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Abstract
In medicine, particularly in radiology, there are great expectations in artificial intelligence (AI), which can “see” more than
human radiologists in regard to, for example, tumor size, shape, morphology, texture and kinetics— thus enabling better care by
earlier detection or more precise reports. Another point is that AI can handle large data sets in high-dimensional spaces. But it
should not be forgotten that AI is only as good as the training samples available, which should ideally be numerous enough to
cover all variants. On the other hand, the main feature of human intelligence is content knowledge and the ability to find near-
optimal solutions. The purpose of this paper is to review the current complexity of radiology working places, to describe their
advantages and shortcomings. Further, we give an AI overview of the different types and features as used so far.We also touch on
the differences between AI and human intelligence in problem-solving. We present a new AI type, labeled “explainable AI,”
which should enable a balance/cooperation between AI and human intelligence— thus bringing both worlds in compliance with
legal requirements. For support of (pediatric) radiologists, we propose the creation of an AI assistant that augments radiologists
and keeps their brain free for generic tasks.
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Introduction

Imaging is an integral part of medical diagnostics. Image ac-
quisition is achieved by exploiting sophisticated technology,
but image interpretation is still a task for the “human radiolo-
gist” [1]. To fulfill this complex task, people require almost
three decades of learning as well as continuing medical edu-
cation (CME) [2]. Despite all these efforts, perception and
diagnostic errors exist.

Maturing imaging technology not only leads to steadily
increasing temporal, geometric and radiometric resolution
but also to new modalities — thus leading to an increasing

number of images per case. As an example, a CT study for a
trauma patient can consist of about 1,000 images.
Additionally, imaging modalities have different, non-
standardized interfaces.

Radiologists’ workplace resembles a cockpit with streaming
data and involves the management of several interfaces and in-
formation technology (IT) systems (Fig. 1). Despite their obvi-
ous advantages, all systems have constraints, inherited assump-
tions of how they should be used, thus handicapping the free
flow of radiologists’ intellectual properties in report generation.
There is the light on the firmament, that artificial intelligence
(AI) will influence almost everything in medicine and will im-
prove patient outcome in manyways. In regard to radiology, it is
expected that radiologists’ reports will get better and more pre-
cise. Some researchers have even proclaimed the funeral of ra-
diologists because AI will do it all [3]. Choy et al. [4] studied job
prospects for radiologists with regard to the use of AI. They
concluded that in the foreseeable future there will be no reduced
need for radiologists [4]. A recent PubMed search with the key-
words “artificial intelligence” and “radiology” yielded 5,641 pa-
pers since 1986. To put the focus on pediatric radiology, we
applied the PubMed age filter “child: birth–18 years,” thus
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narrowing the search to 308 papers (5.4%). Only a small propor-
tionwas genuine research in pediatric radiology:Miyagawa et al.
[5] predicted suspected increased intracranial pressure by using
machine learning in children; other recent pediatric publications
dealt with deep-learning techniques for pulmonary-thoracic
segmentation [6] and measurements of leg-length dis-
crepancy [7], to name a few. In other publications, chil-
dren or adolescents were included with adults.

Therefore, the purpose of this paper is to describe the cur-
rent (pediatric) radiologist’s environment— including IT sup-
port, its inherent shortcomings as well as current AI applica-
tions and their difficulties. In addition, we present a new ap-
proach called “explainable AI” and describe how AI can aug-
ment the pediatric radiologist.

Radiologists’ workplace and report
generation

Basically, radiology workflow consists of the steps as
displayed in Fig. 2 [8, 9]. Typically, imaging studies are

performed in teamwork with radiographers, where either im-
aging data are acquired by technologist alone (e.g., CT, MRI)
or radiologists perform imaging studies by themselves (e.g.,
US, fluoroscopy, interventional radiology — depending on
national legal environment). As mentioned, user interfaces
of imaging modalities are not standardized and can involve
all extremities. As an example, feet can be used for execution
of a “snapshot/video” on US machines or “fluoroscopy
on/off” on C-arm systems [10]. During image analysis,
a three-dimensional (3-D) model of patho-anatomy has
to be kept in mind [11].

Report generation is done in front of multiple monitors;
some of them are licensed for image interpretation, while of-
fice monitors are used for more general purposes, e.g., for
interaction with the hospital’s information system (HIS) or
for assessing other sources of information like medical data-
bases. Additionally, communication tools like landlines or
mobiles as well as numerous textbooks and atlases on
the bookshelf complete the picture. Figure 3 illustrates a
typical workplace of a radiologist, including IT equip-
ment and literature.

Fig. 1 Visual representation of the radiologist’s workplace (cockpit),
where images pass by like a film strip. Analyzing them can be
envisioned as a tunnel, where the report is the final product. On the

way to the report several constraints like patient responsibility, and
legal and forensic requirements have to be handled
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In the center of all this equipment and tools is the radiolo-
gist — he or she is managing data waves, trying to keep the
shuttle on track and generate a smart report.

Moreover, findings of previous multi-modal studies as well
as patients’ medical history and clinical signs and symptoms
must be considered before diseases can be diagnosed — thus
there is an increasing workload over the last years [12–14].
Additionally, equivocal findings must be clarified by
checking diagnostic pathways in books, publications, pictorial
essays or medical databases or by simply searching the inter-
net for similar images.

European Union (EU) directives cover several aspects of
work organization and determine permissible work assign-
ment, and some of these apply to radiologists, too [15].
Within EU countries, extended and overnight shifts for radi-
ologists, as for other medical staff, can last up to 25 h [16]. But
still, there are no regulations on how these 25 h are spent, so
there is an inherent assumption that radiologists will do the job
as required.

To minimize errors in interpretation, strategies like double-
reading were introduced. In highly sensitive areas like breast
imaging, this technique increases sensitivity by 5–10% [17].
According to the European guidelines for quality assurance in
breast cancer screening and diagnosis, a predefined protocol for
quality control exists to minimize errors [18]. In pediatric

radiology, such regulations do not exist. Professional societies
like the European Society of Paediatric Radiology publish
guidelines through task forces [19]. Within these professional
societies, it is common to share troublesome, non-urgent cases
with specialists abroad or discuss them at scientific meetings.

Information technology support and shortcomings

Current IT support consists of several parts. Picture archiving
and communication systems (PACS) free radiology depart-
ments from managing analog film archives — film archiving
and retrieval is no longer necessary. Patients can be managed
almost paperless by HIS, which provides patients’ history,
images from previous examinations, reports and more.

Soft-copy reading is augmented by hanging protocols.
Depending on the imaging modalities used, the visualization
software can be configured to display images in the best way
for reading, thus freeing the radiologist to shuffle them
around. Therefore, information likemodality, body part, study
description, image orientation and patient positioning or cur-
rent procedural terminology (CPT) codes must be available
for each study [20]. Hanging protocols can be stored centrally
and thus made available on different workstations so they can
be used by different users/groups. To enable sharing, stan-
dards have been developed in terms of a “hanging protocol
service class” and a “hanging protocol composite information
object definition” [21].

Today software is available, running in the background/
cloud, that highlights pathology and supports the radiologist
in diagnosing, for example, brain disorders, pulmonary embo-
lism and more [22]. Powerful workstations permit 3-D recon-
structions and other post-processing tasks almost in real time.
Speech recognition enables direct transcription of the spoken
word to text for a report.

Customization of these systems to the department’s
workflow can be an endless task— starting with catalog gen-
eration, prefetching rules, definition and consent finding for
hanging protocols, and more. Everything must be organized in
compliance with applicable data protection law. Software in-
terfaces for post-processing workstations are not standardized
and are sometimes not even from the same vendor.

Fig. 2 Imaging chain —
simplified radiology workflow

Fig. 3 Photograph of typical radiologist’s workplace — high-resolution
monitors, office monitors, keyboard, mouse, communication tools
(landlines and mobiles), books, journals and memo sheets
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Cloud computing is becoming popular, and cloud-based AI
applications exist. An overview and information about type of
clearance, either CE (Conformité Européenne) or FDA
(United States Food and Drug Administration) is available
on the internet [23]. It has to be kept in mind that the
European CE label refers only to formal law such as data
protection or security issues; it does not give any information
about the AI algorithm performance. To enhance transparency
and performance comparability among AI algorithms, the
American College of Radiology (ACR) offers a testing oppor-
tunity on appropriate reference standard data sets, collected
from multiple institutions, thus representing ground truth
[24]. Moreover, integration of tools like speech recognition
offers other challenges. After individual software training, in
daily use radiologists have to open new windows on screens
and wait for synchronization of the involved speech recogni-
tion, e.g., with HIS. Speech recognition depends on the the-
saurus used and the statistical representation of words. There
are dedicated thesauruses for radiology but these are usually
not developed for pediatric radiology. Therefore, transcription
rates for chest films, CT and MRI are good and reach the
desired performance level of 95%, but according to the au-
thors’ experience, these rates are lower for US, voiding
cystourethrography, video-urodynamics and defaecography,
for example [25, 26]. Additionally, reports with numerous
numerical data like cardiac CT or MRI suffer from less rec-
ognition. Only a few systems allow integration of forms or
switching between text and numerical input.

Overall, it is always a balance between individuality and
standardization. Mutual understanding of engineers and radi-
ologists is a key feature but not always present.

Structure of reports and structured reports

The final report is the result of reading a study. It is a formal
document that obliges the radiologist to give an official inter-
pretation of an examination or procedure [27]. For decades
there have been guidelines about structure and wording from
Wang et al. [28], Wallis and McCoubrie [27] and the
European Society of Radiology (ESR) [29]. An ACR inter-
society conference concluded that reporting tools should not
impede the productivity of radiologists. Reporting tools
should be able to integrate speech recognition and structured
reporting for radiologists [28]. In addition, radiology organi-
zations should create a report repository based on standard
vocabulary [28]. Standards like the Clinical Document
Architecture (CDA) and the Digital Imaging and
Communications in Medicine (DICOM) part 20 for transla-
tion of DICOM structured reports into CDA documents en-
able integration within an IT environment [29]. There is no
question about the importance and usefulness of these guide-
lines, but it is still an open question how much brainwork
radiologists are using for the formal requirements versus the

medical question and diagnostic puzzle. This applies in par-
ticular to residents, where IT handling might be easier to
Generation Y but where the main focus is to acquire knowl-
edge and skills in radiology. On the contrary, the Baby
Boomer generation struggles more with IT system manage-
ment, thus handicapping their workflow.

This leads the authors to STATEMENTONE:Managing
the radiologic IT environment represents a complex task
that consumes inappropriate mental power. It is our hope
that radiologists will be supported soon by intuitive and
seamless AI applications.

But what is the solution? Better, more fail-proof, simpler
and more usable systems? Or assisting radiologists with a new
kind of AI assistant, where radiologists concentrate on medi-
cal content and work closely/jointly with an AI expert in one
workplace? Who will take on the costs when rather the oppo-
site is desired: replacing the radiologist with AI to save costs?

Artificial intelligence

The idea of AI was first published in 1950 by Alan Turing
[30] when he hypothesized in his paper: “Can computers rea-
son as well as humans?” This was the starting point for many
definitions, but from a computer science perspective, it could
be stated that “AI represents the ability of a digital computer or
computer-controlled robot to perform tasks commonly asso-
ciated with intelligent beings” [31, 32]. Computers must de-
rive their decisions/conclusions from patterns/policies in order
to accomplish those tasks. Methods used are referred to as
machine learning methods or machine learning algorithms.

Machine learning uses computer algorithms to improve
automatically through experience. All algorithms share three
fundamental properties: (a) data analysis [33], (b) model and
model optimization (machine learning algorithms or methods
are usually referenced as the model) [34] and (c) goal function
or cost function (term used for a function measuring the per-
formance of the model on a given task) [35].

These three parts represent a life cycle of a machine learn-
ing model, which is presented in Fig. 4. The four basic ma-
chine learning categories are based on the problem and data:
(1) supervised learning, or classification and regression of
problems where data are labeled [36]; (2) unsupervised learn-
ing, or clustering and grouping of unlabeled data [37]; (3)
semi-supervised learning, where unsupervised methods help
supervised methods to increase accuracy [38, 39]; and (4)
reinforcement learning, also known as learning through trials,
where AI learns how to control an agent in the dynamic world
[40]. Machine learning methods are often confused with sta-
tistical methods/models. Machine learning is all about results
and conclusions, whereas statistical modeling and statistical
methods are more about finding relationships and the signifi-
cance of the relationships between variables.
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Deep learning

Deep learning refers to a subset of machine learning methods
based on algorithmic interpretation of neural networks as
found in any living being [41]. In 2006, G. Hinton et al. [42]
made a huge impact on neural networks training and availabil-
ity by learning a high-level representation based on successive
layers of binary or real-value latent variables with a restricted
Boltzmann machine. As a result of their research, several
types of neural networks have been created:

Feedforward neural networks represent the simplest form
of neural network, where information moves in only one di-
rection [43].Convolutional neural networks are based on two-
dimensional (2-D) convolution operation and are typically
used to extract information from images [44]. Recurrent neu-
ral networks are like feedforward neural networks except re-
current neural networks allow cycles within the hidden layers.
Cycles serve as memory cells that can store important features
in causal data types [45].

The common topology representations for each of the neu-
ral network types are given in Fig. 5. To summarize, deep
learning is a part of machine learning that makes artificial

intelligence possible [46]. The overview of the relationship
among AI, machine learning and deep machine learning is
presented in Fig. 6.

Artificial intelligence applications in medicine

Radiomics is a method that extracts a large number of features
from images and can help set up diagnosis [47]. The general
idea is to extract several image features such as size and
shapes of different regions, descriptors of the image intensity
histograms, different texture extractions or irregularities, etc.,
that can be helpful in diagnosis, predicting prognosis, and
therapy management for various conditions [48, 49] These
features form the basis for computer-aided diagnosis (CAD)
software [50]. The leading purpose of CAD software is to
reduce human labor and increase efficiency. CAD, as shown
in Fig. 7, can be divided into two types based on how features
are extracted: conventional CAD, with features proposed by
humans; and deep learning AI CAD, where useful features are
proposed and learned by machine learning [51].

Before the introduction of neural networks, and thus AI,
scientists used machine learning methods such as regression,

Fig. 4 Life cycle of a machine
learning method. The first phase
is obtaining the data, followed by
choosing and optimizing a model.
The last step is developing a final
model with good performance
that can be used in practice
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hand-made pattern recognition and support vector machines
(SVM)-based approaches to detect anomalies or extract

diagnostic patterns [52–55]. As AI evolved, features extracted
by the algorithms became more progressive [56]. In some

a

b

c

Fig. 5 Examples of neural network topology schemes. a Feedforward neural network topology. b A typical recurrent neural network topology. c A
convolutional neural network topology
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cases it was shown that human performance was achieved or
even surpassed [41, 57]. For instance, it became evident that
AI can detect and characterize certain cancers by
distinguishing benign from malignant nodules that are not
visible to the human eye [58]. Given the better cure rate of
early stages, this could greatly improve patient outcomes.
Also, through automatic segmentation, AI offers enormous
potential in terms of efficiency, reproducibility and quality
of measurements [59]. However, for proper AI performance,
a huge amount of high-quality data is necessary, which poses
a major challenge [60].

Other AI applications in radiology are targeted to speed
image acquisition, lower radiation exposure [61, 62] and im-
prove image quality [63–65] or speech recognition to support
transcription [66].

Challenges and shortcomings of applied artificial
intelligence in medicine

Because of the success of machine learning, particularly deep
learning [40], AI is experiencing an enormous renaissance,
and successful radiology examples have been mentioned
[67]; however, there are new challenges [68]. Considering
AI systems as black boxes represents a major problem in
terms of traceability and thus explainability.

Increasing legal demands for explainability, particularly in
the EuropeanUnion [69], raise the question ofwhy a result has
been achieved, which is not only desirable but mandatory! For
radiologists, this requires technical possibilities to be able, on
demand, to retrace, understand and interpret how results were
obtained by AI [70]. Consequently, a growing community is

Fig. 6 Overview of the relationship among artificial intelligence (AI),
machine learning and deep machine learning. Machine learning is a
subtype of AI, and deep machine learning is a subtype of machine

learning. Examples of methods are given for each subtype. KNN K
nearest neighbor algorithm, SVM support vector machine algorithm

Fig. 7 Differences between conventional computer-aided diagnosis (CAD) and deep learning artificial intelligence (AI) CAD systems
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working in the field called explainable AI (xAI) to de-
velop methods to make such black box approaches in-
terpretable by humans.

A popular example of such an explainable AI method is
Layer-wise Relevance Propagation [71], wherein relevant
parts of the input data that caused a result can be highlighted
utilizing heatmaps. An example is presented in Fig. 8, where
more red areas represent a higher likelihood of fractures.

This technical solution is an excellent first step:
explainability highlights decision-relevant parts of machine
re-presentations and machine models, i.e. parts that contribut-
ed to model accuracy in training, or to the confidence of a
prediction. In the medical domain there is need for the concept
of causability [72]. Causability is the measurable amount of an
explanation— in the technical form of a heatmap, as shown in
Fig. 8 — achieving a specified level of causal understanding
for humans [73].

The word “causability” comes from “usability” because us-
ability encompasses measurements for the quality of use and
has been accepted in software engineering for a long time [74].
This approach is very important in the medical domain gener-
ally and in radiology specifically. For legal reasons, humans
remain in control and are responsible for decision-making —
even when AI is doing/supporting the decision.

A further reason why fully automated AI will not prevail in
the mid term is represented by the fact that physicians/
radiologists own a conceptual understanding and experience
that no AI has to date. A potential solution can be interactive
machine learning with the “human in the loop” [75].

The amount and quality of data needed for machine learning
training are important factors for its success. In detail, the fol-
lowing facts have to be mentioned. Regarding data quality, fre-
quently signal-to-noise ratio is used as a metric. The noise and
presence of the artifacts depend on motion blur, proper handling
of the equipment as well as the equipment settings [76].
Regarding dimensionality, imaging data can be 2-D images up
to 3-D or 4-D volumes with high-resolution and complex struc-
tures, but machine learning algorithms work with small image
sizes (typically matrices have a size of 224×224). Down-scaling
the input data to the requiredmatrix size results in blurring or
even loss of important details. Therefore, techniques
were developed to keep only the important structures/
parts even after a reduction of dimensionality [77].

Data variability requires complete calibration of imaging
modalities, which is not possible in daily routine and is usually
not needed clinically. As an example, for the same object there
is a variation of attenuation coefficients by different CT ma-
chines, further varied by different exposure settings and image
reconstruction techniques [78]. These differences add unnec-
essary complexity to the data sets that needs to be compensat-
ed by normalizing the data or performing different data aug-
mentation techniques.

Some of these problems are easy to solve, but some are
nearly impossible. However, as more data sets are becoming
available to the public, there will be more research in algo-
rithms and approaches to obtain invariant data [79–81].

Humans vs. artificial intelligence
in problem-solving

For possible future medical AI applications in general, and in
pediatric radiology in particular, a very important question is
this: What can be better done by AI and what can be better
done by the (human) radiologist? A reasonable assumption is
a combination of both — a step toward the “augmented radi-
ologist.” The ultimate responsibility will be still the radiolo-
gist’s. An imaginable scenario would be a change of work
quality: simple but time-consuming work would be left to
the machine and complex work would still require human
expertise. Extrapolation tasks should serve as a practical ex-
ample. Making predictions from few or uncertain data is gen-
erally hard to achieve by machines [82]. This problem is even
harder in the medical domain, which is full of uncertainty, and
where there are rarely exact function values without any errors
or noise [83]. Trained AI models can measure the similarity of
two data objects; however, they cannot explain why they are
similar. Here again, a human-in-the-loop can be of help
to find the underlying explanatory factors of why two
objects are similar because of his or her contextual un-
derstanding of the target domain, which is a typical
feature of humans (radiologists).

Fig. 8 Layer-wise Relevance Propagation in a 15-year-old girl. a
Anteroposterior (AP) ankle radiograph shows a fibula fracture. b
Radiograph was sent to an artificial intelligence (AI) model trained for
automated fracture detection. AI-predicted pathology is depicted as a
heatmap overlaying the radiograph, where red (hot) areas represent
regions where AI is more confident of a fracture. Heatmaps are
especially useful when checking model predictions in regard to
accurateness and plausibility
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As stated in the very beginning, a true intelligent learning
algorithm can automatically learn from data, extract knowl-
edge and make decisions similar to those of humans.
Therefore, at all times AI has been inspired by humans, how
they learn, how they extract knowledge and how they make
decisions. Key insights from past research provide probabilis-
tic modeling and neural-inspired algorithms [84]. Function
learning appears in everyday cognitive activities: nearly every
task requires mental representations, which map inputs X to
outputs Y, f: X → Y. Because the set of such mappings is
infinite, inductive biases need to constrain plausible infer-
ences. Theories on how humans learn such mappings with
continuous variables have focused on two alternatives: (1)
humans are just estimating explicit functions, or (2) humans
are performing associative learning supported by similarity
principles. The group around Tom Griffiths at Princeton de-
veloped a model that unifies both these assumptions [85].

Studies are evidencing that humans are excellent at finding
near-optimal solutions to difficult problems; they can detect
and exploit some structural properties of the instance in order
to enhance solution parts. It is interesting that medical doctors
are not aware how hard and expensive it would be to solve
these problems with AI [86, 87].

This leads the authors to STATEMENT TWO: AI needs
legal safety, security and accountability.

As a result of legal and forensic constraints, it is not an
option to use AI systems as black boxes — press a button
and wait for the results, and either accept the AI suggestion
or not. The reporting radiologist must be able to retrace and to
ask questions of the system as to why a certain decision has
been reached. This calls for an explainable AI with features
like retraceability and interpretability. Future human AI inter-
faces should enable such a multi-modal view [88, 89].

Personal experiences

Our interdisciplinary research group started working in the
field of pediatric trauma computer vision applications in
2018 [52]. As described [90, 91], AI can be helpful in the
domain of automated fracture detection. One of the main hur-
dles in establishing AI algorithms is the lack of annotated
training data sets and data quality. It is laborious work to
create and maintain large image collections with proper labels
[92]. We found AI algorithms to exceed pediatric radiologists
regarding fracture detection in specific regions like wrist ra-
diographs (Janisch et al., 2021, unpublished). We think that
AI can achieve similar performance in most body regions and
tasks, given enough training data. The auxiliary displayed heat
map gives the reporting radiologist the possibility to analyze
the “hot region” found by the AI system as well as the level of
confidence (Fig. 8). Figure 9 shows a receiver operating char-
acteristic (ROC) analysis of a general pediatric fracture

classification algorithm trained on more than 200,000 radio-
graphs in anteroposterior (AP) view of all body regions.

The results are not entirely satisfactory yet, given an accura-
cy of nearly 90%. However, this algorithm is based on the
radiology reports only, which are positive or negative for a
single study, but not individual images. Thus, an image might
be labeled positive for a present fracture, even if it is not actually
visible and perceptible to a human expert. Also, labeling errors
need to be considered, depending on the experience of the
labeling radiologist. Accuracy might be significantly improved
by minimizing the present labeling issues and by developing
region-specific models. Heat maps allow the reporting radiolo-
gist to get information about the AI system’s confidence level.

How can artificial intelligence help (pediatric)
radiology?

The daily workflow within radiology offers many options to in-
clude AI. One general application would be re-engineering the
human–computer interface. For decades, a keyboard and mouse
have been the main tools. Only smartphones, tablets and some
laptop touchscreens allow for the use of fingers in a more intuitive
way. Another approach would be to use gestures or spoken com-
mands for interaction with IT systems. AI should work in the
background and notify users by hovering notes on the correspond-
ing HIS sections. A full HIS integration will be the cornerstone for
acceptance bymedical staff— it is not an option for them to spend
their time serving several IT systems (see STATEMENT ONE).
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Fig. 9 Receiver operating characteristic (ROC) curve of pediatric fracture
classification. Area under the curve (AUC) is 0.889 with a 95%
confidence interval (CI) of 0.863–0.915. The model was trained on
258,866 pediatric radiographs of all body regions
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Next, we discuss potential AI support according to the
individual steps of the simplified imaging chain (Fig. 2).

Indication approval

Referring physicians could get AI support for selecting the
appropriate imaging procedure. Current clinical decision sup-
port systems are monolithic, thus allowing selection of one
item [93]. An AI system could sum up the available patient
information to suggest the best suited diagnostic pathway for a
particular case.

Image acquisition and raw image processing

A (stereoscopic) camera system and a weight sensor could
automatically measure body dimensions and weight. By shar-
ing this information with imaging devices, tight shutter set-
tings could be augmented. In addition, in plain radiographs
and CTs, appropriate exposure parameters as well as raw im-
age reconstruction items (e.g., looking up tables, sharpening
and more) could be suggested in a non-linear way. Measured
patient weight could allow AI to calculate the amount of in-
travenous contrast medium needed for CT; these data could be
transferred automatically to the power injector. The operator
would be informed by the hovering notes. This would be a
smooth process and radiographers could concentrate better on
the (pediatric) patients instead of the machines. As mentioned,
there are efforts to reduce either the dose in CT or speed up
MRI by AI [61, 62, 64, 65]. The seamless integration of deep
learning in CT image reconstruction has already been
achieved by one vendor [94, 95]. These data could be
exploited further by linking them with parameters of image
quality — thus forming the basis for a periodic report that
could represent a valuable future tool in quality management.

Image post-processing

Image post-processing tasks such as image segmentation,
multidimensional image reconstructions, or generation of pa-
rameter images (displaying function, e.g., perfusion maps in-
stead of anatomy/pathology) could be greatly enhanced byAI.
Today’s image segmentation tools are crude, with some ex-
ceptions for cardiac MRI [96, 97]. Gesture-guided multidi-
mensional editing tools could be helpful to correct AI segmen-
tation results, for example exact tumor volume assessment.
Efforts in that arena have been ongoing for more than 15 years
[98, 99]. Other AI applications could extract automated vessel
diameters and wall thickness or on US signs of fatty liver
disease to compare with follow-up studies. Virtual reality de-
vices should allow multidimensional data display and simula-
tion of, for example, interventional procedures. Such AI ap-
plications would make radiology reports more precise; enable

data tracking, comparison and transparency; and improve pa-
tient management and well-being.

Image display

As mentioned, image display on reporting workstations is
based on hanging protocols. It is desirable that AI be trained
to guess the individual radiologist’s opinion on any combina-
tion of modalities displayed and that the radiologist could
shuffle the images with gestures or spoken commands.

Report generation

Before report generation, AI can search for possible needed
relevant resources (textbooks, guidelines, classification
schemes) as a background process. Furthermore, based on a
standardized AI image description, queries for similar images
are performed, whichmight yield a diagnostic clue.Moreover,
AI explores images for patterns (e.g., cancer, occult fractures),
which could include available patient data for a diagnosis
suggestions. In pediatric radiology this would be especially
important for rare diseases, for example congenital
malformations or brain diseases caused by metabolic defects.

Moreover, easy sharing with colleagues (local, national,
international) for second opinion should be an option and AI
could select the best-suited conference partner by analyzing
available personal profiles.

At reporting, necessary items could be voice- or gesture-
driven, copied from other resources into the report, which
should also be capable of holding key images, videos, anima-
tions and simulations. All of these tasks would run in the
background and in real time, and again information would
be displayed intuitively with hovering notes.

Influences on radiology reports could include less descrip-
tion but more precise findings including quantitative data or
appropriate scoring of even rare diseases. This achievement
would be obtained by the combination of AI-supported infor-
mation management and human features like content knowl-
edge, creativity, problem-solving capabilities and an excellent
exemplary memory — we can remember a case well, even
decades later.

Workplace

An intuitive personalized AI would block unwanted interrup-
tions, store them and sort them on priority for later retrieval.

For some of the mentioned AI applications, the technical
basis is already available. The main handicaps are incompat-
ible systems and lack of standardization.

Such AI applications can together be described as a per-
sonal AI assistant that serves radiologists at all times.

This leads the authors to STATEMENT THREE:
Undeniably, AI will be an integral part of medicine and
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especially radiology, but for many reasons the last decision
is only for the human radiologist because only his or her
education and content knowledge will allow reliable
diagnoses.

However, to use AI properly, a huge collective cross-
domain effort is necessary, including: (a) raising awareness;
(b) guaranteeing ethical, social and legal aspects of AI; and (c)
education spanning all levels of curricula — from students to
residents to continuing education. For engineers, human-
computer interface redesign as well as strategies for ground
truth generation in huge datasets is mandatory.
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