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Abstract 

In the last 10 years the number of studies showing the benefits of resistance training (RT) to the 
cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable 
adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of 
the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with 
comparable protocols to the RT performed by humans hampers the knowledge. We have used 
squat-exercise model, which is widely used by many others laboratories. However, to a lesser 
extent, other models are also employed to investigate the cardiovascular adaptations. In the 
subsequent sections we will review the information regarding cardiac morphological adaptations, 
signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT 
using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe 
cardiovascular findings observed using other animal models of RT. 
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Introduction 
Resistance training (RT) was first described to 

induce skeletal muscle adaptations. Experimental 
models that try to mimic these adaptations in rats, use 
a model of chronic muscle stretching, compensatory 
overload and electric stimulation in unconscious 
animals. However, today it is surrounded by controv-
ersy if these models to induce skeletal muscle 
hypertrophy are similar to that promoted by RT in 
humans [1–3]. 

On the other hand, RT in conscious animals was 
created by some laboratories to improve its 
similarities to RT performed by bodybuilders. These 
models provide an excellent means to study both 
acute and chronic responses of RT in the muscles. 
However, these models still have the challenge of 
training the animals to voluntarily perform the 
traditional exercises performed by humans. In some 

cases, the animals are given food as a reward [4] or 
movement is stimulated by an electrical shock in the 
tail or leg, but not directly in the muscle tissue as in 
the previous unconscious animal models [2]. 

Tamaki et al., [2] created a model that mimics 
squat-training (figure 1) performed by humans, for 
rats and today it is the most common model used by 
many laboratories. The model was initially developed 
to compare metabolic and morphological adaptations 
in skeletal muscles in response to aerobic training and 
RT. After this first publication by Tamaki et al., other 
groups also used the same model to study the 
influence of RT in bone mass [5,6], in the metabolic 
processes [7] and in the body composition [8]. In 2005 
our group were the first to use the same apparatus to 
examine the cardiovascular system and after that the 
number of studies using this model have grown to 
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investigate the effects of the RT as non-pharmaco-
logical therapy for the treatment or prevention of the 
many different cardiovascular diseases [8–10]. 

 Our first step was to perform the direct 
measurement of blood pressure (BP) and heart rate by 
a cannula inserted into the carotid artery. The cannula 
was connected to a polyethylene tube, and this to an 
electromagnetic transducer which was connected to 
an amplifier. From this, suing software, beat by beat 
values of systolic and diastolic blood pressure were 
obtained. Figure 2 is an example of a series of exercise. 
We can clearly observe the 12 pressure peaks 
corresponding to 12 repetitions performed, similar to 
weight lifters, that is characterized by the intermittent 
increase in BP during RT. In this context, our group 
began to investigate the effects of RT on the 
cardiovascular system in rats. 

Cardiac hypertrophy 
Cardiac hypertrophy (CH) is a central feature in 

several scenarios of pathological and physiological 
remodeling [11,12]. It is well recognized, that 
intermittent increase in BP during RT leads to 
pressure overload to the left ventricle. This pressure 
overload stimulus increases cardiomyocyte cell width 
and left ventricular wall thickning. This CH features 
are observed in bodybuilders and named as 
physiological concentric CH [13]. On the other hand, 
pathological concentric CH is observed in heart 
subjected to different diseases such as hypertension or 
aortic stenosis, where there is a continuous pressure 
overload to the left ventricle. This type of CH is 
followed by diastolic and/or systolic dysfunction and 
an uneven increase in the thickness of the left 
ventricle posterior wall and interventricular septum 

[14,15]. However, the physiological CH developed by 
high level strength athletes may present a 
macroscopic structure similar to pathological CH, 
which could be incorrectly interpreted as pathological 
[16]. Therefore, here we will show our, and other 
authors results using the Tamaki Model about the 
morphological and molecular mechanisms 
responsible for physiological CH [2]. 

The results from our study [17], in 2005 
demonstrated CH in rats in response to RT. We 
observed 12% increase in the heats of trained rats 
which is similar to previous reported in human 
training for less than 3 months [18,19], but a smaller 
than described in other studies in humans engaged 
for more than 1 year in RT programs [13,20,21]. In 
another study, in 2007, Barauna et al., [22] found that 
the left ventricular mass assessed by 
echocardiography was 8%, 12%, and 16% larger in the 
RT group, than in the control group in the first, 
second and third month respectively. This CH 
showed a similar increase in the interventricular 
septum and in the free posterior wall mass. There was 
no reduction in the end-diastolic left ventricular 
internal diameter during the 3 months of the RT 
period, showing that this stimulus leads to concentric 
CH. In addition, our group also investigated the 
morphology of the cardiomyocyte isolated from the 
left ventricular after eight weeks of RT [23]. In this 
study we confirmed that RT resulted in an increase in 
both width and volume of left ventricular 
cardiomyocytes when compared to sedentary control 
animals. However, cell length was not affected by 
exercise sessions. Therefore, our data shows that RT 
model due to an increase in pressure overload in the 
heart during the exercise, induces concentric cardiac 

cells hypertrophy, which is in agreement with 
previous echocardiographic data from our 
group [22]. 

Cardiac hypertrophy signaling 
pathway 

RT increases cardiac workload during the 
exercise sessions and thus it is an interesting in 
vivo model for studying physiological pressure 
overload on cardiac cells. It has become clear 
that external load is sensed by cardiac cells and 
converted into intracellular signals [14]. 
Among the possible mechanosensors one of 
the most studied is the angiotensin II type 1 
receptor (AT1R). AT1R activates a wide 
spectrum of signaling responses which 
mediates BP control, thirst and sodium balance 
as well as diverse pathological actions in the 
heart, kidney, and other tissues [24]. It is well 
established that AT1R plays an important role 

 

 
Figure 1: Apparatus used to perform resistance training. Adapted from Barauna et al, 2005 
[17]. 
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in the development of CH in pathological conditions 
such as in cardiovascular and renal diseases. 
However, in 2008, Barauna et al., [25] demonstrated 
that AT1R blockade prevented physiological CH 
induced by RT in rats suggesting that the AT1R and 
its intracellular signaling also plays a role in 
physiological CH induced by RT. Furthermore, no 
changes were observed in the angiotensin II levels or 
in its producing enzymes angiotensin-converting 
enzyme I (ACE) and renin activities, but increased 
expression of cardiac AT1R, suggesting AT1R 
activation by mechanical stretch as previous 
described by us and other groups [26,27]. 

 In fact, Zou et al., [26] were the first to show the 
AT1R as a mechanical sensor in cardiomyocytes and 
to activate hypertrophic signaling pathways upon 
mechanical stimuli in the absence of angiotensin II. In 
agreement, Frank et al., [28] reported that AT1R 
activation by mechanical stretch is responsible for 
modulating genes involved in cardioprotection, 
which most likely occurs because of the AT1R ability 
to activate G-protein independent pathways. 
Cardiac-specific over-expression of mutated AT1R 
knocked out of G-protein signaling presented a higher 
degree of CH, but without fibrosis [29]. Zhai et al.,[29] 
also observed a reduction in apoptosis in the heart of 
these animals, corroborating the hypothesis that 
AT1R can activate pathways independent of 
G-protein, as in the case of exercise training, thus 
promoting physiological adaptations. In this regard, 
previous studies has suggested that AT1R may have 
beneficial effects, mainly thought β-arrestins, when it 
is biased activated to G-protein independent 
pathways [30]. Interestingly, in 2016, we highlighted 
that β-arrestin-2 gene expression is increased in rats 
subjected to RT for eight weeks [31]. 

Additionally, reports have shown that 
physiological CH induced by aerobic training is 
associated to tyrosine kinase receptors activation and 
downstream PI3K/Akt/mTOR signaling pathway 
[32]. In fact, studies have shown that insulin-like 
growth factor -1 (IGF-1) is involved in protein 

synthesis in physiological CH in both elite athletes 
[33] and trained rats [34]. However, Kim et al., [35] 
observed an unexpected increase in Akt 
phosphorylation even in trained IGF-1 receptor 
knockout animals also, suggesting that another 
pathway may be activated independent of the IGF-1 
receptor. Interestingly, in 2011, we showed that a 
session of RT promoted increase in Akt 
phosphorylation 30 minutes after the RT session. This 
increased in Akt phosphorylation was also 
accompanied by an increase in phosphorylation of 
mTOR. However, these effects were blocked by 
blocking the AT1-R, suggesting activation of the 
AT1R-Akt-mTOR signaling pathway during a 
resistance exercise session as a potential mechanism 
for the CH [36].  

Activation of MAPKs can also occur via 
G-protein pathway through adrenergic, endothelin-1, 
and AT1 receptors in animals subjected to 
pathological pressure overload (37). MAPKs are 
divided into 3 subfamilies on the basis of the terminal 
kinase involved in the pathway, namely: extracellular 
signal-regulated kinases (ERKs), P38, and c-Jun amino 
terminal kinase (JNKs). In an elegant study, Iemitsu et 
al.,[38] showed that cardiac ERK1/2 phosphorylation 
occurred 30 minutes after a session of aerobic exercise 
which decreased gradually with training adaptation 
(after 8 weeks of training). Similarly, Nakamura et 
al.,[39] showed that animals submitted to an exercise 
training protocol twice a week on a treadmill had 
increased ERK 1/2 phosphorylation, but with no 
signal of CH. In this sense, in 2011, we showed 
ERK1/2 phosphorylation via AT1-R after a session of 
RT, however, it is still unclear whether ERK 1/2 is a 
critical mediator of hypertrophic response during RT. 
Furthermore, we also observed that P38 activation 
increased after 5 and 30 minutes of a resistance 
exercise session which was not inhibited by AT1-R 
blockade, suggesting another upstream signaling 
pathway or the activation of this MAPK other than 
AT1-R [31]. Although MAPKs signaling pathway 
studies predominate in the field of cardiovascular 

disorders, little is known about their 
role or expression patterns in 
physiological conditions, especially 
RT-regulated MAPKs. 

Cardiac Function  
RT was shown by Barauna et al., 

[22] to induce physiological stimulus 
for concentric CH without cardiac 
dysfunction in rats. Consistently, our 
results are in agreement with results 
in humans showing no cardiac 
dysfunction in resistance trained 

 

 
Figure 2: Blood pressure during 12 repetitions in a series of the resistance training in rats 
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individuals [18,20]. Later, in 2015, we observed that 
RT improved contraction and relaxation of isolated 
cardiomyocytes [13,23]. Although, not every possible 
mechanism had been tested, we showed at that time 
augmented expression of calcium regulatory proteins 
such as sarcoplasmic reticulum calcium ATPase-2a 
(Serca2a) in trained groups, which is responsible for 
92% of Ca2+ reuptake [40,41]. We believe that this 
increased expression could at least partially explain 
the improved time to peak and time to half relaxation 
[13]. In this context, Pinter et al., [42] showed that in 
rats trained at 60% and 75% of 1RM there was an 
increase in the isometric force developed by the 
papillary muscles analyzed by the Langendorff 
technique. In this regard, the authors suggested that 
the improvement in cardiomyocyte contractility was 
due to increased myosin ATPase activity and 
enhanced Ca2+ influx after four weeks of RT. 
Furthermore, we showed that none of the 
pathological CH molecular markers such as atrial 
natriuretic peptide or α-MHC-to-β-MHC ratio were 
changed by RT in healthy rats [13,25]. 

On the other hand, in rats with pathological 
condition, such as in spontaneously hypertensive rats 
(SHR), Fernandes et al., [43] showed that acute RT 
increased isometric force of papillary muscles in 
isolated perfused hearts, as well as increased 
functional activity of the sarcoplasmic reticulum but 
with no change in Serca2a and phospholamban 
proteins expression. Additionaly, Alves et al., [44] 
showed that 12-week of RT in chronic heart failure 
rats were able to improve cardiac function and 
attenuate left ventricular collagen volume fraction. 
Although, Doustar et al., [45] showed that 4 weeks of 
RT did not preserve heart remodeling after 
ischemia–reperfusion injury, evidenced by no change 
in the infarct size and apoptosis rate, Soufi et al., [46], 
showed that 12 weeks of the RT reduced the infarct 
size and provides cardioprotection against 
ischemia–reperfusion injury. Recently, in 2017, we 
reported that RT prevented cardiac interstitial 
collagen deposition and attenuated diastolic 
dysfunction in rats subjected to a high salt diet 
independent of alterations in blood pressure [47] and 
that low intensity RT for 10 weeks in streptozotocin- 
diabetic rats induced an increase in systolic function 
and attenuation of cardiac autonomic neuropathy in 
diabetic rats [48]. Therefore, studies are still needed to 
understand the myocardial changes associated with 
RT in physiological and pathological situations. 

Vascular adaptation 
The effects of RT in the vascular system is still 

under investigation. A single session of aerobic 
exercise or RT reduces BP during the recovery period, 

which is called post-exercise hypotension (PEH). In 
normotensive subjects, the magnitude of the PEH has 
varied from −4/−2 to −14/4 mmHg of 
systolic/diastolic BP [49,50]. In hypertensive patients, 
it has been reported PEH from −12/−6 to −23/−14 
mmHg, which is greater than the reduction observed 
in non-hypentensive subjects [51]. It is well 
established that exercise intensity (lower intensity 
promotes greater PEH [52,53] and volume (higher 
volume promotes greater PEH [54] are two 
determinants of PEH, however, endothelial function 
and autonomic mechanism of PEH is poorly 
understood after RT. 

 The PEH has been associated with improved 
nitric oxide (NO) synthesis, leading to a reduction in 
the peripheral vascular resistance [42,55] as well as 
reduction in the sympathetic nerve activity. In a study 
with SHR, both systolic and diastolic BP were 
decreased by -57 and -25 mmHg after 10 minutes of 
RT compared with pre-exercise values. PEH was 
abolished by L-arginine methyl ester (L-NAME) 
infusion, and the response to α-adrenergic stimulation 
in femoral artery was reduced due to buffering of NO 
after RT [55], suggesting PEH is mediated by 
increased NO production through eNOS activation 
[56]. In line with previous studies , Mota et al., [57], 
showed that acute RT promoted endothelium- 
dependent vasodilatation, eNOS phosphorylation and 
endothelial production of NO in the superior 
mesenteric artery of healthy rats, and the magnitude 
of these vascular endothelium adjustments were 
strongly related to the RT intensity. Furthermore, 
Fontes et al., [58] showed RT-induced enhanced 
insulin vasodilatation through both PI3K/eNOS and 
MAPK/ET-1 pathways evaluated by vascular 
reactivity of mesenteric artery.  

A meta-analysis published by Cornelissen and 
Fagard [59] comprising 12 studies and 341 
participants showed no significant reduction from -3.2 
to -3.5 mmHg in resting mean BP in humans subjected 
to long-term RT. The same group of authors in 
another meta-analysis showed that both 
moderate-intensity dynamic RT and low-intensity 
isometric RT may reduce mean BP in subjects with 
optimal pressure and/or prehypertension [60]. 
However, the mechanism of such adaptations is still 
unknown.  

In 2005, we observed reduction in the diastolic 
BP values in normotensive rats subjected to 8 weeks of 
RT at 70% of 1RM. After that, in 2008, Pinter et al., [42] 
showed a reduction in both systolic and diastolic BP 
in rats trained at 75% of 1RM but not when trained at 
60% of 1RM. In a model of hypertension induced by 
L-NAME, Araujo et al., [9] showed that RT prevented 
the increase in mean and diastolic BP evaluated, and 
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maintained the arterial luminal-media ratio and total 
area of arteries’ diameter. Recent findings suggested 
that the changes caused by RT are related to 
adjustments favoring augmented endothelial NO 
bioavailability and reduction of sympathetic vascular 
modulation [61]. In concert with the findings 
described above, Mota et al., [62] showed the 
effectiveness of RT to treat endothelial dysfunction 
and prevent an increase in arterial BP in type 1 
diabetic rats. Karimian et al. [63] showed increased 
plasma angiogenic factors such as NO in diabetic rats 
after RT. 

Other animal models of RT 
Basically there are two different models to 

perform aerobic training in rats: running on a 
treadmill or wheel, and swimming [64-66]. In contrast, 
among different models of the RT, climb a vertical 
ladder [67] or jump in a water tank with the load 
apparatus attached to the tail [68], are RT models most 
commonly used in animals to study the 
cardiovascular system after the model by Tamaki et 
al. [2].  

De Souza et al., [67], using the climbing a vertical 
ladder model, showed that RT promoted a 35% 
increase in CH, 17% in left ventricular thickness, 3% in 
left ventricular internal diameter and 27% in 
cross-sectional area of cardiomyocyte. Using the same 
model, Souza et al., [69] observed an increase in the 
aortic wall thickness, an increase elastic lamina and 
collagen fibers, and the thickness of collagen fibrils in 
trained rats. In this model, it was showed that RT 
reduced cardiac dysfunction in rats with diabetes [70] 
and in infarcted animals [71]. Furthermore , RT was 
associated to better metalloproteinases-2 activity in 
the left ventricle, systolic and diastolic BP in high-fat 
fed rats and to prevents obesity-induced cardiovas-

cular disorders, including an increase in mean arterial 
pressure, sympathetic modulation and impaired 
baroreflex sensitivity [72,73]. In addition, this model 
of RT has been shown to be effective in cardiac 
autonomic adaptations in healthy and SHR rats 
[74,75], to prevent chronic elevation in systolic BP in 
severe hypertension [76] and to improves hemodyn-
amic status in diabetic ovariectomized rats [77]. 

On the other hand, fewer studies have used the 
models of jumping in the water to understand the 
cardiovascular adaptations. Junqueira et al., [68], 
showed increased left ventricular collagen density 
with no changes in proteins responsible for the 
calcium transport in the myocardial. McCulloch et al., 
[78], showed that the voluntary and forced jumping 
into water does not change the magnitude of the 
cardiovascular responses as such as immediate and 
substantial bradycardia [79]. However, using this 
model, RT did not reverse alterations in cardiac 
structure and function after pathological cardiac 
hypertrophy and injury induced by nandrolone 
administration [80]. 

  Although some results were in agreement with 
findings with Tamaki Model, we cannot rule out the 
aerobic component, lack of similarity to the protocols 
performed by humans and also the poor 
standardization used in these animal models. 

Conclusion 
 Based on our own findings and those reported 

by others, the RT model developed by Tamaki et al. 
[2] seems to be a good and appropriate model for 
studying cardiovascular adaptations. For the next 
step, we are studying the molecular mechanisms, 
mainly microRNAs, that mediate cardiac and vascular 
adaptations by RT. 

 

Table 1. Cardiovascular adaptations induced by resistance training in animal models 

Author Target tissue Duration Intensity Model year 
McCulloch et al. Cardiac 5 weeks No Jumping into water 1990 
Barauna et al. Cardiac\Vascular 4 weeks 65-75% of 1RM Squat-training 2005 
Barauna et al. Cardiac For 1,2 and 3 months 65-75% of 1RM Squat-training 2007 
Barauna et al. Cardiac 8 weeks 65-75% of 1RM Squat-training 2008 
Pinter et al. Cardiac\Vascular 8 weeks 60% and 75% of 1RM Squat-training 2008 
Lizardo et al Vascular Acute 70% of 1RM Squat-training 2008 
Faria et al. Vascular Acute 50% of 1RM Squat-training 2010 
McCulloch et al. Cardiac\vascular 5 weeks No Jumping into water 2010 
Melo et al. Cardiac Acute 80% of 1RM Squat-training 2011 
Soufi et al. Cardiac 8 weeks 70% of 1RM Squat-training 2011 
Yousef et al. Cardiac\vascular 4 weeks 70% of 1RM Squat-training 2011 
Yousef et al. Cardiac\vascular 4 weeks 70% of 1RM Squat-training 2011 
Tanno Cardiac 6 weeks 50-70% body mass Jumping into water 2011 
Doustar et al. Cardiac 4 weeks 70% of 1RM Squat-training 2012 
Ahmadiasl et al. Cardiac For 1 and 3 months 70% of 1RM Squat-training 2012 
De Deus et al. Cardiac\vascular 10 weeks 75% body mass Vertical ladder 2012 
Araujo et al. Vascular 4 weeks 50% of 1RM Squat-training 2013 
Mostarda et al. Cardiac 10 weeks 40-50% of 1RM Squat-training 2013 
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Author Target tissue Duration Intensity Model year 
Leite et al. Cardiac\vascular 3 months 75% body mass Vertical ladder 2013 
Fontes et al. Vascular Acute 70% of 1RM Squat-training 2014 
Alves et al. Cardiac\vascular 8 weeks 65-75% of 1RM Squat-training 2014 
Mota et al. Vascular 8 weeks 50% of 1RM Squat-training 2014 
Grans et al. Cardiac\vascular 3 months 75% body mass Vertical ladder 2014 
Sanches et al. Cardiac\vascular 8 weeks 75% body mass Vertical ladder 2014 
De Souza Cardiac 8 weeks 50% body mass Vertical ladder 2014 
Melo et al. Cardiac 8 weeks 80% of 1RM Squat-training 2015 
Fernandes et al. Vascular Acute 50% of 1RM Squat-training 2015 
Mota et al. Vascular Acute 30,50 and 70% of 1RM Squat-training 2015 
Tharciano et al. Vascular Acute 40% of 1RM Squat-training 2015 
Ghiasi et al. Cardiac For 1 and 4 months 70% of 1RM Squat-training 2015 
Quinteiro et al. Vascular 8 weeks % of 1RM Vertical ladder 2015 
Lima et al. Cardiac\vascular 4 weeks 75% body mass Jumping into water 2015 
Macedo et al. Vascular Acute 40% of 1RM Squat-training 2016 
Speretta et al. Cardiac\vascular 10 weeks 75% body mass Vertical ladder 2016 
Neves et al. Vascular 3 months 75% body mass Vertical ladder 2016 
Junqueira et al. Cardiac 10 weeks 50% body mass Jumping into water 2016 
Speretta et al. Cardiac\vascular 10 weeks 75% body mass Vertical ladder 2016 
Cunha et al. Cardiac 5 weeks 50-70% body mass Jumping into water 2016 
Faria et al. Vascular Acute 50% of 1RM Squat-training 2017 
Hentschke et al. Cardiac\vascular 8 weeks 65-75% of 1RM Squat-training 2017 
Souza et al. Vascular 12 weeks 75% body mass Vertical ladder 2017 
Macedo et al. Vascular 8 weeks 40% of 1RM Squat-training 2017 
Gomes et al. Cardiac 8 weeks 75% body mass Vertical ladder 2017 
Rashidlamir et al. Cardiac 8 weeks 30% of 1RM Vertical ladder 2017 
Barretti et al Cardiac 8 weeks 80% of 1RM Squat-training 2017 
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