, and IL-

12 and trigger the adaptive immune response through the

production of gamma interferon (IFNγ) (8, 9). The main

characteristic of host immunity to MAP infection contains

early Th1 response (pro-inflammatory and cytotoxic response)

that finally changes to Th2 response (antibody-based response)

(9). Most of the time, MAP can escape the immune response

and survive and proliferate within phagosomes. The main

problem that delays the diagnosis of MAP infection is the

long incubation period during which the infection can be

spread across the herd (10). Hence, it is necessary to facilitate

early diagnosis of this disease by uncovering the underlying

molecular mechanisms. Different approaches have been applied

to address this issue. A great number of studies have been

conducted with the purpose of finding differentially expressed

genes (11–18). Park et al. (18) performed gene expression

analysis of immune regulatory genes during MAP infection

in the whole blood of cattle. According to their results,

downregulation and upregulation of these genes were indicative

of suppression of the Th1 response due to MAP infection,

loss of granuloma integrity, and finally enhanced survival of

MAP during subclinical stages (18). In a more recent study,

Ariel et al. identified a considerable number of differentially

expressed genes in JD negative macrophages. They reported

that some pathways such as energy production pathways and

lipid homeostasis were affected by MAP, in addition to immune

pathways (17). Researchers in several studies tried to identify

genomic regions associated with JD (19–25). Mallikarjunappa

et al. performed a genome-wide association study of previously

analyzed 50K SNP-chip. They could validate previous findings

and identify new QTL associated with the MAP infection

Abbreviations: JD, Johne’s disease; KEGG, Kyoto Encyclopedia of Genes

and Genomes; lncRNAs, long non-coding RNAs; MAP, mycobacterium

avium subsp. paratuberculosis; PPIs, protein-protein interactions; SNP,

single nucleotide polymorphism; TFs, transcription factors; WGCNA,

weighted gene co-expression network analysis.

on 15, 16, 20, and 21 bovine chromosomes (22). McGovern

et al. found putative MAP susceptibility QTLs on several

bovine chromosomes and reported some functional candidate

genes (20).

Since genes are co-expressed during the processes of

disease development, they probably co-regulate biological

processes or functions across the processes (26–28). Therefore,

gene co-expression network analysis, as a complement of

traditional differential gene expression analysis, is a powerful

system biology approach to discover new gene functions and

regulatory relationships involved in diseases like JD. These

networks provide the possibility to systematically identify

co-expressed genes, called module (29). According to the

assumption behind this analysis, highly connected genes within

each module are functionally coherent and exhibit similar

biological relationships across different stages or conditions

(26). Ibeagha-Awemu et al. (2018) used weighted gene co-

expression network (WGCNA) and functional enrichment

analyses to identify important genes, pathways, and TFs

regulating MAP infection. They found CTSH and MERTK hub

genes play a part in the degradation of lysosomal proteins

and phagocytosis of apoptotic cells, respectively. Moreover,

SPI1 and EP300 were the most significantly enriched TFs

in the co-expressed modules related to JD (30). In our

previous study to better understand the underlying molecular

mechanisms regulating JD,WGCNAwas applied, and integrated

networks including long non-coding RNAs (lncRNAs), mRNA

and transcription factors (TFs) were constructed. As a result,

several genes potentially associated with MAP infection were

identified including SLC11A1, MAPK8IP1, HMGCR, IFNGR1,

CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-

DMA (28).

A big concern related to findings from biological studies,

especially co-expression analysis, is the reproducibility of the

results when tested in independent data. In other words,

one important question is how the identified modules are

sensitive to the input datasets, or stability. Stable modules

are comprised of tightly co-expressed genes that co-occur in

networks inferred from different datasets and can be used

to explore core components of the biological processes of

interest. It is supposed that these modules are not affected

by specific batch or experimental artifacts. In this regard,

all the previous studies used only one dataset to construct

gene co-expression networks, while the identified modules may

change in another dataset. Compared to module detection

from a single data, stable module identification approach,

called consensus modules, can improve reproducibility by

integrating data from several studies. In spite of the limited

studies investigating co-expression network analysis in JD,

there are no studies to construct consensus modules in this

disease across different datasets. In this study, for the first

time, a computational pipeline was developed to identify non-

preserved consensus modules associated with JD, which enable
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us to explore the potential molecular mechanisms of this

disorder. To this end, the consensus modules were constructed

across two datasets, based on their normal samples. Then,

preservation of the consensus modules was assessed in infected

samples of both datasets and the non-preserved modules in

both datasets were considered as non-preserved consensus

modules and were followed by functional enrichment analysis

to explore the biological function of the important modules

and their potential to be involved in JD. Accordingly, an

integrated gene regulatory network was constructed, which

provides novel insights into the pathological process of

this disease.

Materials and methods

Datasets

Two RNA-Seq datasets related to MAP infection were

considered for this study. Both were obtained from the publicly

available gene expression omnibus (GEO) database of the

National Center for Biotechnology Research (NCBI). The first

dataset (accession number GSE62048) contained 35 monocyte-

derived macrophages (MDM) samples collected from seven

Holstein-Friesian cows and were infected in vitro with a clinical

isolate of MAP. There were two groups of samples including

21 control (at 0, 2, and 6 h after infection with MAP) and 14

infected (at 2 and 6 h after infection withMAP) (31). The second

one (accession number GSE98363) comprised 72 monocyte-

derived macrophages samples from 12 dairy cows. Animals were

divided into two groups of positive and negative according to

disease status so that each group includes six cows. For each cow,

monocyte-derived macrophages were cultured and exposed ex

vivo to MAP infection. The samples were harvested at 4 and 24 h

after infection (24 samples) for the control group and 1, 4, 8,

and 24 h after infection (48 samples) for the infected group (17).

Samples in both datasets were sequenced using Illumina HiSeq

2000, while the first dataset was single-end and the second one

was paired-end.

RNA-Seq data analysis

For both datasets, the quality of the raw reads was

checked using FastQC software (version 0.11.5) (32). After that,

trimming was done to remove the low-quality reads using

Trimmomatic software v0.38 (33). Then, the clean reads were

aligned to the bovine reference genome (ARS-UCD1.2 from

ENSEMBL database) using Hisat2 software (version 2.0.4) (34).

The read counts per annotated gene were generated using Htseq

software (version 0.6.1) based on the ENSEMBL bovine GTF file

(version 98) (35).

Consensus modules detection

The raw count matrix of each dataset was normalized using

the voom function of the limma package (version 3.48.3) of

R software. The genes with expressions ≥1 count per million

reads (CPM) in at least five samples as well as the genes with

standard deviations >0.25 across the samples were kept and

were scaled (average = 0 and standard deviation = 1) for

further analysis. Then, the expression matrix resulted from each

dataset was checked for outliers using the adjacency function

of the WGCNA R package (version 1.70-3), and the samples

with a standardized connectivity score below the threshold of

−2.5 were removed (29). In the next step, the filter_by_variance

function of the BioNERO R package (version 1.0.4) was applied

to remove the genes with low variance across the control

samples of each dataset, and the top 10,000 most variable

genes, which were common in both datasets, were selected for

module detection.

In order to identify consensus modules in control samples of

both datasets, the consensus_modules function of the BioNERO

R package was used (36). To this end, a signed co-expression

network based on Pearson correlation was constructed for each

dataset using the exp2gcn function of the BioNERO R package.

The Pearson correlation matrix and adjacency matrix were also

obtained in control samples as outputs of this function, which

were used in the next step. The SFT_fit function of the BioNERO

R package was used to pick a power aiming to fit the network

to a scale-free topology. In the consensus_modules function, the

arguments of correlationmethod and network type were defined

as Pearson and signed network, respectively.

Preservation analysis

Module preservation analysis across the datasets was

performed using the NetRep R package (version 1.2.4)

(37). This analysis was performed for each dataset,

separately, using modulePreservation function, which uses

a permutation test procedure (nPerm = 10,000) on seven

module preservation statistics including module coherence

(“coherence”), average node contribution (“avg.contrib”),

concordance of node contributions (“cor.contrib”), the density

of correlation structure (“avg.cor”), concordance of correlation

structure (“cor.cor”), average edge weight (“avg.weight”), and

concordance of weighted degree (“cor.degree”). “Coherence”

calculates the ratio of variance in the module data described

by the module”s summary profile vector in the test dataset.

“avg.contrib” indicates coherence of the data in the test dataset.

“cor.contrib” determines if the module”s summary profile

summarizes the data in both datasets similarly. “avg.cor”

estimates the intensity of the module correlation on average in

the test dataset. “cor.cor” checks the similarity of the correlation

heatmaps between the two datasets. “avg.weight” measures
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the amount of connectivity between nodes in the module

on average. “cor.degree” judges whether the nodes that are

most strongly connected in the discovery dataset keep this

connectivity in the test dataset. In both datasets, normal samples

were considered as reference sets, and the infected samples

were defined as the test set. For the infected samples from

each dataset, the Pearson correlation matrix and adjacency

matrix were calculated using the same procedure as for normal

samples. Consensus modules were considered preserved if

permutation P-values for all seven statistics were ≤ 0.01 in

both datasets.

Integrated gene regulatory network
construction

To construct an integrated gene regulatory network,

lncRNAs and TF genes within a module were identified based on

the ENSEMBL bovine GTF file (version 98) and AnimalTFDB

database (38), respectively. It is reported that the potential

biological function of lncRNAs can be inferred from their

nearest neighboring protein-coding genes (cis targets) as well

as their co-expressed genes (trans targets) (39, 40). In this

regard, all the mRNAs in the module were considered the trans

targets of the lncRNAs in that module. On the other hand, the

protein-coding genes within a 100 kb window upstream and

downstream of each lncRNA were considered cis target genes

of those lncRNAs, based on the bovine GTF file.

To further validate these networks, protein-protein

interactions (PPIs) among mRNA genes of each module were

investigated using the STRING database (version 11.5) (41).

This analysis tests whether the number of observed PPIs in each

module is significantly more than expected by chance. To enrich

the integrated regulatory networks, the obtained PPIs of each

module were added to integrated gene regulatory networks. All

the obtained interactions among the genes (lncRNAs-mRNAs-

TFs) were visualized by Cytoscape software (version 3.8.2) for

each module (42).

Highly connected genes (hub genes) were identified using

the WGCNA R package. KME was used to identify hub genes,

and the genes with | KME| ≥ 0.7 were considered the hub

genes. To do this, first, hub genes for each module were

identified in each dataset, separately. Then, the overlapped

hub genes between two datasets were considered hub genes

of consensus modules. This process was applied to find the

hub genes of all gene types including mRNAs, lncRNAs

and TFs.

Hub genes were also obtained from the PPIs created by

STRING. To do this, the Network Analyzer tool of Cytoscape

software (version 3.8.2) was used, so that the degree score

of each gene was calculated and genes with a degree higher

than five were considered hub genes. Then, the common

hub genes between the co-expression network and PPIs

were identified.

Functional enrichment analysis

To achieve a deeper comprehension of the biological

function of modules, a functional enrichment analysis was

performed. The gene ontology (biological process) and KEGG

(Kyoto Encyclopedia of Genes and Genomes) pathway enriched

in each module were identified using the Enrichr online tool

(43). The adjusted p ≤ 0.05 (FDR by Benjamini–Hochberg

method) was considered to identify significant terms.

Results

RNA-Seq data analysis

The computational analysis pipeline of the proposedmethod

in the present study is shown in Figure 1. The obtained raw

reads were 693,703,609 and 4,880,859,643 reads from 35 and

72 samples of the two datasets, respectively. After trimming,

634,958,235 and 4,440,888,983 clean reads were obtained from

the two datasets, respectively. The percentages of the aligned

clean reads to the reference genome were 76 and 95% in

the first and second datasets, respectively. The overview of

the RNA-Seq data analysis for both datasets is provided in

Supplementary Table 1. A hierarchical cluster analysis of the

second dataset showed that two samples (1 and 13 from control

samples) were outliers and removed. No outlier samples were

detected in the first dataset.

Our filtering pipeline resulted in 11,373 and 11,772 genes

in the two datasets, respectively. When the genes with low

variance were omitted, 11,013 genes of the first dataset and

11,616 genes of the second dataset remained. Finally, a total

of 10,000 overlapped genes from both datasets were used to

construct consensus modules across the two datasets.

Consensus modules and preservation
analysis

Soft threshold power beta values of 11 and 12 were

determined to achieve a scale-free topology for the construction

of the co-expression networks in the two datasets, respectively.

A total of 66 consensus modules were found in normal

samples of both datasets, ranging in size from 34 (grey60

module) to 866 genes (firebrick4 module) with a mean module

size of 151 genes (Supplementary Table 2).

To assess if the consensus modules were stable in infected

samples, preservation analysis was performed. Modules with the

same connectivity patterns in both normal and infected samples
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FIGURE 1

The flow chart of the methodology used in the present study.

were considered preserved ones. According to the results of the

preservation analysis, in the first dataset, 36 and 30 consensus

modules were identified as preserved and non-preserved,

respectively (Supplementary Table 3). In the second dataset, 21

consensus modules were preserved, while 45 consensus modules

were non-preserved (Supplementary Table 4). The comparison

of the preservation status between the two datasets indicated

that there were 12 preserved and 21 non-preserved consensus

modules common in both datasets (Figure 2). We further

focused on the non-preserved consensus modules as they

are modules whose connectivity and density are affected by

the disease.

Hub genes identification in
non-preserved modules

Overall, 2,532 common hub genes were identified in all

consensus modules. Of these, 619 hub genes were members of

21 consensus non-preservedmodules. Firebrick4module owned

the highest number of hub genes (227), while the lightcyan1

module had the lowest number (two). The list of the hub

genes in the non-preserved consensus modules is presented in

Supplementary Table 5.

Functional enrichment analysis

According to the functional enrichment analysis results, 605

biological processes and 154 KEGG pathways were significantly

enriched in the 21 non-preserved consensusmodules. Firebrick4

module had the largest number of significantly enriched

biological processes terms (160), followed by the sienna3

module (117). In terms of KEGG pathways, 10 modules

had significant terms, and the sienna3 module contained the

highest number of significantly enriched terms (sixty-four).

Brown4, floralwhite, mediumpurple2, plum1, and violet were

the modules that showed neither significant biological processes

nor significant KEGG pathways. Results of the functional

analysis revealed that most of the enriched terms in non-

preserved modules were involved in “inflammatory response,”

“regulation of interleukin-6 production,” “MAPK cascade,”

“regulation of apoptotic process,” “cellular response to type
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FIGURE 2

Consensus modules with the same preservation status in the two datasets based on seven module preservation statistics. The modules with

–log2 p-value in all preservation statistics >6.64 (p ≤ 0.01) were preserved, otherwise they were non-preserved.

I interferon,” “cytokine-mediated signaling pathway,” “innate

immune response,” “response to interferon-gamma,” “T cell

receptor signaling pathway” and some relevant genes of these

functions were BLA-DQB, TLR2, NFKB1, IRF1, ATF3, SOCS3,

MYC, HMGB1, STAT1, and ISG15.

The significant biological processes in some of the

non-preserved modules are depicted in Figure 3, and the

most significant KEGG pathways in the sienna3 module

are shown in Figure 4. The complete list of the functional

enrichment analysis for the non-preserved consensus modules

is available in Supplementary Tables 6, 7. It is well reported that

disease-related modules should correspond well to biological

functions associated with diseases (26–28). Hence, a non-

preserved consensus module was considered as JD-related if

its gene members were significantly enriched for some of the

functional terms associated with disease such as “inflammatory

response,” “interleukin-1-mediated signaling pathway,” “type

I interferon signaling pathway,” “cytokine-mediated signaling

pathway,” “regulation of interferon-beta production,” and

“response to interferon-gamma.” Eight out of 21 modules were

enriched for at least one of these terms, and the sienna3

module because of owning the highest number of terms

related to JD was considered as the most important non-

preserved module.

Based on the KEGG and gene ontology analysis, 151

biological processes and 61 pathways were significantly enriched

in the 12 preserved consensus modules. The most significant

enriched terms of biological processes and KEGG pathways

belonged to lightpink4 (forty-six) and darkviolet (sixteen)

modules, respectively. Skyblue1 was the only module without

any significant biological processes. While, there were several

modules with no significant KEGG pathways including

antiquewhite4, lightgreen, lightsteelblue1, and thistle1. The

highly enriched biological processes in the preserved modules

were “mRNA processing,” “RNA splicing,” “transcription

by RNA polymerase III,” “translational elongation,” and

“cytoplasmic translation.” The results of the functional analysis

in the preserved consensus modules are illustrated in Figure 5.

The complete list of the functional enrichment analysis for these

modules is provided in Supplementary Tables 8, 9.

Integrated gene regulatory networks

Out of 21 non-preserved consensus modules, 34 lncRNA

and 152 TF genes were identified in 12 and 19 modules,

respectively. The largest number of lncRNAs (nine) and

TFs (sixty-three) were found in the firebrick4 module. Five

non-preserved modules had hub lncRNAs including brown4

(two), mediumpurple2 (one), navajowhite2 (one), plum1 (one),

and sienna3 (one). Hub TFs were also found in nine

non-preserved modules comprising brown4 (one), firebrick4

(nine), floralwhite (one), lavenderblush3 (one), mediumpurple3

(three), navajowhite2 (three), orange (one), sienna3 (three),
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FIGURE 3

Significant biological processes for the genes in the non-preserved consensus modules. Only top 20 terms were presented for grey60 and

sienna3 modules, as they have a lot of significant terms.

and thistle2 (three). The complete list of the identified TFs

and lncRNAs in the non-preserved consensus modules are

presented in Supplementary Tables 10, 11, respectively. For all

of the lncRNAs in 12 modules, cis targets were identified

(Supplementary Table 12). Of these, trans targets of four

lncRNAs were identified in the same modules (brown4, sienna3,

and thistle2) (Supplementary Table 13). It is noteworthy that

these lncRNAs and their targets in brown4 and sienna3 modules

were hub genes too. These results suggest a positive feedback

loop among the regulators and the other module members.

Then, the enrichment in PPIs for each non-preserved

consensus module was assessed using the STRING database.

PPIs of 17 modules were significant, which indicates that the

number of observed PPIs in each module is significantly more

than expected by chance. However, four modules including

coral2, lightcyan1, plum1, and violet did not have significant
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FIGURE 4

The top significant KEGG pathways in the sienna3 module. The x and y axes indicate –log2 (FDR) and KEGG pathways, respectively. The

numbers indicate number of genes enriched by each pathway.

FIGURE 5

Significant biological processes for the genes in the preserved consensus modules. Only top 10 terms were presented for darkviolet, lightpink4,

and lightyellow modules, as they have a lot of significant terms.
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PPIs. The number of identified nodes and edges for each module

are provided in Supplementary Table 14. Totally 1,063 hub genes

(degree > 5) were explored in PPI networks of the non-

preserved consensus modules. Firebrick4 module possessed the

largest number (652), and blue2 and plum1 modules each with

one hub gene showed the lowest numbers. Lightcyan1 module

was the only module without a hub gene in the PPIs network.

Also, 283 hub genes were detected in both PPIs and WGCNA

in the non-preserved consensus modules. The list of the PPIs

network hub genes in the non-preserved consensus modules is

presented in Supplementary Table 15.

The integrated gene regulatory network of one of the most

important non-preserved consensus modules (sienna3 module)

including mRNAs, lncRNAs, and TFs is shown in Figure 6.

Discussion

It is undeniable that JD causes economic losses in dairy

farms; however, the specific pathogenesis of the disease and

the molecular mechanism of its regulation are still unclear.

Therefore, providing new procedures in order to broaden our

knowledge of this complex disease can help identify networks

of genes involved in JD pathogenesis. Since non-reproducibility

of the results is a major problem in biological research and

all the studies that have already been performed associated

with JD focused only on one dataset, in the present study,

a computational pipeline was proposed to authenticate the

repeatability of the obtained results in two datasets. Here,

consensus modules were defined as the modules comprised

of genes tightly co-expressed in normal samples of both

datasets and exhibit a degree of reproducibility between the

two networks. Here, two datasets with different time points and

replications per time point were applied to find the consensus

modules. In this context, it is reported that more stable

modules are likely to replicate in studies with different sample

sizes or other technical features. Moreover, it is demonstrated

that more stable modules are more corresponded to well-

characterized biological functions (44). Hence, the identified

consensus modules in the present study can be considered stable

modules that can be efficiently annotated across the well-known

biological functions. There are other studies that identified

consensus modules related to different traits. For instance, Yuan

et al. identified eight consensus gene co-expression modules

associated with abdominal fat deposition across multiple broiler

lines. They also found genes and pathways related to the

trait in these modules (45). On the other hand, the non-

preserved consensus modules are the consensus modules whose

connectivity and density are altered in infected samples of both

datasets. We hypothesized that the non-preserved consensus

modules would guide us to identify those gene sets that are

highly involved in biological processes relevant to the disease.

Moreover, focusing on the hub genes in these modules enables

us to identify genes that may play central roles in JD progression

with more confidence.

Enrichment analysis revealed that in the preserved modules,

genes were mainly enriched in the general processes of cells such

as “transcription,” “mRNA processing,” “mRNA splicing,” “DNA

replication,” “translation,” and “translational termination.” On

the other hand, the non-preserved modules were mainly

enriched in biological functions related to the immune system,

which is largely affected by MAP infection and can be associated

with JD progression. Out of 21 non-preserved consensus

modules, eight modules showed significantly enriched terms

associated with JD, some of which are discussed as follows.

These modules showed significant PPIs, except for the coral2

module, and there were many common hub genes between

the co-expression network and the PPIs network in these

modules. Some of the hub genes and also biological processes in

these modules, mentioned in the following, were in accordance

with the results of our previous work on the construction of

integrated networks related to MAP infection; nevertheless,

detecting and analyzing consensus modules using the new

pipeline allowed us to identify other important genes and

processes possibly associated with JD more confidently.

Sienna3 module was considered to be the most important

module since functional enrichment analysis indicated that

this module was enriched in the highest number of biological

processes related to JD (30 terms) including “cytokine-mediated

signaling pathway,” “inflammatory response,” “cellular response

to interleukin-1,” “response to interferon-gamma,” “neutrophil

activation involved in immune response,” “regulation of B

cell proliferation,” and “positive regulation of phagocytosis”

(Supplementary Table 6). Furthermore, the sienna3 module

also showed several significant KEGG pathways associated

with JD such as “TNF signaling pathway,” “Chemokine

signaling pathway,” “Toll-like receptor signaling pathway,” “IL-

17 signaling pathway,” “B cell receptor signaling pathway,”

“T cell receptor signaling pathway,” and “Th1 and Th2 cell

differentiation” (Supplementary Table 7). From the enriched

biological processes and pathways in the sienna3 module,

“neutrophil activation” and “T cell differentiation” were in

accordance with the identified pathways in the non-preserved

modules in our previous work on MAP infection (28).

MAP infection activates various immune-related pathways

most of them were significantly enriched in the sienna3

module. In response to MAP infection, macrophages secrete

pro-inflammatory cytokines such as interleukin-1, TNF, and

interferon-gamma (46, 47). Cytokines play a crucial role in

host immunity through activating cells to kill pathogens or

setting responses to control the disease. IFN-γ activates the

antimicrobial mechanisms of the macrophage in order to

destroy pathogens. It also contributes to Th1 differentiation,

T-cell activation, and dendritic cells maturation. Numerous

functions of IFN-γ are indicative of its role in the control

of MAP infection (47). IL-1 is essential in both protective
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FIGURE 6

Integrated regulatory network of sienna3 module. Each node represents a gene and each edge represents the interaction between genes.

mRNAs, lncRNAs and TFs are indicated with circles, triangles and diamond shapes, respectively, and the larger shapes represent hub genes.

immunity and MAP survival (31). Pro-inflammatory cytokines

potentially cause the formation of lesions in the ileal tissues

of infected animals. These lesions actively hold infection,

but clinical signs are not usually apparent (31, 48). Th-cell

differentiation is an important pathway during JD development.

The initial immune response of MAP-infected cattle in the

subclinical stage is Th1; however, with the progression of disease

in the late subclinical stage, there is a shift to Th2-mediated

humoral response. Since Th2 is a non-protective response and

cannot control intracellular infections, animals enter the clinical

phase of the disease (49).

A comprehensive literature review showed that many hub

genes and some TFs of the sienna3 module are reported to

be associated with JD and MAP infection including BLA-DQB,

TLR2, RNF149, ADIPOR1, AQP9, TREM1, GCH1, PIK3R5,

SOCS3, NFKB1, IRF1, and CDH26. Some of these genes

including TREM1, BLA-DQB, IRF1, ADIPOR1, and CDH26

were also reported associated with MAP infection in our

previous study (28). BLA-DQB hub gene is one of the MHC

II genes, which is also significantly inhibited in MAP-exposed

cattle (50). Since MHC class II antigens have an important

role in the immune response, downregulation of the MHC

class II during MAP infection may disrupt the activation of an

immune response against infecting pathogens. The expression

of MHC class II genes has been reduced in MAP-exposed

cows. The inhibition of these genes may influence the host’s

ability to deliver MAP fragments to CD4+ T lymphocytes

(50). TLR2 is a member of Toll-like receptors (TLRs). TLRs

are the pattern recognition receptors that bind pathogen-

associated molecular patterns (PAMPs) and are intrinsically

involved in activating both the innate and adaptive immune

response mechanisms. TLR2 is especially involved in the early

recognition of mycobacterial antigens (51). In fact, TLR2 plays

an important role in phagosome trafficking and antimicrobial

responses in MAP-infected bovine phagocytes (52). The site

of TLR2 expression in cattle is myelomonocytic cells, and

its expression on bovine macrophages is eight times higher

than that on dendritic cells (53, 54). Since the target cells
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of MAP to proliferate and survive are bovine macrophages,

TLR2 has a key role in JD (52). Koets et al. deduced that

cows with a susceptible TLR2 haplotype may experience the

clinical phase of JD at a younger age, or more severe, due

to deficient innate and subsequent cell-mediated immune

responses (19). Previous studies on JD found that the presence

of single nucleotide polymorphisms (SNPs) in this gene were

significantly associated with this disease (19, 24). Moreover,

Mucha et al. found seven missense mutations in TLR2 gene

associated with increased MAP susceptibility in Holstein cows

(55). Ruiz-Larrañaga et al. confirmed the role of TLR2 gene in

susceptibility to MAP infection (56). In another study, TLR2

was suggested to be a biomarker for MAP-infection in domestic

animals (57). RNF149 is located within a QTL associated with

humoral response to MAP (20). It has also been differentially

expressed in infected monocyte-derived macrophages of cows

(16). In addition, studies have shown that SNPs in ADIPOR1

are significantly associated with MAP infection status (22, 58).

Statistically significant SNPs are reported in AQP9, which are

associated with MAP resistance/susceptibility (21, 22). Also,

AQP9 has been identified to be a differentially expressed gene

at different times after MAP infection (59). TREM1 is reported

as a positional candidate gene in QTLs associated with MAP

infection (60). TREM1 strengthens the inflammatory response

to invading microbes and has a key role in protective innate

immunity during MAP infection (17, 61). This gene has been

downregulated in MAP-infected animals, and it seems to be as

a result of MAP invasion, which causes the host cell to suppress

the expression of surface receptors such as TLRs and MHC class

II molecules (required for pathogen recognition) (62). GCH1

is another hub gene of the sienna3 module with a significant

SNP associated with MAP infection (22). The significant

association of PIK3R5 hub gene with susceptibility/resistance

to JD was also reported (63). This gene is involved in TNF

signaling and chemokine signaling pathways (64). The increased

expression of SOCS3 hub gene in response to MAP infection

has been observed in several studies (10, 17, 65). This gene

is an anti-inflammatory cytokine, and it is suggested that its

upregulation participates in the inhibition of the JAK-STAT

pathway. In fact, it is a strategy that MAP uses to survive inside

the macrophage (65). NFKB1 is an important TF regulating

many immune function genes and directly participates in IL-

1 activation (66). NFKB1 encodes proteins belonging to the

mitogen-activated protein kinase (MAPK) signaling cascade so

that these proteins trigger the downstream cellular responses

upon the recognition of mycobacterial pathogen-associated

molecular patterns (PAMPs) (8). NFKB1 was upregulated in the

infected monocyte-derived macrophages (11, 16, 17). It is also

revealed that this gene is significantly expressed during the late

phase of infection (67). NFKB1 is recognized to be associated

withMAP infection in a SNP-based gene set enrichment analysis

(68). IRF1 is a member of the interferon regulatory TF family

and an activator of interferon alpha and beta transcription. It

was upregulated across different time points post-infection (11).

IRF1was found in genomic regions having SNPs associated with

MAP infection (21, 25). IRF1 significantly contributes to many

immune responses including the Type 1 (Th1) cell-mediated

immune response. Cell-mediated immunity is an important host

defense mechanism against intracellular pathogens including

MAP (69). In the sienna3 module, CDH26 gene was found as

both cis and trans target of lncRNA ENSBTAG00000050877.

Surprisingly, both lncRNA and its target were hub genes.

CDH26 encodes a member of the cadherin protein family.

The protein is expressed in gastrointestinal epithelial cells and

may be upregulated during allergic inflammation. In addition,

this protein interacts with alpha integrins and may also be

involved in leukocyte migration and adhesion (70). Among

the investigated hub genes of this module, several genes

were also identified as hubs in the PPIs network including

TLR2, ADIPOR1, TREM1, GCH1, PIK3R5, SOCS3, and CDH26.

Moreover, there were several other genes such as NAIP, RETN,

CRK, PIK3R5, PRDX4, LTB4R, PFKL, TNFSF13B, PECAM1,

ALDOC, GAPDH, AOAH, BCL2L11, and MAP2K1 that were

hubs in both WGCNA and PPIs network and according to

functional enrichment analysis were involved in immune-

related processes and JD. Overall, these findings may provide a

basis for further studies on the role of the sienna3module’s genes

in the progression of JD.

Genes from the firebrick4 module showed enrichment for

“positive regulation of intrinsic apoptotic signaling pathway,”

“antigen processing and presentation of exogenous peptide

antigen via MHC class I,” and “interleukin-1-mediated signaling

pathway,” which are related to JD. “Regulation of intrinsic

apoptotic signaling pathway” was also one of the enriched

pathways in the non-preserved modules in our previous

work (28). Mycobacteria induce apoptosis in macrophages and

release apoptotic vesicles that deliver mycobacterial antigens

to uninfected antigen-presenting cells. Pro-apoptotic signals

probably cause the removal of pathogens, while anti-apoptotic

signals can either eliminate the pathogen and control the

infection by improving antigen presentation to T cells or

suppress the immune response and enable pathogen survival

(11, 71, 72). MHC class I molecules, through which antigen

presentation occurs, are involved in T cytotoxic cell recognition

in infected cells (10). It is also suggested that MAP subverts

apoptosis to prevent antigen presentation and escape the host

immune response. So MAP survival in macrophages leads to

clinical disease (31, 73). Numerous studies referred to the hub

genes and TFs of this module as participants of JD pathogenesis

including SMARCA5, RHOA, GTF2A2, KTN1, LEO1, USP8,

EIF4E, MYC, ATF3, GTF2I, and HMGB1. SMARCA5 is found

to be linked to a SNP related to the antibody response to

MAP in cattle (23). RHOA is a small GTPase protein located

in intestinal epithelial cells and is linked to the process by

which MAP crosses the intestinal barrier (74). GTF2A2, KTN1,

LEO1, and USP8 are reported as candidate genes with SNPs
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significantly associated with JD (21, 22). EIF4E is also associated

with JD according to other studies (10, 75). This gene plays

a role in the immune system and cytokine signaling pathways

(10). MYC is a TF in this module, and its expression has

been increased after MAP infection in cows (17). c-Myc has

a key role in macrophage differentiation (76, 77). ATF3 is

another TF gene that uses an epigenetics mechanism to bind

and suppress both its own promoter and other ATF3 target

genes (78). This gene has been induced by MAP infection,

and its expression has been sustained throughout the infection

period. Therefore, it is suggested thatATF3 repressive regulation

may suppress pro-inflammatory chemokine production (17, 79).

It is also demonstrated that ATF3 has an important role in

modulating IFN responses in macrophages (80). GTF2I TF

gene is identified as a candidate gene to be relevant to MAP

susceptibility (23). This gene is involved in many important

cellular processes including apoptosis, neuro-active ligand-

receptor interaction, calcium signaling pathway, cytokine–

cytokine receptor interaction ribosomal pathway, gap junction,

and adherens junction (81). Since GTF2I regulates genes related

to defense mechanisms and may be linked with apoptosis in

macrophages, it can be suggestive of its role in the pathogenesis

and persistence of mycobacteria in macrophages, which is

associated with MAP infection (82). GTF2I is also known as

one of the genes related to MAP infection in our previous

paper (28). HMGB1 is a TF gene and plays a part in the

regulation of the immune response (83). This gene is involved

in the repressed state of phagocytosis for MAP condition in the

late stage (84). It is reported that the expression of HMGB1

has been decreased in JD-infected cows (18). All the hub

genes discussed in this module were also hub genes in the

PPIs network, which reinforce their potential functions in JD.

Our results suggested that the identified regulatory interactions

of the firebrick4 module’s members might contribute to

understanding the potential molecular mechanisms underlying

JD development.

The most significant biological processes associated with

JD in the coral2 module were “inflammatory response,”

“regulation of interleukin-8 production,” “positive regulation

of cellular biosynthetic process,” “negative regulation of

cytokine production,” “regulation of phosphatidylinositol 3-

kinase signaling,” “regulation of interleukin-6 production,” and

“MAPK cascade.” From these, the mitogen-activated protein

kinase (MAPK) pathway is one of the key pathways involved

in the host response to MAP (11). MAPK cascade activates

downstream cellular responses once the mycobacterial pathogen

is recognized by cell surface pathogen recognition receptors

(8). MAPKs also play important roles in the regulation of

the expression of genes encoding inflammatory chemokine

and cytokines through activation of several transcription

factors (85, 86). TCF12 is a TF gene in the coral2 module

with a SNP within genomic regions associated with MAP

resistance/susceptibility (21). PIK3CB was detected as the hub

gene in both co-expression and PPI networks. This gene may

be directly involved in JD pathogenesis, because of its role

in MAPK cascade and regulation of phosphatidylinositol 3-

kinase signaling.

The genes in the grey60 module were enriched in

several important biological processes related to JD such as

“cellular response to type I interferon,” “negative regulation

of innate immune response,” “cytokine-mediated signaling

pathway,” “negative regulation of type I interferon production,”

“response to interferon-beta,” and “response to cytokine.” Type

I interferons mainly include IFNα and IFNβ. It is reported

that IFNα/β may have two contradictory roles in bacterial

infection. On the one hand, they may protect the host

against infection by upregulating antimicrobial effectors like

pro-inflammatory cytokines. On the other hand, they may

destroy the host response to bacteria through different immune

functions such as evoking IL-10 and IL-1 receptor antagonist

production, inhibiting pro-inflammatory cytokine production,

inducing apoptosis, and limiting host responses to IFN-γ.

Type I IFNs have detrimental effects on intracellular bacteria.

Although the mechanisms are not clear, it is suggested that

IFNα/β suppress the production of host-protective cytokines

in mycobacterial infections (87). ISG15, as a hub gene of this

module, is believed to be related to JD because of having

a significant SNP associated with MAP infection (22). This

gene is linked to a defense response to invading pathogens

(88). STAT1 is a TF gene of the grey60 module and indirectly

induces an immune response. Once STAT1 translocates into

the nucleus, activates transcription of IFN-γ-inducible genes

(89). IFN-γ acts primarily through the regulation of gene

expression to induce macrophages to kill intracellular pathogens

(65). Furthermore, STAT1 was reported to be differentially

expressed in JD-positive cows (90). Both ISG15 and STAT1

were mentioned as JD-related genes in our previous work

on MAP infection (28). ISG15 and IFI27 were identified as

hub genes in both WGCNA and STRING networks. These

genes significantly participated in many biological processes

related to the immune system based on the functional

enrichment analysis.

In terms of functional analysis, the orange module was

associated with immune system biological processes including

“B cell homeostasis,” “positive regulation of interferon-gamma

production,” and “response to cytokine.” The role of cytokines

and IFN-γ in MAP infection was mentioned earlier. It is

noteworthy that the elevated level of IFN-γ is considered as

an immunological characteristic of the subclinical stage of JD

when macrophages are activated by IFN-γ to kill the bacteria

(91). ADAM10 is a hub gene of the orange module, and it

is considered a candidate gene associated with MAP infection

(21, 22). CASP3, as another hub gene of the orange module,

is a protease and takes part in apoptosis (92). Several studies

reported that CASP3 expression is significantly affected by MAP

infection (15, 16). This gene was a common hub gene in both
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predicted networks, and the functional analysis showed that it

plays a role in the process of response to cytokine.

In the blue2 module, the most significant biological

processes were “regulation of autophagy,” “autophagosome

organization,” and “autophagosome assembly.” The role of

autophagy in MAP infection has been pointed out in several

studies (11, 12, 93). In fact, the main defense mechanism

against MAP is destroying macrophages through autophagy

and apoptosis (88). It is supposed that autophagy acts as a

compensatorymechanism to present intracellularMAP antigens

at the time of decreased antigen presentation by MHC-

1 (12). Autophagosomes are double-membrane vesicles that

contain host cell cytosolic components. In the process of

autophagy, autophagosomes fused with lysosomes to degrade

their contents (11). TTC7A is a hub gene of this module and was

reported as a candidate gene with known SNPs associated with

JD (21, 22).

Conclusion

The pipeline presented in this study can pave the way to

profit more valid results since it enables us to identify consensus

modules, which are non-preserved in infected treatment. In

other words, it is a new approach for validation of the

results. The identified non-preserved consensus modules in

the two datasets are helpful to enhance our knowledge and

understanding of molecular mechanisms connected with JD.

Among these modules, the ones whose biological functions as

well as genes were associated with JD are of special importance,

so that they are sources of genes that can be prospective

candidates for diagnosis and prognosis of JD. It is worth

considering that, because of high connectedness and regulatory

roles, hub, TF, or lncRNA genes of the non-preserved modules

are more critical in discovering JD pathogenesis and can be

considered new candidate biomarkers. The enrichment analysis

results demonstrated the roles of these genes in biological

processes and pathways linked to the immune system and

JD development. It is noteworthy that some of the biological

processes and pathways as well as genes reported in our previous

paper were found in the non-preserved consensus modules;

however, we could achieve more comprehensive and reliable

results with the aid of the new pipeline in the present study.
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